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The Many Guises of R0 (a Didactic Note)

J. M. Cushinga,1 and Odo Diekmannb

aDepartment of Mathematics and Interdisciplinary Program in Applied Mathematics, University
of Arizona, 617 N. Santa Rita, Tucson, Arizona, 85721, USA

bMathematisch Instituut, Universiteit Utrecht, PO Box 80.010, 3508 TA Utrecht, The Netherlands

Abstract. The basic reproduction number R0 is, by definition, the expected life time
number of offspring of a newborn individual. An operationalization entails a specifica-
tion of what events are considered as “reproduction” and what events are considered as
“transitions from one individual-state to another”. Thus, an element of choice can creep
into the concretization of the definition. The aim of this note is to clearly expose this
possibility by way of examples from both population dynamics and infectious disease
epidemiology.

1 Introduction

It may be that two population biologists, while dealing with the same model, come up with different
numbers, or different expressions in terms of underlying parameters, for the basic reproduction
number R0; see e.g. [2]. It may happen that both are right. The aim of this short note is to explain
the reason for this and to illustrate it with examples.

The key point is that there is sometimes a certain ambiguity in the meaning of “reproduction”,
in pinpointing what is meant by “newborns” in the bookkeeping framework. Mathematically this
is reflected in the fact that there are multiple ways to decompose a positive matrix (in a discrete
time model) or positive-off-diagonal matrix (in a continuous time model) into a sum of two matrices
with certain properties (as specified in the Appendices). As a consequence, different reproduction
numbers, which simply count different things, can result. It is reassuring to know, however, that
the sign of R0 − 1 is independent of the decomposition used and that the prediction of exponential
growth or decay is therefore correctly made by any of the counting schemes.

As a warm up, we consider in the next section a population of cells that divide into two upon
completing the cell cycle. We adopt a generation perspective, meaning that we do not care about
(variability in) the length of the cell cycle, but concentrate on the production of offspring. We
illustrate how language (in particular, the assigning of name labels) and counting interconnect.

Discrete time models are often used when seasonality is a relentless driver of the life history. In
Section 3 we introduce a model of a plant population. The life stages seed-seedling-plant form a
cycle, but while both seeds (in the seed bank) and plants (on the field) may a year later still be
in the same stage, “seedling” is a one-time-only affair. We first show how this feature enables the
straightforward computation of a reproduction number. Next we briefly touch upon the choice of
a census point in the year cycle and its influence upon the bookkeeping scheme. We introduce the
projection matrix that generates the year-to-year dynamics, i.e. that “projects” the demographic
state vector from one census time to the next by means of matrix multiplication ([6], Section 2.5).
A decomposition of the projection matrix (satisfying certain conditions delineated in Appendix A)
yields a next-generation matrix. R0 is, by definition, the dominant eigenvalue of the next-generation
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matrix. Without being exhaustive, we show that several such decompositions are possible and that
the corresponding reproduction numbers need not be the same. We argue that the biological inter-
pretation underlying one decomposition may be more natural/convincing than the interpretation
of another decomposition. But we stress that this is indeed a matter of interpretation and not of
mathematical (in)correctness.

In Section 4 we turn to a continuous time model of the spread of an infectious disease. Following
Inaba and Nishiura [18], we assume that a newly infected individual is immediately infectious and yet
does not show any symptoms. After an exponentially distributed amount of time, the asymptomatic
individual either loses infectiousness or exhibits symptoms. From the point of view of the infectious
agent, transmission is reproduction. On the other hand, the public health system of the human
host population labels those developing symptoms as a new case. We elaborate both points of view
and explain how the second relates to the control issues that motivated Roberts and Heesterbeek
to introduce their type reproduction numbers [16], [24]; also see [2].

For other reflections on R0 we refer to [17], [14], [21], [23], and [25].

2 A Play on Words and Symbols

Consider a population of single cell organisms, e.g. bacteria. Assume that at the end of the cell
cycle, the cell divides into two cells and that each of these immediately starts a cell cycle. Assume
that a cell completes the cycle with probability p ≤ 1.

Let us call the cell that divides the “mother” and let us call both cells that arise from the
division her “daughters”, thus expressing that we consider these as “newborn” and the mother as
having died at division. The expected number of offspring of new born individuals is

R0 = 2p (1)

since a newborn cell produces with probability p exactly two offspring and with probability 1 − p
no offspring at all.

Alternatively, we might keep using the label “mother” for one of the two cells that exist after
the division, while labeling the other of the two as her “daughter”. Then a mother produces one
offspring at division, but may produce more offspring in the future. The expected number of
offspring of a newborn individual is

R0 = p+ p2 + p3 + · · ·

since the newborn cell completes at least n cell cycles with probability pn and produces one offspring
at the end of each completed cycle. If p = 1 then the “mother” is, in effect, immortal and produces
infinitely many offspring. If we assume

p < 1 (2)

then the expected number of offspring is finite and

R0 = p (1− p)−1 . (3)

Let x(t) denote the expected number of cells at time t. Choose as the unit of time the duration
of one cell cycle. Then

x(t+ 1) = 2px(t).
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To motivate a certain matrix decomposition in the next section, we write this as

x(t+ 1) = (T + F )x(t)

where T captures survival and F reproduction. So (1) corresponds to the choice T = 0 and F = 2p
while (3) corresponds to the choice T = p and F = p. In both cases we have

R0 = F (I − T )−1

Since (I − T )−1 equals the expected length of life, R0 is indeed the expected life time offspring
production. Note that from a mathematical point of view other decompositions of 2p into T + F
are perfectly alright.

Clearly the two expressions (1) and (3) differ except when p = 0 (when both yield R0 = 0)
or p = 1/2 (when both yield R0 = 1). However, one should not argue about the mathematical
correctness of (1) or (3). Either one accepts that there are at least two sensical ways to use the
mother/daughter labels, or else one should explain why one way is preferred above the other.

Another simple way to derive (3 ), when (2) holds, is to perform a first step analysis, i.e. to
determine R0 from the consistency equation

R0 = p (1 +R0) . (4)

That is to say, the expected number of offspring R0 of a cell is the probability p that it will complete
its first cycle, after which it is credited with one offspring with certainty plus an expected number
R0 of future offspring. (This assumes the Markov property that all cells starting the cycle have the
same probability to complete it and thus that a mother that survives a cycle is indistinguishable
from a newborn cell.)

3 Discrete Time Models

Consider a plant population with an annual life cycle graph shown in Figure 1. The arrow from
plant to plant corresponds to plants successfully overwintering with probability p1 while the arrow
from plant to seed corresponds to a plant’s expected production of f seeds during the summer or
fall. A seed germinates and produces a seedling during the spring with probability α1 which then
survives to become a plant with probability α2 in early summer. An alternative, with probability
1−α1, is that a seed does not germinate during the year but instead survives in the seed bank until
next year with probability p2.

1.jpg1.jpg1.jpg1.jpg
Figure 1. Plant Life Cycle
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Before developing a systematic bookkeeping scheme, let us try to compute a reproduction num-
ber directly from its interpretation. The three stages ‘plant’, ‘seed’ and ‘seedling’ constitute a cycle.
In the life cycle graph there are arrows from seed to seed and from plant to plant, reflecting that
both seeds and plants can stay in their stage for several years. In contrast, the stage ‘seedling’
has only an incoming and an outgoing arrow. So we can consider one seedling and compute rela-
tively easily the expected total number of seedlings that it produces (some after many years). The
following algorithm culminates in an explicit formula.

• The expected number of seeds produced by a plant equals (cf. (3))

E = f + p1f + p21f + · · · = f (1− p1)
−1
. (5)

Alternatively we derive this formula from the equation

E = f + p1E

obtained by first step analysis.

• Let Q denote the probability that a newly produced seed develops into a seedling. In Figure
1, the fact that a seed must survive at least one winter before it can germinate is not clearly
expressed. Taking this fact into account in a first step analysis, we obtain the equation

Q = p2 (α1 + (1− α1)Q)

and hence
Q =

α1p2
1− (1− α1) p2

.

• A seedling becomes a plant with probability α2. As a result R0, the expected number of
seedlings produced by a seedling, is α2EQ, i.e.

R0 =
fp2α1α2

(1− p1) (1− (1− α1) p2)
. (6)

Although simple and efficient, this computation is ad hoc. A systematic approach requires that
we first transform the life cycle graph into a matrix population model (cf. [6], [9])

x (t+ 1) = Px (t) . (7)

The time variable t in (7) is an integer and counts the years. The population state x (t) is a n-vector
and corresponds to a census taken at a particular time in year t. The n× n matrix P is called the
projection matrix and its entries should be derived from the life cycle graph in Figure 1. Both x
and P have non-negative elements.

The season in which the census takes place has a subtle influence on the formulation of the
model. For instance, if the census occurs in the spring, then we should take n = 3 (so that the
vector x consists of seed, seedling and plant counts), whereas if the census occurs in the summer,
autumn or winter, then n = 2 and the vector x consists of seed and plant counts. As a rule exactly
when the census takes place will be determined by the possibilities for gathering data. For the
purpose of our exposition, we assume the census takes place in the summer.
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Let the first component of x specify the density of plants and the second component specify the
density of seeds. Then our assumptions produce the projection matrix

P =

(
p1 + fp2α1α2 p2α1α2

fp2 (1− α1) p2 (1− α1)

)
. (8)

In order to define a reproduction number, we need to additively decompose the projection matrix

P = T + F (9)

where F and T are non-negative matrices that, respectively, capture reproduction and population
level consequences of mortality and changes in the life stage of individuals (as a mathematical
counterpart, inequality (27) should hold).

It makes perfect biological sense to identify reproduction with seed production. We should
realize, however, that some seeds produced in autumn show up as plants in the next summer’s
census. It is helpful to introduce terminology in order to make a distinction between offspring
(seeds) that show up as plants in the next census and offspring (seeds) that show up as seeds in
the seed bank in the next census. We say that the first have state 1 at birth and the second state
2. Following [26] we might call “seedling” a hidden state that any seed must go through before
becoming a plant that produces seeds. This feature was exploited when we derived (6).

The definition

F =

(
fp2α1α2 0

fp2 (1− α1) 0

)
(10)

reflects that a seed in the seed bank at census does not produce any offspring in one year, while
a plant produces, on average, fp2α1α2 offspring with state 1 at birth and fp2 (1− α1) offspring
with state 2 at birth. The transition matrix corresponding to (10), containing the probabilities that
plants survive and either remain in the seed bank for another year or become a plant, is

T =

(
p1 p2α1α2

0 p2 (1− α1)

)
(11)

The matrix F describes expected offspring production in one year. We want to determine the
expected life time production of offspring. To do so we form, starting from F and T and in the
spirit of (3) and the computation of E in (5), the matrix

F + FT + FT 2 + · · · = F (I − T )
−1

(12)

which we call the next-generation matrix. Note that the first index of an element in this matrix
specifies the state at birth of the offspring, while the second index specifies whether we compute
the expected offspring of a plant (index 1) or a seed in the seed bank (index 2).

As motivated and explained in Appendix A, R0 is defined as the dominant eigenvalue of the
next-generation matrix

F (I − T )
−1

=

(
fp2
1−p1α1α2

p2α1α2

1−(1−α1)p2

fp2
1−p1α1α2

fp2
1−p1 (1− α1) p2α1α2

1−(1−α1)p2

fp2
1−p1 (1− α1)

)

which is singular (its columns are multiples) and hence has eigenvalue 0. The other eigenvalue is
the trace, which is in complete agreement with (6).
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The following alternative derivation of (6) from F and T puts more emphasis on the interpre-
tation and saves work when the dimension is higher than two (when computing the inverse of a
matrix is troublesome). We have

F (I − T )
−1
v = R0v (13)

for a nonnegative vector v. The observation that offspring with state 1 at birth and offspring with
state 2 at birth are produced in the ratio

α1α2 : 1− α1

translates into the mathematical statement that the range of F is spanned by the vector(
α1α2

1− α1

)
.

It follows that any relevant eigenvector v is a multiple of this vector. As a consequence we can
compute R0 by substituting this vector for v in (13). The equation

(I − T ) y =

(
α1α2

1− α1

)
has solution y with component

y1 = α1α2
1

(1− p1) (1− (1− α1) p2)
.

So this substitution results in

R0 =
fp2α1α2

(1− p1) (1− (1− α1) p2)
(14)

which is, as noted before, in complete agreement with (6).
In Section 8 of [19], which is inspired by [13], a more complicated nonlinear model of a plant

population with a seed bank is considered. What follows is not a summary in [19]. We expose only
a small part of the analysis in order to make our point here. The decomposition of the linearized
equation adopted in [19] and [13] reduces in our situation to

F =

(
fp2α1α2 p2α1α2

fp2 (1− α1) 0

)
(15)

T =

(
p1 0
0 p2 (1− α1)

)
. (16)

The eigenvalues λ of the next-generation matrix

F (I − T )
−1

=

(
fp2
1−p1α1α2

p2α1α2

1−(1−α1)p2
fp2
1−p1 (1− α1) 0

)
are the roots of the quadratic equation

λ2 − fp2α1α2

1− p1
λ− fp22α1 (1− α1)α2

(1− p1) (1− (1− α1) p2)
= 0.
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The positive root of this equation deserves to be called R0, but generically it is not given by (6).
The reason for the difference in the values of R0 calculated from the two decompositions (10)-

(11) and (15)-(16) resides in the notion of “reproduction”, which for (15) is not the same as for
(10). Indeed, in (15) the “upgrading” from seed in the seed bank to plant is also considered
as a reproduction event, even though the production of the seed in the seed bank was already
a reproduction event (an analogy for mammals would be to call both conception and delivery a
reproduction event). Admittedly the decomposition (10)-(11) makes more biological sense than the
decomposition (15)-(16), but from a mathematical perspective they are equally informative. A slight
stretch of the interpretation of the word “reproduction” is all that is needed to interpret R0 defined
by (15)-(16) in the standard manner. Moreover, some algebra shows that the sign(R0 − 1) is the
same for both definitions (also see [19]) and, consequently, both determine whether the population
grows or decays. (Indeed, the general theory presented in Appendix A shows that sign(R0 − 1) is
the same for any feasible choice of F and T .)

4 Symptomatic versus Asymptomatic

We now turn to continuous time and to infectious disease. The considerations below are inspired
by [18].

We distinguish two kinds of infected hosts, those who are asymptomatic and those who are
symptomatic. The first we indicate by index 1, the second by index 2. We concentrate on the
initial phase of an epidemic outbreak, meaning that we ignore that the infection process will re-
duce the availability of susceptible hosts. (Mathematically this amounts to linearization in the
disease free steady state. But we shall formulate the linearized problem directly, bypassing the
nonlinear problem. This is possible since the linearization in the disease free steady state has an
epidemiological interpretation, in contrast to the linearization in an endemic steady state.)

We assume that a newly infected individual is asymptomatic. Asymptomatic individuals become
symptomatic with probability η per unit of time. An asymptomatic individual recovers (implying
that infectiousness is permanently lost) at rate γ1 and a symptomatic individual recovers at rate
γ2. An asymptomatic individual produces new infections at rate β1 and a symptomatic individual
does so at rate β2 (so βi encodes infectiousness, but the precise value also depends on the density
of susceptible hosts).

These assumptions translate into the differential equations

dI1
dt

= β1I1 + β2I2 − ηI1 − γ1I1
dI2
dt

= ηI1 − γ2I2

or equivalently
dI

dt
= AI

with

A =

(
β1 − η − γ1 β2

η −γ2

)
I =

(
I1
I2

)
.
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Here I1 is the density of asymptomatic individuals and I2 is the density of symptomatic individuals.
In order to define a reproduction number that counts the expected number of secondary cases per
primary case, we need to decompose

A = T + F

where F captures the production of new cases while T captures transitions and removal/recovery2.
But what is our definition of a “new case”?

The most literal interpretation is to identify “production of a new case” with “transmission of
the infectious agent to another host individual”. Accordingly we choose

F =

(
β1 β2
0 0

)
and

T =

(
−η − γ1 0

η −γ2

)
.

Note that the range of F is spanned by the vector(
1
0

)
,

reflecting that a newly infected individual is asymptomatic.
The components of the (defective) probability vector

eτT
(

1
0

)
describe the chances that an individual is asymptomatic or symptomatic at time τ after infection.
Hence the components in the vector∫ ∞

0

eτT
(

1
0

)
dτ = −T−1

(
1
0

)
give the expected amounts of time the newly infected individual will spend asymptomatic and
symptomatic respectively. If we multiply the first component by β1 and the second by β2, we
obtain a reproduction number. Calling this number R0 we find

R0 = β1
1

η + γ1
+ β2

η

η + γ1

1

γ2
. (17)

(Indeed, the newly infected individual remains asymptomatic for an expected time 1/ (η + γ1) .
With probability η/ (η + γ1) it leaves the asymptomatic phase by developing symptoms. If so, it
stays symptomatic for an expected time 1/γ2.)

From a public health perspective, asymptomatic individuals are “invisible”. Taking detectability
into account, we might choose to count the production of symptomatic individuals by an individual
that just developed symptoms. This corresponds to the choice

F =

(
0 0
η 0

)
(18)

2In the epidemic literature, Σ is often used to denote transitions and removal/recovery instead of T [12]. A
possible source of confusion is that, in that literature, the production of new cases (or transmissions) is denoted by
T instead of F .
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and

T =

(
β1 − η − γ1 β2

0 −γ2

)
. (19)

But if β1 > 0, then asymptomatic infectives multiply within their own category and one wonders
whether this can work. Indeed, if

β1
η + γ1

> 1

then an asymptomatic infective produces, on average, more than one new asymptomatic infective
before it either develops symptoms or recovers. So, in this case, we get exponential growth of
asymptomatic infectives even if β2 = 0, i.e. even if the contribution of symptomatic individuals to
transmission is ignored. To avoid this, we require

β1 < η + γ1.

This condition also guarantees that T is invertible and that

−T−1 =
1

(η + γ1 − β1) γ2

(
γ2 β2
0 η + γ1 − β1

)
is a non-negative matrix. After noting that the range of F defined by (18) is spanned by(

0
1

)
we define R0 by

−FT−1
(

0
1

)
= R0

(
0
1

)
from which we compute

R0 = β2
η

(η + γ1 − β1) γ2
. (20)

In order to illuminate the interpretation of (20), we reformulate its derivation. An individ-
ual that just developed symptoms remains infectious for an expected amount of time 1/γ2 and
hence produces on average β2/γ2 asymptomatic individuals. Let E denote the expected number
of individuals that enter the symptomatic class while being a “descendant” of a newly produced
asymptomatic individual. Then R0 = β2E/γ2. It remains to calculate E.

With probability η/ (η + γ1 + β1) a newly produced asymptomatic individual will develop symp-
toms before either recovering or producing, by transmission, another asymptomatic individual. Sim-
ilarly, the probability that the first event is recovery equals γ1/ (η + γ1 + β1) (in which case there
result no symptomatic individuals at all), while the probability that the first event is transmission
equals β1/ (η + γ1 + β1) (in which case the expected number of descendants becomes 2E). Hence
we have

E =
η

η + γ1 + β1
� 1 +

γ1
η + γ1 + β1

· 0 +
β1

η + γ1 + β1
2E

from which we conclude that
E =

η

η + γ1 − β1
.
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The issue of detectability (our motivation for the choice (18)-(19)) is closely related to the issue
of control. By targeted control efforts we might be able to reduce β2 and/or increase γ2. Now recall
that R0 = β2E/γ2 and note that E is expressed in terms of parameters pertaining to asymptomatic
infectives. So for R0 defined by (20), control efforts targeted on symptomatic infectives have a
multiplicative effect, whereas for R0 defined by (17) such efforts have a multiplicative effect on one
term only. It is exactly this difference that motivated Roberts and Heesterbeek [24] (also see [16] and
[2]) to introduce the type-reproduction number. We refer again to [18] for a detailed elaboration
in the context of a far more general model involving the distinction between symptomatic and
asymptomatic infectives.

According to the general theory presented in Appendix B we have sign(R0 − 1) = sign(r),
independently of the decomposition used to define R0, where r is the spectral bound of the matrix
A or, in more biological jargon, the Malthusian parameter (aka the intrinsic rate of natural increase).
In particular, our conclusion about asymptotic stability (R0 < 1) or instability (R0 > 1) does not
depend on the decomposition used to define R0.

5 Concluding Remarks

As noted in the abstract, R0 is defined as the expected life time number of offspring of a newborn
individual. In the appendices, however, we define R0 as the spectral radius of a next-generation
matrix K. Specifically, in the discrete time population dynamic setting, K = F (I − T )

−1
and in

the continuous time infectious disease setting K = −FT−1. Each is a non-negative matrix and
therefore its spectral radius is a dominant positive eigenvalue which has a nonnegative eigenvector
y ([3], Theorem 2.1.1):

Ky = R0y. (21)

(See [11] for a meaningful way to reduce the dimension of K that eliminates zero elements of y).
How does the definition of R0 given in the abstract relate to this more technical characterization?

In the word “expected” we need to include the distribution of type at birth in the following way.
Assume the eigenvector y in (21) is normalized such that its components yi sum to one. Then yi
can be interpreted as the probability that a newborn individual is of type i. Interpreted this way,
the statement (21) indeed amounts to the statement: a newborn individual produces, on average,
R0 offspring. But what if we start with a population that does not have a distribution of type at
birth as described by y? As a rule, R0 is a strictly dominant eigenvalue. As a result, if we iterate
K starting from an arbitrary distribution of types at birth, the resulting vectors become more and
more like a multiple of y (i.e., the relative size of the components is given by y). In other words,
the effects of the particular way in which the population (or the infectious agent) was introduced
die out. So we just need a bit of patience. (Yet we shouldn’t be too patient, as nonlinear effects
gain importance when the population grows. We refer to page 175 of [12] for some more discussion
of this aspect.). As far as we know little can be said in general about the exceptional case that R0

is not strictly dominant.
The key message of this short note is that there can be multiple ways to associate a next-

generation matrix with a given matrix that generates the real time dynamics. Accordingly, there
are multiple reproduction numbers that deserve to be denoted by R0, however confusing that may
be. To tell them apart, one has to pay attention to the decomposition (of the projection matrix
or its continuous time analogue) that underlies the next-generation matrix. This decomposition
“defines” those events one considers as reproduction events and hence what exactly is being counted.
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Everybody should feel free to argue that one decomposition is more biologically meaningful than
another. Or that one is more relevant for determining the required control efforts than another.
Such arguments may in fact be illuminating and/or helpful, but one cannot argue that one is,
according to mathematical theory, the one and only right one.

The paper [4] (brought to our attention by Horst Thieme) is a case in point. If, apart from
the infection status of patients, the contamination status of hospital rooms is also incorporated,
a complicated transmission model results. The matrix resulting from linearization at the disease
free state allows multiple meaningful decompositions (the paper mentions two, but one can easily
come up with arguments leading to yet another choice). If, as is indeed the case in this paper,
the ultimate aim of the model is to provide insight for control, one may in fact start by listing the
parameters that one hopes to be able to control and base the choice of F on these. The motivation is
provided by the formulas (30) and (31) in Appendices A and B, which show the scalar multiplicative
reduction of F needed to achieve eradication. This observation simply repeats the main idea of
[16], [18], [24], but puts it in a wider and, we think, useful context.

Acknowledgement. We thank KaYin Leung for helpful comments on a draft version of the paper
and for bringing [2] to our attention. We also thank Horst Thieme and an anonymous referee for
constructive suggestions that helped improve the manuscript.
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Appendices

A Discrete Time Models

Matrix iterations of the form
x (t+ 1) = Px (t) . (22)

describe the discrete time dynamics of populations structured by a finite number of states at the
individual level. The population at time t is described by the n-vector x (t) of state densities and
P is an n× n matrix, called the projection matrix. Both x and P have non-negative entries.

In the paper [22] Li and Schneider provide an excellent concise introduction to the relevant
notions and results concerning the reproductive number for matrix population models. (For more
detailed accounts see [6] and [9].)

For any matrix M we denote the spectral radius of M by ρ (M) and recall that one can define

ρ (M) = max {|λ| : λ is an eigenvalue of M} (23)

and show that (where k is an integer)

ρ (M) = inf
k≥1

∥∥Mk
∥∥1/k = lim

k→+∞

∥∥Mk
∥∥1/k (24)

holds, or conversely define ρ (M) by (24) and show that (23) holds. A key point is that whenever
ρ (M) < 1 then I −M is invertible and

(I −M)
−1

= I +M +M2 + · · · . (25)

In [22] (also see [8]) the projection matrix is additively decomposed

P = T + F (26)

where F and T are non-negative matrices that, respectively, capture reproduction and population
level consequences of changes in the state of individuals. In analogy to (2) it is required that

ρ (T ) < 1, (27)
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which excludes immortality in the sense that it guarantees that limk→∞ T kx = 0 for all nonnegative
vectors x (k is an integer) [22]. Usually the column sums of T do not exceed one, with at least one
column sum less than one, which implies (27). The upshot is that (25) holds for M = T and

F (I − T )
−1

yields a matrix analogue of the right side of (3).
We assume the projection matrix P is irreducible. This means there is a path between any pair

of population states by means of reproduction and transitions. Mathematically, it means that no
re-ordering of the states will bring P into upper triangular block form. Perron-Frobenius theory [3]
guarantees that the population growth rate

r = ρ (P )

is a positive, simple, and dominant eigenvalue of P (in the sense that |λ| ≤ r for any eigenvalue λ of
P ) with associated positive right and left eigenvectors. If r < 1 the population decays exponentially,
if r > 1 the population grows exponentially, and if r = 1 the population is stable. It turns out that
the per generation growth rate (sometimes called the net reproduction number)

R0 = ρ
(
F (I − T )

−1
)

(28)

and r are on the same side of 1 [8] or more precisely one of the following holds:

0 ≤ R0 ≤ r < 1 or 1 < r ≤ R0 or r = 1 = R0 (29)

(Theorem 3.3 in [22]). It follows that both r and R0 can be used to determine the growth or decay
of the population. One important fact is that formulas are sometimes more readily available for R0

than for r. This is because the number of birth states is often low (often equal to one) which means
that F is low rank. In addition we have, provided R0 > 0,

ρ

(
F

R0
+ T

)
= 1 (30)

which can be interpreted as saying “in order to stop population growth one has to reduce repro-
duction by a factor 1/R0” ([22], Theorem 3.1).

Another often useful fact is that

ρ
(
F (I − T )

−1
)

= ρ
(

(I − T )
−1
F
)
.

This means the calculation of (I − T )
−1

need be made on only the range of F, which is what we
used to calculate (14).

B Continuous Time Models

The spectral bound s (M) of a matrix M is defined by

s (M) := sup {Reλ : λ is an eigenvalue of M} .

Suppose the off-diagonal entries of M are non-negative. Then

s (M) < 0 if and only if M is invertible and −M−1 is non-negative.
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One way to understand this is to observe that∫ ∞
0

eτMdτ = −M−1

if the integral converges. (Also, one can apply Theorem 2.3, parts G20 and N38 in [3] to −M , which
is a so-called M -matrix.)

Assume the coefficient matrix A in the linear ODE system

dx

dt
= Ax

has non-negative off-diagonal entries. Then the system preserves non-negativity (i.e. exp (At) ≥ 0
for all t ≥ 0, Theorem 3.12 in [3]). Let the decomposition

A = T + F

be such that T has non-negative off-diagonal entries and F is non-negative. Assume that s (T ) < 0
(in order to exclude immortality). Define

R0 := ρ
(
−FT−1

)
and

r := s (A) .

Then
sign (r) = sign (R0 − 1) .

See [28] and [11], Theorem A1, but be aware of some notational differences: T there corresponds
to F here, while T here is called Σ there, and “positive” there corresponds to “non-negative” here.

In addition we have, provided R0 > 0,

s

(
F

R0
+ T

)
= 0 (31)

which can be interpreted as saying “in order to stop population growth one has to reduce repro-
duction by a factor 1/R0”.

C. Miscellanea

The aim of this final appendix is to provide some pointers to the literature concerning aspects
of R0 that are not directly related to the matter of choice in the T + F decomposition.

The generation bookkeeping presupposes that it does not matter when offspring is produced. If,
however, the environmental conditions vary in the course of time, it does matter when an individual
is born. So does the concept of R0 perish when the environment is not constant ? In Section 7.9 of
[12] it is explained how a simple trick can save us when the environmental conditions are periodic.
The idea is to label newborn individuals with the phase ϕ in the cycle at the time of their birth.
The next-generation operator then maps functions of ϕ to functions of ϕ, so acts on an infinite-
dimensional space. That makes it harder to compute R0, but conceptually nothing changes. See
[1], [7], [30].
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There are other contexts in which the individual state space is infinite dimensional. A prominent
example arises when we distinguish individuals according to their geographical position. Then it
may easily happen that the operator T is unbounded, for instance when T is the Laplace operator
describing diffusion. Yet −T−1 (or in the discrete time case (I − T )−1) may be bounded so that
R0 is still the dominant eigenvalue of a bounded positive operator. The key reference is [28].

When derived by using the F + T decomposition, the next-generation matrix (or operator)
naturally is the product of two matrices (or operators). If we consider the transpose of the matrix
(the adjoint of the operator) the order of the two factors reverses. The dominant eigenvalue does
not change in the process, but the corresponding eigenvector does change. While the eigenvector
of the next generation matrix provides (when suitably normalized) the stable distribution of birth
states, the adjoint eigenvector yields Fisher’s reproductive value [6]. So both have meaning, but the
meaning differs. In the periodic setting, the order of the two factors gave rise to a little controversy
about the ‘correct’ definition of R0, see the references in [12], Section 7.9.

The linear next-generation operator ignores that it might take two to reproduce. For a mechanis-
tic derivation of an alternative we refer to [15]. For a mathematical definition of R0 for homogeneous
operators we refer to [29] and [20].

From a conceptual biological point of view, it makes sense to think of R0 as a function of
two variables, viz. the type/trait of the individuals and the condition of the environment. The
linear setting assumes that individuals have independent lives, but this clearly is an idealization
if population growth leads to increasing numbers. Density dependence arises by feedback to the
environmental condition (as a concrete example, think of consumption of food). Often this results
in a steady state : the environmental condition is set such that R0 equals one. One can now
introduce in low quantity another type of individual and ask whether its population will grow. Thus
consideration of R0 enters in the analysis of competition models. Often this leads to statements
about optimization of R0, but the mechanistically more informative formulation is in terms of the
pessimization of the environmental condition [10], [27].

As indicated in the main text, computation of R0 is often facilitated by identifying the possible
states at birth, i.e., by studying the range of F . A more detailed analysis of the life cycle graph
may help to further reduce the computational burden, see [26], [5] and the references given there.
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