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Abstract— The existence of positive equilibrium solutions of the McKendrick equations for the dynamics
of an age-structured population 1s studied as a bifurcation phenomenon using the inherent net reproductive
rate n as a bifurcation parameter Under only continuity assumptions on the density dependent death
and fertihty rates, 1t 1s shown that a global continuum of positive equilibria exists in a certain Banach
space This continuum connects from the trivial solution at n = 1 to the boundary of the domain on
which the problem 1s posed Results concerning the spectrum are given In particular, some circumstances
are described under which positive equilibria exist for all n values greater than the critical value n = 1

I INTRODUCTION

If p = p(t, @) = 0 1s the density of reproducing individuals of age a 1n a population at time
1, then the equations

dap/at + dplda + wa, p)p =0, 1>0, 0<a<A=< +w

o(t. 0) ["F(a,p)p(z, ayda, >0 an
]

describe respectively the removals and additions to the population, which 1s assumed closed
to tmmigration and emigration, 1n terms of the (per unit density per umt time) death and fertility
rates 4 and F These vital rates are assumed dependent upon a and p, but independent of ¢
The number A = + 15 2 maximal age for any member of the population and 1t 1s required
that

pt,A) =0, t>0

Coupled with an mitial condition p(0, a) = p(a), 0 < a < A, these equations determine the
future time evolution of the age-specific population density p These equations have come to
be called the McKendrick equations

In recent years (particularly since the seminal paper of Gurtin and MacCamy([3]) there has
been a rapidly growing hiterature dealing with vanous aspects of this model system of equations
and 1ts implications concerning age-structured population dynamics One fundamental question
1s that of the existence of positive equilibrium solutions p(z, @) = p(a) (sometimes musleadingly
called *‘stable age distnbutions’’ although they may be mathematically unstable) with which
this paper deals solely The goal 1s to give a general *‘global’’ existence result under mild
assumptions on the vital rates 4 and F and to do so within the framework of bifurcation theory

An equilibrium solution p = p(a) = 0 must sausfy the equilibrium equations

pla + ua, p)pa) =0, 0<a<A= +x
p(0) f " Fla. pypta) da, p(A) = 0
0

il

In accordance with the approach taken here which will utilize certamn global bifurcation tech-
mques, the existence of solutions of these equations will be studied as a function of a selected
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parameter This bifurcation parameter will be taken to be the inherent net reproductive rate n
at low density (techmically at p = 0) as defined by

n = fA Fla, 0) exp (—M(a, 0)) da, M(a, p) = [au(a, ») da

Y 0

This inherent net reproductive rate 1s the expected (per unit) number of offspring over a life-
span In order to introduce this parameter into the equations, the normalized fertility rate f =
f(a, p) 1s defined to be the ratio of the (per umit) fertility at age a to the (per umt) expected
number of offspring Then F = nf and the equilibrium equations can be written

(@) p'la) + ula, p)pl@) =0, 0<a<As +x
® p© = n [ fla. pp(@ da (12
1]

©) pA) =0

Note that under this normalization
A
f fta, 0) exp (—M(a, 0)) da = 1 (1 3)
o

The equilibrium equations (1 2) have the trivial solution p = 0 for all values of the
parameter n Of primary interest in understanding the time evolution of an age-structured
population whose dynamics are governed by the model equations (1 1) 1s a knowledge of the
set of values of n for which the equilibrium equations (1 2) have a nontrivial, positive solution
p After some preliminary matters 1n Section 2, including the prerequisite hinear theory when
A < +o, an existence result when A << <+ 15 given 1n Section 3 for a global continuum C*
of pairs (n, p) lying 1n a certain Banach space where p 1s a nontrivial, positive solution of (1 2)
corresponding to the inherent net reproductive rate n More specifically the main result of this
paper (Theorem 1) shows that under mild conditions on 4 and f, a continuum C* of positive
solutions (n, p) of (1 2) hifurcates from the trivial solution (n, p) = (1, 0) and connects to the
boundary of the domain on which the problem (1 2) 1s posed The cntical solution (n, p) =
(1, 0) 1s the biologically meaningful tnivial solution at which the inherent net reproductive rate
n equals one, a pownt at which birth and death processes combine to yield exact per umt
replacement

In Section 4 1t 1s shown how these results for A < + can be extended to the techmcally
more complicated case A = +% In Section 5 the spectrum associated with the continuum of
positive equilibna 1s studied and 1n Section 6 these results (as well as a few other points) are
illustrated by means of an example

There are many recent papers which contain existence results for equilibrium solutions of
(1 1) For example, see [5-8, 10, 11] and the refrences cited in these papers None of these
papers take the bifurcation approach taken here and ail require much stronger restrictions on
u and f than are required here 1n hypothesis H1 or H2 below In H1 or H2 no special functional
dependence of u and f on p 1s assumed as 1s frequently the case i the literature (where, for
example, either u or f 1s often assumed independent of p or 1t 1s assumed that the functional
dependence on p 1s through a dependence on total population size P(1) = 3 pla) da only)
Nor do we need here any monotonicity or Lipschitz or boundedness conditions on u or f as
are needed in these references

2 THE LINEAR THEORY FOR A < +=

In this section certain Banach spaces and operators are defined and the necessary linear
theory 1s developed when A < +% Let R and R* denote the set of reals and nonnegative
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reals respectively and let 4 denote the set of continusus functions u € C°([0, A), R) which
satisfy

Iim M(a) = + where M(a) = r,u(a) da

a—A - 0

For u € 4 define B, to be the linear space of continuous functions h € C°([0, A], R) for which
h(a) exp M(a) 1s continuous on [0, A] It 1s not difficult to see that B, 1s a Banach space when
endowed with the norm

Il = max |h(a)|/ po(a)

where

_ Jexp(=M(a)), 0=a<A
pol@) = {O, a=A

Note that p, € B, and that h € B, imphes h(A) = 0

Also needed will be the product space R X B, subject to the norm || ||, = || + |||, and
the Banach space L, = L,([0, A], R) with the norm ||k, = (f#h(a)|da)

Consider the nonhomogeneous linear system of equations

p'(a) + ua)pa) = hya), 0<a<A

A @n
p0 = [ g@p@da + b,
0
and the associated homogeneous system
' + a)=0, 0<a<A
p'(a) + ua)p(a) X 22)

p(0) = f g@p(a) da
0

In these equations 4 € 4, (hy, h;) ER X B, and gp, € L, By a solution of (2 1) or (2 2)
in B, 1s meant a function p € B, which 1s also continously differentiable on (0, A), 1e a
function p € B, N C'((0, A), R)

An integration of the differential equation 1n (2 2) easily shows that (2 2) has a nontrivial
solution 1n B, if and only 1f

fo ! e@po(@) da = 1 (23)

in which case all solutions have the form p(a) = cpy(a), c € R
All solutions of the nonhomogeneous differential equation m (2 1) have the form

pla) = po(a)[c + J ha(a)/ po(a) da], cER 24
0

and lie in B, N C' Thus, the nonhomogeneous system (2 1) 1s solvable in B « If and only 1f
the equation

[1 = fA g(a)po(a) da}c =h + fA gla)po(a) f hy(a)/po(a) da da 25
0 0 0

1s solvable for ¢ € R
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These facts can be summarized 1n the following Fredholm-type alternative for the linear
nonhomogeneous system (2 1) either the homogeneous svstem (2 2) has no nontrivial solution
in B, in which case the nonhomogeneous system (2 1) has a umaque solution B « for each (h,
hy) € R X B, or (2 2) has nontrivial solutions in B, in which case (2 1) has a solution n
B, if and only if (h,, h) € R X B, sansfies

A a
hy + J g(a)po(a)f hy(a)/ po(a) da da = 0 2 6)
0 0

In the first case (which occurs when (2 3) fails to hold), the unique solution of (2 1) 1s
given by p = S(h,, hy) € B, N C' where the solution operator S 1s defined by

Sthy, hy)) = Po(a)[c + fﬂ hao(a)/ pola) da:l
0 27N

-1
c = [h, + fA g(a)po(a)j hy(a)/ pe(a) da da][l - fA gla)pyla) da]
0 0 0

LEMMA

Assume that ;1 € 4, gp, € L, and (2 2) has no nontrivial solution in B, (1 e (2 3) fails
to hold) The solution operator S R X B, —> B, s linear and compact Moreover, the range
of S lies in B, N C'((0, A), R)

Proof That S(hy, h;) 1s linear in (h;, h,) and belongs to C' are obvious The inequahties

|S(hh h2)|p0(a) = lct + A”hZHu = [lhlt + kl“hZ“y]kl + A”h'l”u (2 8)
= kl|(hy, bl

where k;, = AllgpoliL, k» = |l — [4 gla)po(a) da|™' and k = max (k,, k,k, + A) show that
IS¢h, h)ll, = kl|(hy, ho)lf. or, in other words, that S 1s a bounded operator All that remains
to demonstrate 1s the compactness of §

Suppose (A7, h3) 1s a bounded sequence in R X B, It 1s to be shown that the sequence
Pm = S(AT, h) has a convergent subsequence 1n 8, From (2 8) 1t follows that the sequence
snla) = pu(a)/ pya) 1s a umformly bounded sequence of functions continuous on [0, A]
Moreover, the first equation n the system (2 1) shows that s,(a) = h%(a)/py(a) which implies
that the sequence of derivatives s,,(a) 1s also uniformly bounded on [0, A] Consequently, there
exists a sequence s, (a) which converges umformly on {0, A] to a continuous function s(a)
Define

_ Jsta)pyla), 0=a<A
pla) = {0’ a=A
Clearly p € B, and p,, — p in B, Thus § 1s compact [l

3 GLOBAL BRANCHES OF POSITIVE EQUILIBRIA WHEN A < + =

By a solution of the equilibrium equations (1 2) in R € B, will be meant an ordered pair
{(n, p) € R x B, for which p also belongs to C'([0, A}, R) For example, (n, 0) 1s a solution
for all n € R This section deals with positive solutions m R x B, that 1s with solutions (n,
p) for which p(a) > 0 on [0, A)

Let 2 C B, be an open set containing 0 € £ The assumptions needed on yx and f are
the following

H1 f and u can be wrutten

f=flay+rip), w=pa + rip), r(0) =0
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where u(a) € 4, f(a)pola) € Ly, [4 f(a)psla) da = 1 and the operatorsn, 2 — L,
and n, Q — B, defined by n(p) = prip|) are continuous and sausfy ||n,(p)|, =
0dlpll,) and [Inxp)li,. = O(lpll,) near p = 0

This hypothests H1 1s basically a continuity assumption on the death and fertility rates u
and f, or more precisely on the remainder terms r,, as operators between certain p spaces It
1s stated 1n terms of the defined operators n, for reasons of simplicity, because this 1s precisely
the requirement needed for the proof of Theorem 1 below In any case, the continuity of the
n, 1s as easy 1n general to venfy in applications as that of the r, One can easily write down
conditions on the remainder terms r, (or, what amounts to the same thing, on u# and f) under
which H1 holds, 1if desired For example, the remainders r, need only be defined on the cone
B of nonneganve functions 0 < p € B,, in which case the continuity of r, B, — L, and
r, B; — B, and the order conditions |r;(p)l. = O(lpl.), llr2(2)ll. = Olell), 0 < y, suffice
More will be said about H1 1n Section 7

Recall that a continuum 1s a closed, connected set The notation 8(J”) denotes the boundary
of aset I’

THEOREM 1

Assume that A < + and that the death and fernlity rates u(a, p) and f(a, p) sansfy
hypothesis H1 There exists a maximal continuum C* C R X Q with the following properties

(ay 1,00&ecCt

(b) (n, p) € C*/{(1, 0)} 15 a positive solution of the equilibrium equations (1 2) with

A< +»

) C*NOR X )0

By (b), C* 15 a continuum of positive equilibrium solutions of the general McKendnck
system (1 1) with A < +o Conclusion (a) says that this continuum of positive equilibria
bifurcates from (1 e 1ntersects) the branch of trivial equiltbna (n, 0), n € R, at the critical
inherent net reproductive rate value of n = 1 It follows from the proof of Theorem 1 given
below and from general bifurcation principles that n = 1 1s the only possible such critical
value of the bifurcation parameter n Property (c) states that the continuum of positive equilibria
exists globally 1n the sense that 1t reaches the boundary of the set R X £ on which the problem
has been posed and on which H1 holds The open set £ 1s allowed to be the whole space B,
in H1 and Theorem 1, in which case d(R X ) = = and (c) 15 to be interpreted as stating
that the continuum C~ 1s unbounded n R X B,

Before giving the proof of Theorem 1 we note that from (1 2a) follows p(a) = p(0) exp
(—M(a, p)) Thus, nontnivial solutions of (1 2) have the following invariant sign property 1f
(n, p) ER X Q, p# 0, 1s a solution of (1 2) then either p(a) > 0 or p(a) < 0 for all
0=a<A= +,1¢ any nontrivial solution 1s erther positive or negative on {0, A)

Proof of Theorem 1 The equihbrium equations (1 2a, b) can be written, by use of the
hypotheses on y and f 1n H1, 1n the form

p'(a@) + wapla) = —pry(p)
A A 1 A
p(0) = f gla)p(a) da + ) f f@p(a) da + (;_ + 5) f pri(p)da (3 1)
0 0 0

g(a) =%, PR

[\

Equation (1 2¢) 1s automatically satisfied by solutions p € B, Note that

A 1
f glapoy(a)da = =
0 2

and thus (2 3) fails to hold Thus, by means of the compact linear operator S define 1n Section
2, (3 1) can be reformulated, for nonnegative solutions at least, in the operator form

p = ilp + HG, p) (32)
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where
A
S(f fa)p(a) da, 0)
)

S<</ + %) fA n,(p) da, _nz(l))>
</ Jo

Note that by the Lemma of Section 2 any solution p € B, of (1 2) must Iie in C' Because S
1s inear and compact, 1t follows that the linear operator L B, — B, 1s compact and the oper-
ator H R X Q- B, 1s completely continuous Moreover, by Hl the operator H satisfies
IHA, pli+ = o(lpll,) near p = O umformly on bounded / € R intervals

If (4, p) € R X £ 1s a positive solution of (3 1), then (n, p) where n = » + 1/2 15 a
positive solution of the equilibrium Equations (1 2) (the absolute values in the s, defined in
H1 being irrelevant if p = 0) On the other hand, if (4, p) € R X Q 1s a negative solution of
(32), then (A, —p) ER X £ 1s a positive solution This follows because H(/, p) =
—~H(A, —p)forall (4, p) ER X Qwithp =0

The goal of the proof is to apply Rabinowitz’s alternative[9] to (3 2) To do this we must
first establish some facts concerning the linear operator L To find the charactenstic values 4
of L, note that p = ALp 1s equivalent to the linear homogeneous system (2 2) with g(a) replaced
by nf(a) As observed m Section 2 nontrivial solutions exist if and only if (2 3) holds, 1 e 1f
and only if n = 1 (or A = 1/2), in which case the characteristic solutions p € B, are constant
multiples of py(a)

This sole charactenistic value A = 1/2 of L 1s simple For, suppose that p € B, 1s such
that (1/2L — I)*’» = 0 Then (1/2L — Dp = kp, = 1/2kLp, for some kK € R Thus p =
L(1/2p — 1/2kp,) which 1s equivalent to the equations

Lp

H(4, p)

A 1
(@) + w@p@ =0, pO) = f flayp(aria - 3k
0

Inasmuch as H1 imples that (2 3) holds with g(a) replaced by f(a) (1 € the associated ho-
mogeneous system has a nontrivial solution) the ‘*orthogonality condition’” (2 6) of the Fred-
holm alternative stated i Section 2 must hold for this system This means that £ = 0 and
hence that (1/2L — Ip = 0 In summary, (1/2L — I)’p = 0 imples (1/2L — p = O which
in turn implies that A = 1/2 1s simple

Corollary 1 12 of {9} now implies the existence of a continuum C C R X £ satisfying

(%,O)EC, CNIR X 2)#0

(4, p) € C/{(-;-, O)} solves 32)and O # p €8,

The second alternative 1n the Corollary 1 12, namely that C connects to another charactenistic
solution (4, 0), A # 1/2, 1s ruled out here by the uniqueness of the charactenstic value / =
1/2 of L

Now (4, p) € C implies p’ + (1 + r,(|p]))p = 0 and hence that the invariant sign prop-
erty holds, 1 e 1f p = Othenettherp > Qorp < Oon(0,A) ThusC = {(172,0uC, UC._
where (4, p) € C. implies p > 0 and (4, p) € C.. imphies p < 0 on {0, A) Theorem I 1s
proved by setting

1
ct ={1,0}u {(n, p)l(ﬂ - % p) S C+} U {(n. —p)|<n -5 p) ECV} 4
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If 2 = B, n Hl and Theorem 1, that 1s to say if u and f are globally defined functionals
of the density p € B, then the continuum C~ 1s unbounded 1n R X B, This means that either
the spectrum of C*

¢ = {n € R|(n, p) € C*/{(1, 0)} for some p € B,} (33)
or the posinive equilibrium solution set associated with C™
Z+ = {p € B,|(n, p) € C*/{(1,0)} for some n € R}

1s unbounded (or both) The closures of ¢ and X' * are continua

The spectrum o 1s connected and 1s consequently an interval of reals Note that the interval
o 18 not necessary the “*spectrum’” of the system (1 1) noris 2 * necessarily the positive solution
set of (1 1) because there mught well exist positive solutions of (1 1) not lying on the continuum
C* of positive solutions connecting to the bifurcation point (r, p) = (1, 0) For example see
Section 6 In Section 5 some results concerning the spectrum ¢ are given First, however, we
briefly show how the results of this section and of Section 2 can be extended to inciude the
case A = +w

4 THE CASE A = +x

For simplicity of presentation A was taken to be a finite real number 1n Sections 2 and 3
Quute often however the McKendrick model (1 1) 1s studied with A = + In this section 1t
1s shown how the results of Sections 2 and 3 can be extended to the more technically complicated
case when A = +x

Let A7 denote the set of nonnegative functions p € C%([0, +), R*) for which

Im inf u(a@) > 0

a—+x

R

Then y € A7 implies m,_,,. M(a) = +% For g € 4} and 0 < v = 1 define B,, to be
the Banach space of continuous functions & € C°([0, +<=), R) for which ||k, , < + o where

Ial,, = mSUp) |h(a)]/po (@), po.(a) = exp (—vM(a))

Note that p,4(a) € B,,, forall v = f = 1 Also note that » € B,, implies lim,_, . h(a) = 0
Denote py(a) = po, = exp (—M(a))

The product space R X B,, will be given the norm || i, = || + || |,, and L, will now
denote the space L,([0, + ), R) under the norm k||, = (J|h(a)|da)

First consider the linear theory for systems (2 15 and (2 2) with A = + % 1n which case
all solutions agamn have the form p = cpy(a), ¢ € R All solutions of the nonhomogeneous
system (2 1) agan have the form (2 4) To see that this general solution les in B,, for
h € B,, consider the following mequalities

Ipola) f " k@) po(@) dal/ po (@)
0

= fa [lh(@)|/ po ()] pg . (a) exp <—fﬂ u(s)ds) da/p,,(a)
0

a

“41n

0

= |, f exp <(v - 1) fﬂ y(s)ds) da = by, .k, < +2=
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The last integral 1s bounded by a constant k,, < + for @ = 0 because if a = 0 1s so large
that u(a) = w/2 fora = athen fora = a

0< fﬂ exp ((v - D Ja u(s) ds) da = fa + fﬂ exp ((v -1 f u(s) ds) da
0 a ) a a

a 1
sa+j exp((v— I)Ep.(a—a)>da5a+2/(1 - p < +x

a

The general solution (2 4) 1n fact hies in B,, N C'([0, +%), R)

Using (2 4) one finds that the nonhomogeneous system (2 1) is solvable for (h,, h,) €
R X B, if and only if (2 5) with A = +0o0 15 solvable for c € R The integral on the r h s
of (2 5) 1s fimite and 1n fact satisfies

f ) gla)pola) f ’ ha(a)/ po(a) da da
g

0

= ”gl’o \”L”hZH;J \kp v (4 2)

Thus, the Fredholm alternative for Section 2 remans valid for (2 1) when A = +=
provided u € 47, gp,, € L\ for 0 < v < | and the Banach space B, 1s replaced by B,
If the homogeneous system (2 2) has no nontrivial solution 1e (2 3) withA = += fails
to hold), then the unique solution of the nonhomogeneous system (2 1) 1s given agatn by (2 7)
(with A = +«) Using (41) and (42) one finds that the linear solution operator
S R x B,, = B,, 1s bounded
-1
b e

All that remains to show for the validation of the Lemma in Section 2 for the case A = +x
1s the key property of compactness for § Suppose that (4, h7) 15 a bounded sequence 1n
R X B, f > v We wish to show that the sequence of solutions p,(a) = S(AT, hf) of (2 1)
has a convergent subsequence in B, ; By (4 3) the sequence s,.(a) = p,(a)/po #(a) 15 umformly
bounded 1n @ = 0 and m Moreover

“S(hlv hZ)“u\ = K;l I||(h11 h'_’)"+

- By
Ku\ = max {~1 - f ng da s k;nl:l + “gp()i”L
0

1~ fxgpoda
0

ds,./dal = |h%(@)/ poa) + (B — Du(@)p.(a)/ poga)l
= ”hg’"u/} + (1 - ﬁ)u*Kuﬂ”(h'lna ’2")“+

shows that the sequence of derivatives of s,,(a) 1s umformly bounded Here 1t 1s assumed that
1 € 4% 1s a bounded function 0 = u(a) = p* < + Consequently, there exists a subse-
quence s, which converges uniformly for a = 0 to a bounded on compact sets to a continuous
function s(a) Define p(a) = s(a) exp (—fM(a)), which clearly belongs to B, ; Moreover,
it 1s clear that p,, — p B,

Thus, if u € 45, gpe, € L, for 0 < v < | and if y1s bounded for a = 0, then the Lemma
of Section 2 remains valid for A = + provided B, 15 replaced by B,, and R X B, by
R X B,g >V

Having now seen that the linear resuits of Section 2 can be extended to analogous results
for the case A = <+, we turn to the nonlinear equilibrium equations (1 2) when A = +®
For this case, hypothesis H1 1s modified as follows

H2 f and u can be written

f=fl@a + rp), u=pua + rp) r =0

where u(a) € A5 s bounded for a = 0, f(a)p,.(a) € L, for 0 < v < 1, [§ fl@)pyla)da = 1
and the operators ny, Q@ — L, and n, 2 — B, defined by n,(p) = pr|pl) are continuous
and Satl.ﬂfy ”'II(I))”L = O(Hp”u l) and ”n2(p)”ul = O(HPH;A \) near p = 0



Equilibrium solutions of the McKendnick equations 183

Here 2 © O1sanopenset0 € Q C B,, mB,,, > v With this hypothesis n place of
H1 the proof of Theorem | remains valid as given in Section 3 with A = +x and B, replaced
by B,

Thus with A = +, HI replaced by H2 and B, replaced by B, the conclusions of
Theorem | remain vald for the equilibrium equations (1 2) with A = +o¢ All of the remarks
following Theorem 1 and 1ts proof in Section 3 also remain valid from A = +x and B, 1s
replaced by B, (including the mnvarant sign property and the defimtions of the sets ¢ and

2

5 SOME RESULTS CONCERNING THE SPECTRUM ¢

Define the reproductve ratio R(p) ar an equilibrium density p to be the ratio of the net
reproductive rate at p to the mnherent net reproductive rate  Thus

R(p) = J'A fa, p) exp (—=M(a, p)) da 51

Equation (1 2a) 1s equivalent to p(a) = p(0) exp (—M(a, p)) which when substituted 1nto
(1 2b) yields, for nontnvial solutions p # 0, the invanance result that

nR(p) =1 (52

This identity means that the population’s net reproductive rate at any equilibrium density p 1s
always one, 1 € at exact replacement

Recall that » 1s the inherent net reproductive rate, 1 € the net reproductive rate at p = 0
The normalization (1 3) imphes that R(0) = [ Thus (5 2) holds for all (n, p) € C* and hence
1t allows for some rather straightforward conclusions regarding the spectral nterval o

(1) Some general properties of ¢ Define

o6, =supo and o, = nfa
R, sup R(p) and R, = mf R(p)

pEX™ pELT

THEOREM 2

Let C* ve the continuum of solutions in Theorem 1 (or in the extension of Theorem 1
described in Section 2 for the case A = +x ) Let ¢ be the spectrum associated with C* as
defined by (3 3) Then

Al=g=1=0 = +x,

®) R, =0ifand only if 6, = +x,

(¢) R, > 0 implies 6, = 1/R, and thus R, = 1,

(d) R, = +=fand only if 6, = 0,

(&) R, < +c implies 6, = 1/R, and thus R, = 1

Proof (a) If 0 € o, then there exists a p € B, (or B,,), p # 0, such that (0, p) € C*
But then (1 2b) imphes p(0) = 0 and (1 2a) 1n turn implies the contradiction p = 0 Thus
0 € o Since n = 1 lies 1n the closure of ¢ and since ¢ 1s a connected nterval (a) follows

(b) If R, = O then there exists a sequence (n,,, p,,) € C* for which R(p,,) > R, = 0
By (5 2), n,R(p,,) = | for all m and hence n,, — +c which 1n turn implies 6, = +

Conversely suppose g, = + Then there exists a sequence (n,,, p,,) € C* such that
n, —> + Then n,R(p,) = 1 for all m imphes R(p,) — O and hence R, = 0

(¢) If R, > 0 then | = nR(p) = nR, for all (n, p) € C* This imphes n < 1/R, for all
n € o and hence g, = I/R, On the other hand, R, > 0 mmples o, < += by (b) Then
1 = nR(p) = a,R(p) forall (n, p) € C* orR(p) = l/o,forall p € Z* This n turn imphes
R, = l/o, Thus Ro, = 1 Then R, = 1 follows by (a)

(d) and (e} are proved 1n a manner quite similar to (b) and (c) respectively O

Theorem 2 relates the endpoints of the spectral interval ¢ to properties of the reproductive
ratio R(p) when p 1s an equilibrium solution These properties of R can 1n turn be related to
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properties of the vital rates x4 and f by means of the defimtion (5 1), that 1s to say one can
often deduce certain properties of R from properties of u and f via (5 1)

Although 1n general the functional dependence of x and f on population density p can
take many forms, some broad fundamental properties are nearly always assumed 1n attempting
to make reasonably realistic models Usually the fertility rate f 1s in some sense a nonincreasing
if not a decreasing functional of p, at least for ‘‘large’” p (1t may increase with p for small
densities p) Simlarly the death rate 4 1s usually taken to be a nondecreasing functional of p
for large p, but may be decreasing for small p (a phenomenon often termed **depensation’ or
an Allee—Robertson effect) Also, 1n the population dynamical seting, f and x will always be
nonnegative, an assumption not needed 1n Theorems 1 and 2

(11) Some results concerming ¢ when A < += Some illustrations of the discussion 1m-
mediately above to some restricted, but still rather general cases are given in Corollaries 2 and
3 below for the case A < +% These results are based upon the following simple corollary of
Theorem 2

COROLLARY 1

Assume A < +x®

(a) Suppose that H1 holds with Q@ = B, and suppose that R(p,,) — 0 for any sequence
Pm € B, of positive solutions of (1 2a) for which ||p,|| = + Then g, = += for the con-
tinuum C* of Theorem 1

(b) Suppose that H1 holds and that R(p) < k for some k € R, 1 < k < + =, and for all
positive solutions p € B of (1 2a) Then g, = 1/k

Proof (a) Since Q = B, either 2" 1s unbounded or g, = 4+ Butif ' * 1s unbounded
then g, = + by Theorem 2(b) Thus, in either case ¢, = +x

(b) Since R, = k follows from the assumption, g, = 1/k follows from Theorem 2(e) []

Note for example that if K = 1 in Corollary 1(b) then o, = | and the spectral interval
has the form ¢ = (1, o) or (1, o] It follows in this case that the bifurcation 1s supercritical
or ‘‘to the night”” One case for which this happens 1s the case when 1t 1s assumed that the
smallest death rate occurs, for all age classes, at lowest population densities

0 =ua) = ua, 0) = ula,p), (a, p) €0, A] X B (53)
and that the largest fertility rate occurs, for all age classes, at lowest population densities
fla = f(a,0) = f(a, p) 20, (a,p) €[0, A] X B; (54

Under these assumptions it follows from (5 1) and (1 3) that
A
R(p) = f f(@)exp (-M(@) da = |, p€EB*
Q

Thus k = 1 1n Corollary 1(b)

COROLLARY 2

IfA < +, Hl with Q
Theorem 1 has the forma = (1, 6,) or (1, 7]

If 1t also occurs that g, + oo, then 1t would be the case that ¢ = (1, +%) and one
would have the interesting case that positive equilibria exist for all inherent net reproductive
rates n greater than the cntical value n = 1 One way in which g, = +9% can occur 1s by
means of the assumption on R(p) 1n Corollary 1(a), which means roughly that fertility drops
to zero as population density increases without bound This 1s a very common modelling
assumption (This occurs also when R(p) drops to zero as the death rate 4 increases without
bound with population density p ) To see a fairly general example consider the commonly
assumed case when the fertility rate 1s multiphicatively separable f = f(a)¢(p) Specifically,
assume the following

B, and (5 3)—(5 4) hold, then the spectral interval of C* 1n

b=
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H3 () f = fl@)¢([iw(a)p(a) da) = O where 0 = f(a)pyla) € L, [if(a)pola) da = 1,
0 < w(a)p(a) € L,, [iw(a)pola)da > 0and ¢ € C*(R*, R™) 1s nomincreasing with
hm,. .. ¢(x) = 0 and |d(x) — 1| = O(|x|") for 0 <y € R and x near 0, (1) p
sansfies H1, (5 3) and u(a, p) = ji(a) € 4 for (a, p) € [0, A] X B
It 1s easy to show that H3 implies H1, (5 3) and (5 4) Thus g, = 1 by Corollary 2 The
following corollary shows that ¢, = + under H3

COROLLARY 3

If A < 4+ and H3 hold, then ¢ = (1, + =) for the continuum C* of Theorem 1

Note that (5 3) and (5 4) imply r,(p) = 0 and r(p) = 0 1in H1 respectively Thus under
H1 and (5 3)

d(p(a) exp (M(a)))/da = —pr,(p) exp (M(a)) =0
and hence ||p||, = p(0) for any positive solution p of (I 2a)
Proof of Corollary 3 All that needs be shown 1s ¢, = + = and this will be done by an

application of Corollary 1(a) Suppose p,, € B, 1s a sequence of positive solutions of (1 2a)
for which ||p,ll, = pn(0) ~> +o as m — +x By H3(n)

[ * W@pn(@ da = pp(0) f " W(a@) exp (—M(a, p)) da = llpnllwe
0

0

where

0<w, = fA w(a) exp (— f”ﬁ(a)da) da

0 0

This implies, together with H3 (1), that

¢<

O f ! w(a)p.(a) da) -0

0

Since

0= Ry = f ’ f(a)¢< f ’ w(a)m(a)da) exp (—M(a, py)) da < bn ]0 * fa)pol@) da = ¢,
0

0
it follows that R(p,,) = 0 as m — +x O

Hypotheses H3 allows for a general dependence of f on a and for a fairly general functional
dependence on p The key requirement 1s the multiplicative separabihity and the requirement
that hm,_,, . ¢(x) = 0 (It 1s not difficult to modify H3(1) 1n an obvious way for non-separable
f 1n such a way as to retamn the proof and the Corollary ) To (5 3) hypothesis H3(11) adds an
age-specific upper bound on the density dependent death rate u

(1) The case A = +oc The general results mn (1) concerning ¢ are valid when A = +
Thus Corollary 1 and 1ts proof stand as given when A = +o if B, and [}-||, are replaced by
B, and || ||,, and HI 1s replaced by H2 The same 1s easily seen to be true of Corollary 2
Corollary 3 with A = + 15 valid as stated, as 1s 1ts proof, 1f 1n addition to these changes the
condition fp,, € L, replaces fp, € L, (It 1s also necessary to note that ell,, = p(O) for
positive solutions This follows from

d(p(a) exp ("M(a)))/da = (=pry(p) + (v — )up) exp (vM(a)) < 0

which holds for p = 0 because 0 < v < 1, 4 = 0 under H3 and ryp) 2 0 by (5 3))
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(1v) An example An example of a commonly used fertility rate functional of the form
required by H3(1) 1s

f= f(a)[l - JA w(a)pla) da:l
1]

+

where [x], = x1f x = 0 and [x], = 01 x < O (see [4]) By Corollary 3, ¢ = (1, +=x) for
this example For the even simpler case when u(a. p) = u(a), this can be seen by a direct
solution of (1 2) for p(a) = (n — Dpy(a)/ [§ w(a)py(a)da This is a special case of the ap-
plication considered 1n the next section

6 AN APPLICATION
For A = 1 take u(a, p) = 1/(1 - a) € 4 and

f=f@ll + W(p) - (1 + pHWAp)l., BER, fla)=0
where fp, = (1 — a)f(a) € L, 1s chosen such that [} (1 — a)f(a) da = | and where

Wip) = f ' w@p(a) da, w@ = 0
0

Here wpy = (1 — a)w(a) € L, 1s chosen such that [ (1 — a)w(a) da = | HI 1s satisfied
for these vital rates 4 and f The fertility rate 1s (the positive part of) a quadratic polynomial
in the functional W(p) and serves as a generalization of the example at the end of the previous
section{4] where § = —1

The equilibrium equations become

(a) p'l@) + p@/(1 —a) =0, 0<a<l
(b) p(0) = n f " F@l + fW(p) — (I + PW? ()], pla) da © 1)
0

(¢) p(1) =0

Equations (a) and (c) are easily solved p(a) = (I — a),¢ € R* Subsutution of this solution
into (b) leads to an algebraic quadratic equation for ¢ € R*

n(l + > — fnc + (1 —n) =0 (6 2)

the solution ¢ of which, as a function of n > 0, depends on the value of f The three qualitatively
different cases are graphed in Fig 1 below The continuum of positive equilibna C* =
{(n, c(1 — a)|(n, c) € Cg}, where Cy 1s the solution branch of the quadratic (6 2) connecting
to (n, ¢) = (1, 0) as 1s indicated 1in Fig 1, 1s the continuum of Theorem 1 [t 1s clearly
unbounded as guaranteed by Theorem 1(c) In fact 2'* 1s bounded and the spectrum o 1s
unbounded (¢, = +=) in every case

Beyond the existence of a global branch of equilibria, this example 1illustrates some further
possible properties of the equilibrium equations Case (a) in Fig | when § < —1 shows that
it 1s not necessarily true that all equilibria lie on the branch C* of Theorem | nor that the
spectrum o of C* 1s necessanly the spectrum of the equilibrium equations (1 2) (which 1n case
(a) 1s R*) Cases (b) and (¢) in Fig | show that the bifurcation from (n, p) = (1, 0) can be
super- or subcritical and that o, can be <I

The three cases in Fig | are distinguished by the value of 3, 1 ¢ by the nature of the
functional response of the fertility rate f to the weighted density functional W(p) These cases
are 1iilustrated in Fig 2
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Fig 1 The solution ¢ of (6 2) is plotted as a function of » > 0 in the three qualitatively different cases
depending on the value of # Equilibrium solutions of (6 1) are given by p = (1 — a) Incase (a), p* = I,
px = —1/(1 + Hiff< —2andp* = —1/(0 + B, p** = 1af —2<f < —1

7 CONCLUDING REMARKS

The main result of this paper 1s contained 1n Theorem 1 and 1ts extension described m
Section 4 to the case when A = -+ [t states that the McKendrick equations (1 1) for the
birth and death processes of an age-structured population has, for death rate 4 = u(a, p) and
fertility rate F = nf(a, p) where f 1s normalized by (1 3) and n 1s the inherent net reproductive
rate, a global continuum of positive equihbna (n, p) ER X B, (R X B,, when A = +x)
solely under the continuity assumption H1 (H2 when A = +) on g and f This continuum
bifurcates from the critical point (1, 0) and connects to the boundary of R X £ where £ 15
the domain of definition of x and f as functionals of population density p The simple continuity
hypothesis H1 (or H2) 1s quite mild 1n comparison to the varnous monotonicity, boundedness,
Lipschitz and differentiability restrictions placed on y and f n previous literature

H1 and H2 require that f and u, or more accurately the operators n, and n,, map B, and
B, , respectively into certain Banach spaces In the case of the fertility rate f, the operator n,
must map mto L, This 1s a mimimal and quite natural restriction for the McKendrick equations
(1 1) It s satsfied, for example, when A < + 2 if the remainder term r, satisfies r,(p) exp
(-M@) €L, forp €EB,

B>0

B<-i

w

r /

Fig 2 The functional response of the fertihty rate f (for fixed age a) 1s plotted against the weighted density
functional W
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For the death rate u, H1 (or H2) requires the operator n, to map nto B, (or B,, when
A = +x=) This means roughly that r.(p) must, for p € Q C B, (or B,,), be a bounded
function of a € [0, A) In an application this may be the most restrictive requirement of Hl
or H2 For example, when A < -+, HI cannot be satisfied by a death rate functional for
which the remainder term r, has the form u(a)W(p) where W 1s a functional on B, such as
J4 w(a)p(a)da because m order for n, to map nto B, it would be necessary for s(a) to be a
bounded function of a € [0, A) which 1s imcompatible with 4 € 4 Or, as another example
if ra(p) = p(a)p:, 0 <y € R* then HI 1s satisfied only if u € 4 satisfies some additional
restraint such as the boundedness of |u(a)| exp ( —yM(a)) fora € [0, A) These simple examples
show that the hypotheses H1 or H2 are, at least with regard to the death rate y, shightly more
restrictive than they mught first appear to be

The requirements of 4 and f are the most natural and straightforward ones for the approach
taken here It 1s possible that other Banach spaces could be used in H1 and H2 and still obtain
the general result of Theorem 1 under such mild continuity assumptions only To do this by
means of the global bifucation theorem of Rabinowitz[9] used here would require that the linear
theory of Sections 2 and 4 remain valid on these spaces and m particular that the crucial
compactness property of the solution operator S hold

Theorem 1 1s purely an existence result There are several other important and nteresting
questions which are not addressed here, such as the umqueness of positive equilibria vs the
existence of multiple positive equilibria, the stability of equilibria, the structure of the bifurcating
branch of positive equilibria (especially near bifurcation) and the structure of the spectrum o
(with which Section 5 deals) and the set 2 *

In a forthcoming paper{2] the properties of the bifurcating branch of positive equilibria
will be studied 1n detail locally near the bifurcation pomt (n. p) = (1, 0) A parameterization
of the local branch will be developed which will show the nature of the equilibria near bifur-
cation, the direction of bifurcation and how it depends on the vital rates ¢ and f, and the
stability of the branch equilibria and the trivial equilibrium p = 0 As 1s commonly the case,
these results will show that the trivial equilibrium foses stability as n increases through the
cntical bifurcation value n = 1 while the stability of the positive branch equilibria depends on
the direction of bifurcation (namely, night bifurcating branches are stable and left bifurcating
branches are unstable) Even when the local branch equilibria are stable near criticality the
stability may not persist globally along the branch however A secondary, Hopf type bifurcation
to time periodic solutions of (1 1) can occur(1] The global dynamics and stability picture for
(1 1) can be quite complex and remains a challenging problem
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Note added in proof
To H1 and H2 must be added the assumption that n, takes bounded sets to bounded sets



