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1. INTRODUCTION

Several authors have considered the problem for the existence of functions
harmonic in a given region of the plane subject to nonlinear Steklov-type
boundary conditions [cf. (2.1)]. Solutions with singularities were studied
in [2, 14] while unique regular solutions were obtained in [8, 9]. On the other
hand, Levi-Civita’s theory [12] of periodic progressing water waves requires
a regular nontrivial solution to a problem of this type which does not have
a unique solution (the zero function being a solution corresponding to uniform
flow). More recently the author [6] has proved the existence of nontrivial
solutions for problems of this latter type (for which zero is a trivial solution)
involving general self-adjoint elliptic equations of second order in z-dimen-
sions using the techniques of bifurcation theory for compact operators on
Banach spaces (especially the expansion techniques of Liapunov and Schmidt).
In this paper we consider the restricted problem of Laplace’s equation on
the unit disk in the plane together with nonlinear boundary conditions of
the Steklov type, involving an arbitrary parameter A, for which zero is a
solution. Qur purpose is twofold: (1) to characterize the local branches known
to exist from [6] by the nodal structure of the solutions on them and (2)
to prove that these local branches exist globally.

Our main result is contained in Corollary 4.2 which states, roughly speaking,
that there exist infinitely many, disjoint branches of solution to our nonlinear
Steklov problem completely characterized by their nodal structure and
connecting the trivial solution at A = a positive integer to “c0”. This work
was suggested by the work of Crandall and Rabinowitz [3, 17] in their study
of nonlinear Sturm-Liouville problems and several of our techniques and
proofs are adaptations of theirs. The main tool in proving Corollary 4.2 is
Leray-Schauder degree theory, the main features of which are stated in an
Appendix for reference purposes. In Section 2 the problem is explicitly stated
and reformulated as an operator equation in suitable Banach spaces. The
local branches of solutions are characterized by their nodal structure in
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Section 3 and in Section 4 we prove global existence of solutions. Some
theorems on the nature of the spectrum are offered in Section 5. Although
Levi-Civita’s problem is not exactly of the type considered here, in Section 6
we briefly consider a nonlinear approximation to his problem which is of the
appropriate type and apply our results, It is planned that another paper will
be devoted to global existence for nonlinear Steklov problems which will
include Levi-Civita’s problem.

We remark here that although all of the work in Sections 2-6 is done in
the space of harmonic functions u(x; , x,) for which u(x, , x,) = —u(x, , —x,)
the techniques and results are valid on the space of functions satisfying
u(x, , x5) = —u(—x,; , x,) as well; i.e., the Banach spaces B, below could
be redefined relative to the nodal structure of the linear eigensolutions
r¥ cos kf instead of r* sin k6. Thus, the results of this paper imply the global
existence of four branches of solutions to the nonlinear problem bifurcating
from the zero solution at integer values of A: one pair differing only in sign
and having the nodal structure of r*sin k6, the other pair differing only in
sign and having the nodal structure of r* cos k. The results below apply to
both pairs of branches individually.

The problems studied in this paper are retricted to the unit circle of the
plane mainly because the nodal structure of the eigensolutions to the linearized
problem 1is known (since the eigensolutions are known explicitly). If enough
were known about the nodal structure of the eigensolutions for more general
problems (say, self-adjoint elliptic equations on arbitrary domains in =z
dimensions) so as to permit the construction of sets of functions with the
necessary topological characteristics as in Sections 2, 3, then the results of
this work could be extended to these more general problems.

2. PRELIMINARIES

We consider the following nonlinear problem for u = u(r, 6) (hereafter
referred to as problem N):

du =0, r <1,
culor = Af(u, 0), —r < 0 < 7, r=1, (2.1)

where 7, f are polar coordinates in the x, , x,-plane, du is the Laplace operator,
f is a given function of its arguments, and A is a real parameter to be
determined as part of the solution. By a solution to problem N we mean
the ordered pair (%, A); the smoothness of the harmonic function # will be
brought out below. We assume f satisfies the following hypotheses:
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(H1)  f(&, 0) is analytic in its arguments for (&, 8) € (—oo, 4-0) <
[—m, w] with f(&, ) = f(¢, —m) for all £ € (—oc, + o0);
(H2)  f(0,6) =: 0 and f(0, 8) = | for 8 & [—m, n];
(H3)  f(§6) = —f(=¢§ 0) for (&, 0) € (o0, +0) < [—m,7].
The linearized problem (called the Steklov problem on D, see [19])
cufér = Au, r=1, —r s 0L (2.2

plays an important role in the theory of problem N. It is well known [I, 2]
that the Steklov problem on the unit circle D has nontrivial solutions if and
only if A = k, ke Z+ U {0} (Z+ is the set of positive integers) in which case
we have the eigensolutions (Ar*sin &6, k), (Br* cos k0, k) for ke Z+ and
(C, 0) for A == 0, where 4, B, C are arbitrary constants. Thus, each positive
Steklov eigenvalue is double while A = 0 is a simple eigenvalue.

In order to study problem N we will reformulate the problem as an
operator equation on an appropriate Banach space. Let || ¢ (l; r = maxy | ¢ | 4
i maxy | Dy |, where D;p = céd/cx; and ¢ is a differentiable function
defined on a set 7. We denote by x the point (¥, , x,) or, in polar coordinates,
(r, 8). Let CY[—, 7] be the set of all continuously differentiable functions of
6 € [—, ] such that ¢(7) = ¢(—=) and consider the single layer potential
of density ¢

(L8 = [ 4(6)log R db,

where ¢ € C![—, n] and R is the Euclidean distance between x and the point
on the boundary #D of D given by 6. It is shown in [18] (for three dimensions,
but the arguments are valid in two dimensions also) that Lé e CYD),
D = D + oD, and consequently the linear operator L maps C'[—, 7] into
CY(D), both of which are Banach spaces under the respective norms i - ['; ;p
| - lly.5- From [I8, Lecture 7] we know that

[ logR1ids, [ |DjlogRTids, i=12

S LU,

are continuous functions and, hence, bounded on D. (Actually the latter
two may not converge if x € D, but it is shown that these integrals have, at
worst, removable singularities on #D and consequently coincide with functions
continuous on D.) From the remarks we conclude that

HZ¢H1,IS < K“‘ﬁ”o,@D’ (2'3)
where || ¢ [|o.sp = Max,e;p | #(x)] and K is some positive constant. Thus,

1 Lélh.p < Klidlhen 24
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and L is a continuous linear operator. Suppose now that {¢,} is a sequence of
functions from Cl—=, ] satisfying || é,ll,.op < M for some constant
M < -+ o0. A careful reading of the estimates used in [I8] to show that
L¢, D,L¢ are continuous in D will show that these estimates, when applied
to ¢, , are independent of z. It follows readily from the arguments in [18]
that {L¢ .}, {D,Lé,} are equicontinuous on D and since they are also uniformly
bounded [by (2.4)] it further follows by the well-known Ascoli theorem
{L¢,} has a subsequence converging to a function in C}D) with respect
to the norm || - |}; 5. Thus, L is a compact operator from C*[—, #] into CY(D).
It is well known (see, for example, [6]) that a Neumann function N(x, y)
exists for D. Using the compactness of L and the construction of N(x, y)
as given in [6], we have that N(x,y) = (2m)llog R-! + {i(x, y), where
P(x, ) is C¥D), CY(D) in both x and y. Consequently the linear operator

(L) = [ NG, 0)9(0) do

is compact as an operator from C'[—, 7] to CY(D). Moreover, if ¢ € C'[—, 7]
satisfies the condition

f " H(6)d8 =0 2.5)

then Lé € C¥D), CYD) is the unique harmonic function on D satisfying
u/or =¢ on 8D and |7, L¢ |,_; df = O (see [6)).

We now introduce the Banach spaces B, , k& > 1, of functions harmonic
on D for which || ], 5 <+ o0, which vanish on the lines § = nn/k, n = 0,
+1,..., 1k, and whose boundary values € CY[—m, 7] are odd and periodic
with period 27/k. We may consider L as an operator defined on each B, ; i.e.,

(Lu)(x) = JM N(x, 0) u(1, 6) d8

for u = u(r, 0) e B, .

LemMA 2.1. L is a linear compact operator from B, into itself for all k > 1.

Proof. Let u(r, 0) € B, for some fixed & > 1. Then since ¢(8) = u(l, 6)
is an odd function of 8 &€ [, ] it follows that (2.5) holds and, hence, (Lu)(x)
is the unique harmonic function € CYD) satisfying ¢Lu/or =¢ onr = | and
_[Z,, Lu|,; d0 = 0. Define v(r, 0) = (Lu)(r, —8). Certainly v is harmonic
and € CY(D); moreover, dv(l, 8)/0r = $(—0) = —¢(8) since u € B, and, hence,
is odd in 6. But — Ly satisfies the same Neumann problem and consequently
v = —Ly + C, C = const. However, we also have

[ ol,6)d8 = [ Lul,,df =0
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so that C == 0 and, thus, (Lu)(r, —0) = —(Lu)(r, 6); i.e., Lu is “odd” with
respect to points symmetric with respect to the x; axis. The same argument
applies to the lines 0 = nwjk, n = 4-1,..., +-(k — 1) in as much as u e B,
implies $(6) is odd with respect to all lines 6 = nx/k; this is easily seen by
rotating the axis nw/k radians and repeating the argument. It follows that
Lu|,_, is odd in 6 and periodic of period 27/k and consequently Lu € B,
or L maps B, into itself.

Since || #liy.zp = ||ull; 5 for ue B, the compactness of L follows from
the remarks concerning L above.

It 1s clear now that the Steklov problem (2.2) may be formulated as the
operator equation ALy = u on any of the Banach spaces B, .

To write problem N as an operator equation we must consider the nonlinear
operator fu = f(u(l1, 8), 6) defined on B, . We will need

(H4),,  f(& 6) is an even periodic function of § € [—n, #] of period
27|k for fixed £ € (— o0, 4 00).

If f satisfies (H3), (H4);, for k£ € Z+ then it is clear that for u € B;, the function
f(u(1, ), 6) is odd and periodic with period 2/k as a function of 8 € [, =].

As a result the nonlinear operator defined by Nu == Lfu maps B; into itself.

By (HI) f is a continuous operator and, hence, so is N. Moreover, since f
clearly takes bounded sets into bounded sets, it follows that N is compact.
We may now state

LemMa 2.2, Under hypotheses (H1)-(H4), the nonlinear operator N is
a completely continuous (i.e., continuous and compact) operator mapping B,
into itself whose Fréchet derivative at u = 0 is Lu.

We need only prove that L is the Fréchet derivative of N. Let he B, .
From now on we denote || u || = [l ]|, 5. Then

| Vb —Lhi b= | [ NG 0L Gh, ) — K 0] [y 0

as|| A | — Osince £,(0, #) = 1 by (H2), and the proof of the lemma is complete.
It is now clear that problem N on B, is equivalent to the equation
D(u, A) == 0, D(u, A) = u — ANu. We note also that the first eigenvalue of L
on B; is A = &, that all eigenvalues A = % are simple on B, , and that A =0
is not an eigenvalue on any space B, .
Finally, we observe that f = f(u) satisfies (H4),, for all k > |

3. Tue LocaL THEORY

Theorem 3.1 below on local bifurcation for problem N was proved by
the author in [6], at least for solutions which are in C%D). However, the
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standard existence theorems in bifurcation theory apply to problem N in each
B, and assert (see [15]) that exactly two branches of solutions in By, differing
only in sign, bifurcate from A = k. These solutions are a priori in C%(D) and,
hence, coincide with the solutions found in [6]. The full theorem is stated
below.

TueoreMm 3.1, Under hypotheses (H1)~(H4), problem N has solutions
u, € B, of the form

b= Tt A=k T A G)
n=0 n=1

Jor each | n| sufficiently small where u,, € B;, and where the convergence is
absolute and uniform on D. Let ), ,. be the first nonzero coefficient in the series
expansion of . Clearly if Ay, ;. <O0(>0) then A <k (k) for jpn| <p,,
o Sufficiently small, in which case bifurcation at k is said to be to the left (right);
in this case there exist reals 8, p > 0 such that (3.1) is the only solution || u |l < p
Jor A — 6 <A <A (A <A <A+ 8) and there exists no solution for
A <A <A+ 8 (A — 8 <A <A

The solutions %, in (3.1) vanish on the lines 8 = nr/k, n =0, +1,..., £k
by virtue of the fact that u, € B;, . We wish to show now that the local branches
near A, vanish only on these lines in Dj i.e., that they have the nodal structure
of the k-th eigensolution 7 sin k6.

Let A.(p) ={ueB,:||u) <p}, A+ ={uec B, :u=0onlyon 8 = nnjk,
n=0, +1,..,+kin D, ¢ufod #0 at r = 1, 8 = nn/k and 2u/é8 > 0 at
r=1,0=0,.4;" = —.4;", and Q) ={we B, : ®u,A) =0, u ]| =« O}

Lemma 3.1. (a) Any ue &, can be analytically extended as a harmonic
function to a region D* D D.

(b) Foreachk > 1, 4*(v = + or —) is an open set in B, .
() eANFAN)=a,v=+or —,all \.

Proof. Part (a) follows immediately from (HI) and a theorem of
H. Lewy [13].

Suppose u e 4%, u, € B, n=1,2,..., and u, — u. By definition of the
norm on B, it follows that the boundary values of , converge to those of u
under | - [;; »p and, hence, for n 2= N, N sufficiently large, u,(1, 6) has simple
zeros at and only at 8§ = nn/k, n =0, 41,..., +-n with éu,/00 > 0at § = 0.
It follows that u, € A;* for n > N and, thus, 47" is open. Similarly for
V= —.

Finally, let u € 47+ N %(A) for some A. Clearly u € 47" implies either
u = 0 or u vanishes exactly on § = nw/k but poses a critical point at r = 1,
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0 = nymik for some ny . But u 5= 0 if u € (A) so we assume, without loss of
generality, that # has a critical point at r = 1, 6 =- 0. Since (I, 8) is odd,
uge(1,0) = 0 and since ue ¥(A), u satisfies (2.1) upon differentiation of
which with respect to § yields u,4(1, 0) = 0. Laplace’s equation now implies
that #,,(1, 0) = 0 and, hence, u is at least third order at 7 = |, # — 0, which
implies [20] that # has at least three analytic nodal arcs passing through r = [,
6 = 0 at equal angles. At least one of these arcs must enter D+ and as a result »
is negative in every neighborhood of ¥ == 1, 8 = 0 intersected with D", which
disallows its uniform approximation by functions from .4 *. This contradicts
uec; and, hence, ¢.4; 7N F(A) = =. The case v = — is proved
similarly.

If R is a subset of B, let C\ R denote the complement of R with respect
to B,..

Lemma 3.2. Let inf 3 = +oo. Define N} = AL U 4,7 and
ri) = inf{{l#] : we FQA) N CALY;
pi(A) = Inf{]l ul| : w € S A)}.
Then ri(A), p(A) are positive and lower semicontinuous on (Z — Z*) U {k},
R — Z*, respectively. (2 is the set of real numbers.)
Proof. First we show 7,(}) is lower semicontinuous; i.e., if
ho— e (@ — Z7) U {h)
then

7i(A) <2 Hm inf ry(p,).

If lim inf,, . 7,(,) = + c0O, there is nothing to prove so we assume (passing
to a subsequence) that lim,, ., 7,(1,)) exists and is finite. Let #, € F(u,) N CH,,
be such that

0 < [l | < 7ulpea) + (1. (3.1)
The equation D(u,, , p,) = 0 can be written

Since lim,,_, 7,(i,) exists, (3.1) implies {u,} is a bounded set in B, and,
hence, s0 is o f{ty, , Ol #,||. Thus, {u,fll u, ||} is a precompact set since L
is compact on B, and (passing to a subsequence)

(wfllun )~ Jup ]| =2
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for some v € B, and a € #, « > 0. By (H2), (H3) we may write f(u, 0) =
u(l -+ g(u, 0)), where g(u, ) = o} #|*) and we conclude, by passing n —
in (3.2), that

v = AL{¢[1 + g(xv, 0)]). (3.3)
Now if a = 0, then @ is a Steklov eigensolution and, hence, A = k and
ve N, . But u,|iu, || € C,F, so that in addition v € C;#, . Thus, v € 8.4,
contrary to Lemma 3.1(c) and from this contradiction we conclude a 3 0.
Noting that ¢CiH, = 45, | o] = 1, and v ¢ a4} [by Lemma 3.1(c)] we
see that v(s= 0)e CpA; . Moreover, this implies owe Cjf7, and since
lov ]| = a, @(az, A) == 0 [multiply (3.3) by «] we find

) <ol =«

[ (3.4)
= lim e < fm (i) 5) = fim )

and the lower semicontinuity of 7,(A) for Ae (# — Z*) U {k} is established.
Taking u, = A for all » we find from (3.4) that

0 < & < lim 7y(ua) = 7,

and this completes the proof of the lemma for r,(A). The proof for p,(}) is
similar and is omitted.

Tueorem 3.2,  Assume (H1)~(H4), . Then to each real X' there correspond
constants 8 = 8(A') > 0, € = €(X') > O such that for Ae [\ — 8, X" -+ 8]
(@ N =k = AN NFL)CH,
B) X ¢zt = KN NFE) = o,
() NeZr—{k = SN ANNB()= <.
Proof. (a) Letée[0,1)and

inf ).

(k5 k+8)

B0

€ —

We know from Lemma 3.2 that ¢ > 0. By the definition of r,(A) if
u€ HB(e) N L(A) then ug¢ CA}. Since u¢ A, it follows that ue A}
and (a) is established.

(b) Suppose A" ¢ Z+. Then set §(X') = tminfA — [X'], [A' + 1] — X}

where [«] is the greatest integer in « and set

min_ () (3.5)

which, by Lemma 3.2, is positive; (b) follows immediately.
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(¢) We need only note here that .f, .4, - .7 for k.- /[ Con-
sequently, (c) follows from (a).

Taeorem 3.3. Let (H1)-(H4), be satisfied. Thend = 6(k) > 0,¢ == (k) >0
can be chosen in Theorem (3.2) such that S (A) N cHB () = =

SN AT forall Xelk—8,k+ 3]
Proof. Let (k) > 0 and 0 < 8* <1 be so small that
ue KA N FBe(R)C oAy,  Ae[k—- 8%k 67,

is given by (3.1) for 0 < i u | < g . Since A — A, is analytic as a function of u
it has at most a finite number of critical points on 0 < |p | :J py. Let

1

i 7 0 be the critical point for which | u' | is smallest. Then A — % has no
zero on 0 <! p| < 'u' ] and if we let A’ be given by (3.1) for u = p’ then
8% > 8(k) = dinfy ), i1 {l A — &1 o [ u(A)]] = (k)} > 0; here u(A) is the
solution (3.1) corresponding to A. It follows that for A € [k — 8(%), & + 3(k)]
we have F(A) N 8, (e(k)) = = and, of course, S (X) N B (e(k)) C .4, .

We conclude this section with a degree calculation which will be needed
in the next section. See the Appendix for notation.

THEOREM 3.4. Let €(A), () be as in Theorems 3.2 and 3.3,
€(A) = dmin(e(k), ()  and  sgn Ay k= A il Apmr I
Then
d(D(), [Bi((k) — B¢ N)] N A3, 0) = g0 dgy (3.6)

(v = + or =) for e (k — &(k), k) if sgn A,,, , = — 1 and for A e (k, k - (k)
if sgn Ay, . = +1. Here we have set (X)) = P(u, A).

Proof. Suppose sgn A,,, ,, = —1, the other case being similar. That the
degree in (3.6) is well defined follows from Lemma 3.1, Theorem 3.3, and
the definition of e(A). Let A’ € (k — 8(k), k). By P3 of the Appendix (the zero
is hereafter dropped from the degree notation),

d(D(k + 8(k)), Bi(e(k))) = d(DPQ), Bi(e(R)), A€ [k— k), k + 8(R)],
and by P4 and Theorem 3.1,
d(B(k + (B)), By(e(R) = i(B(k -+ 5(8)), 0,0) = —1;

hence, for A = X/,

d(DQ), By(e(k))) = —1. 3.7
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On the other hand, P2 and P5 imply

D), B (k) = d(DN), [Bie(k) — Bl V)] N A7)
+ d(B(N), B (NV))). (3.8)
Whereas by P4,
d(BN), B’ (X)) = i(BN), 0,0) = I,

we have by combining (3.7) and (3.8),

d(OW), [Bri(e(k)) — Bl WP N A1) = 2. (3-9)
It follows from the definition of degree and the facts that N(—u) = —N(u),
A = —. 457, that

d(D), [Bi(<(k) — B¢ ND] N A5
= d(D(), [Bu(e(k)) — B¢ W] N A1),

and, consequently, from (3.9), A4, = AU -, AT N A = I, and P2
we have (3.6).

4. Tue GroBaL THEORY

Let B;, X # be endowed with the product topology and let €, be any
bounded open set in B, X # for which (0,k)e ¢, . Let ¥*CB, X &,
v = + or —, be defined by #* = {(u, }) : u € L(A) N .47 for some A € #}.
By Theorems 3.1, 3.2, (0, k) e 0.5, v = + or —.

LemMa 4.1. (a) Cpr = %N Oy is compact in By X B, v =+ or —.
b) FnNnadl, =z = CrCl,.

Proof. &% N € is bounded and consequently (a) follows from the
compactness of N on By .

Clearly C;» C @, . Suppose (1, ) € C;, N 8, . Then there exists a sequence
(W 5 pn) € F N Oy such that (w, , p,) —> (v, ) and as a result (u,A) is a
solution to P(u, A) = 0. Since (0, k) ¢ 9¢;, we have [by Theorem 3.2(a)] that
u %= 0 and hence u € F(X) N AY; Le., (4, A) € £2. But (, A) € 60, also and
we have a contradiction to the assumption made in (b). Consequently
Cy N 90, = @ and (b) is established.

We now are ready to state and prove our main result.

409/38/3-16
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THeOREM 4.1. Let € be an arbitrary bounded open set in B, X # with
0,y e O, and let (H1)-(H4), be satisfied. Then %2 N 20, # = for all
kE=zlandv =4+ or —.

Proof. Assume &N 00, = @. Let €(A) > 0 be as in Theorem 3.4.
Then A # k, ue#(€(N)) = u¢ L) N A, v=+ or —. Set U}k =
{ue B, : (u, ) € 0.}, an open set in By as is U, — Z,(¢'(A)). By Theorem 3.3
u € &> implies u ¢ 0%,{'(A)), A 5= k. Since also u ¢ 00, by assumption we
have u ¢ &(U,* — #,(<'(A))) and, hence,

d(P(), [Ui* — Bi(' (N1 N A, 0)

is well defined. From now on 0 is dropped from this notation. The proof is
given for the case sgn Ay, , = —1 (i.e., of bifurcation to the left, the case
sgn Ay, = -1 being similar and, hence, omitted) and is divided into two
parts: (i) we first show that this degree is 0 for all A 5% %2 and secondly that
(i) this is in fact impossible for all A 5= % close to k. This contradiction will
establish the theorem.

(i) Let A > % be such that Uy* # @. Since C}” is a compact subset
of @, (by Lemma 4.1), we can find a A* > X such that UL # @ and
Ut n Cy = . Consider

e* = %ael[f\l,f\*] €'().
If e* =0, then &(«,)—0 for o, —some a€[A, A*] and, hence, by (3.5)
pi(a,”) —>0 for a sequence of «,” €[A — 8(}), A* 4 8(A*)] which implies,
by the lower semicontinuity of p, that p, vanishes at some point in this
interval contrary to Lemma 3.2. Thus €* > 0. Since e* < €'(a), x € [A, A¥],
we know that no solution u lies on [Uy* — Z(e¥)] N A3¥) and, hence,
by the homotopy property P3,

d(D(), [UF — Bi(e¥)] N A7) = ¢ = constant (4.3)

for all « € [A, A*] and, in particular, for « = A. Since there is no solution in
[U¥, — Z(e¥)] N A3 nor in [By(' () — Br(e¥)] N A}¥ we have by P that
¢ = 0and

d(P(), [Bi(e' (V) — Bu(e¥)] N AY) = 0,
which together with (4.3) at « = A and the additivity property of degree P2
implies
4B, [U)* — Zi( ()] 0 Ay) = 0. (44
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A similar proof holds for A < & and, hence (4.4) is valid for all A 7 k. Note
that sgn Ay, , does not appear in this argument and, hence, (4.4) holds
regardless of the direction of the bifurcation at k.

(i) Assume now that sgni,, ;= —1 and let 8(k) >0 be as in
Theorem 3.3. By Theorem 3.4 if A < k is such that | A — k| <C 8(k), then

d(DQ), [Bu(e(K) — B¢ V)] N A) = —1.
It then follows from (4.4) and P2 that
AP, (Uit — BuleR)] N A) = 1. (4.5)
We now wish to make a homotopic argument to assert this equality for A > k.
To do this we note that since no solution to @(u) = 0 lies on 0%;((k)) nor

oA for all p € [A, 2k — X] and, hence, by P3 Eq. (4.5) is valid for A = 2k — A.
We have then from (4.4) at A

0 = (D), [Us* — BN N A2)

= d(@Q), [Us* — Bi(e(R)] N H2)
+ d@Q), [Bile(R)) — Bul¢ D) N A,

together with which (4.5) at A implies

A@Q), [Brle(R) — Bl W) N AR) = —1,

and inasmuch as X € (k, k 4 8(k)) we have, by Pl, a contradiction to the last
statement of Theorem 3.1, i.e., that the bifurcation at k is to the left when
sgn Ay = —1. We have thus reached a contradiction which invalidates our
original assumption that #» N 00, = @. The proof is complete.

We may deduce some corollaries from Theorem 4.1 concerning the topology
of the solution branches. The proofs are exactly as in [17] but are sufficiently
short for repetition here.

CoroLLARY 4.1. Under the hypotheses of Theorem 4.1 there exists a
continuum of solutions (u, ) to problem N connecting (0, k) to 00 in N> X &,
v=4 or —.

Proof. By Lemma 4.1, C}” is a compact metric space under the topology
induced from B, . If a continuum of solutions does not exist in %" then the
sets A = {(0, k)}, B == 80, N C}? are disjoint-closed subsets of C}* and, hence,
there exist disjoint-compact subsets K, , K of C;* such that ;Y = K, U K,

409/38/3-16*
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ACK,, BCKjy [21]. Since K, is a compact subset of @, we can find an
open set £, O C €, such that K, C 2 and Kz N Q2 = =:. By Theorem 4.1
there exists a solution (u, A) € 7,7 on ¢ which then is in ¢, but not K, U K,
a contradiction.

CoroLLARY 4.2.  Under the hypotheses of Theorem 4.1 there exists for all
k = 1 a continuum of solutions to problem N connecting (0, k) to oo in A7 X &,
y = -+ or —.

Proof. The component of .’ containing (0, k), since it is locally compact,
becomes a compact topological space under the one point compactification
of adding o0. By Corollary 4.2 every neighborhood of oo intersects this
component.

5. THE SPECTRUM

The interesting question still remains: how does (#, A) € &’ go to o?
Obviously at least one of the components || || or A must tend to co, and we
should expect that some knowledge of f(u, §) will yield theorems along these
lines. We will not study this question in depth, but will offer only some
results which follow easily from the nature of the problem and/or our results
above.

Clearly if (u, , A,) — (%, A) in B, then u, — u under || - ||, 5. Conversely,
if (u,,A,) — (w, \) under || - |iy 5, then || u, |, 5 < Ky, [ A, | < K, for some
K, = const, independent of # and on such a bounded set the hypotheses of f
guarantee that f is bounded and satisfies a Lipschitz condition in # uniformly
in 6. Thus, from (2.3) we have [if #, u, also satisfy @(u, \) = 0]

iy — |l < K| A f(un , 0) — A (, Olo,op
< KK\Lju, —ullop5+ KKy | A, — A,

where L is the Lipschitz constant of f depending only on K, and
If (@ s Ollo.co < K,
and, hence, (u, , A,) — (%, A} in B, .

LemMa 5.1.  The results of Corollary 4.1, 4.2 are valid when By, is endowed
with the norm || - |y p instead of |t - ||

This lemma follows directly from the definition of continuum [21] and
the preceding remarks.
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If u, is a constant for which f(u,, 8) =0, 8 € [—~=, n], then we call u,
a u-zero of f; by (H2) uy = 0 is a u-zero of f. Note that if #, is a u-zero of f
then so is —u, by (H3). Set 4> = {A : (4, A) € K} where K}’ is a continuum
of solutions joining (0, k) to co in A} X #; A7 is thus the set of eigenvalues
for d(u, \) = 0 corresponding to solutions lying on branches from (0, ).
If A = 0 then the only solution to problem N is # = const.; thus, if u € B,
# = 0 and, hence, A =0¢ 4, (0 ¢ 4> by definition). As a result 4,» C #+

for all 2 and v since 4,” is a continuum.

Tueorem S.1. If f satisfies (H1)+(H4), and f has a non-zero u-zero,
then A;* is an unbounded interval in A+. Moreover, the solutions u on K, are
uniformly bounded in the || - ||, 5 norm by the smallest positive u-zero of f.

Proof. Suppose A,” were bounded. Then we know that {|| ul] : (4, A) € K
for some A € 4,*} is unbounded and, hence, by Lemma 5.1 there exists a u for
which || # |y, 5 = °, where % is a positive u-zero of f. Let 6, € [w, 7] be such
that u(l, 6;) = u, ; then by (2.1) we have du/ér =0 at 6, where u attains
its maximum. This contradicts a well-known theorem [16] which asserts
dufor > 0 at 6 ; 4, is accordingly unbounded. This last remark, of course,
remains valid whenever || « ||, 5 = %, for a solution on K’ and since K’ is
a continuum the proof is complete.

The following lemma is a direct consequence of Corollary 4.2.

Lemma 5.2, If (A, u) is a solution to problem N satisfying an a priori
estimate of the form || u || << M(X) where M(X) is a nonnegative, real-valued
Sunction defined (and finite) for A € #+ which is bounded on finite intervals then
A C R+ is an unbounded interval.

THEOREM 5.2. Let f satisfy (H1)-(H4), . If there exist a constant M > 0
such that

[f(E 0 < M| EP for (¢, 0)e(—00, +0) X [—m, 7] and some p € [0, 1),
(5.1)
then A7 C R+ is an unbounded interval for all k, v.

Using (2.3) and (5.2) we have
full < KIATI (@ 0)lo,0p < KMA[ u P

and, consequently, we may set M(A) = K,\/0-» K, = (KM)/1-n,
in Lemma 5.2.

Whenever /1, is an unbounded interval for all X >> 1 then for A e (&, & 4 1]
there exist solutions in each set A7, | <<I<{k, v = 4+ or —. Thus, from
Theorems 5.1, 5.2 we have
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CoroLLARY 3.1. If the hypotheses of Theorems 5.1 or 5.2 are valid, then
for each e (k, k + 1], where k is an arbitrary positive integer, there exists
at least 2k nontrivial solutions to problem N in B, , one in each of A7, 1 -1 <.k,
v ==+ and —. The solution in .V~ is the negative of the one in A+,

Note that B, CB;, k > |. This corollary is valid whenever an a priori
estimate of the type appearing in Lemma 5.2 holds for problem N.

We finish this section with a theorem which gives conditions which insure
that the entire spectrum of @(u, A) = 0 is positive. Applying Green’s first
identity to any nonconstant solution (#, A) we have

A v~ [T uZa - [[ T Qapa=o0. (52)

YYD =12

~

THEOREM 5.3. If f is continuous in its arguments and £f(€,60) =0 for
(¢,0)e(—o0, +0) X [—m, ] then no noncomstant solution to problem N
extsts in CY(D) for A << 0.

6. AN ExaMPLE

The exact mathematical theory of steady, progressing surface waves on
an incompressible fluid of infinite depth was reduced by Levi-Civita [12]
to the problem of finding a harmonic function on D subject to the condition
¢u/dr = Xe=3" sin u for r = | where v is the harmonic conjugate of # vanishing
at the origin and A == gI/27c?; here [ is the wavelength and ¢ the velocity of
the waveform, g is the gravitational constant, and u is the angle of the velocity
vector as measured from the horizontal. As an approximation to this problem
one could consider f=sinux in (2.1). The function sinu satisfies the
hypotheses of all of our theorems [(H4), is satisfied for all ] and, con-
sequently, we conclude that for each ke Z* there exist two contina of
solutions K,* differing only in sign, connecting (0, k) to co with the nodal
structure of r¥ sin &f; that 4,7 C #+ is an unbounded interval; and that for any
solution (#,A) on any one of these branches || u||, 5 <, since uy == is
the smallest positive u-zero of sin u. By Theorem 3.1 the bifurcation of K,*
at (0, k) is to the right, since A, ;. << 0 (cf. [6]). More, however, can be shown
for this special problem. If (u(r, §), A} e K;* then it is easy to show that
(u, ,nA) e K, where u, = u(r", nf). (This is in fact true in general for
problem N if f is independent of 8.) Furthermore, by the uniqueness result
in [4] together with || u |y 5 < 7 it follows that for a given A at most one
solution exists with a given nodal structure; in particular, then, the branches
from (0, k) are single-valued functions of A. Furthermore, from the same
paper it follows that (¥ , A) € Ky*, (4, A) € K;? implies

Huylio.s =l e lle.5 k> 1.
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These results have some interesting features. First of all, solutions on K2,
being constructed as above, give rise physically to identically the same waves
as u, (see [5] and [12]), with, for fixed propagation velocity ¢, the wavelength
taken as kl, I/ being the smallest wavelength. Thus, for this approximate
nonlinear theory we have proved globally the long standing conjecture of
Levi~Civita that all possible waves generated by solutions on K are
generated by solutions lying on the first branch K+ alone; to this date this
had been shown only locally [5, 11]. It must be pointed out, however, that
we have not ruled out the existence of solutions not on any branch K,* and/or
solutions with nodal structure different from that of all r* sin 28 (cf. [5, 11]
where such waves are also ruled out).

Secondly, this nonlinear problem apparently does not adequately approxi-
mate locally the full nonlinear problem of Levi-Civita since the bifurcation
at (0, 1) is to the right while for the full nonlinear problem solutions exist
for A < 1 [12].

Finally, it might appear that since 4;* = (1, 4 c0) we have a contradiction
to the result in [11] which gives A€ [q, 8], 4, b finite. The theory in [11],
however, deals with solutions || # ||, 5 <C #/6 and this then is not necessarily
incompatible with our results.

APPENDIX

For a complete treatment of Leray-Schauder degree theory see [10].

Let B be a Banach space, £2 a bounded open subset of B, and ®(x) a
completely continuous map of Q@ — B. Let be B, b¢ ®(02). The degree
of the map is an integer d(®, 2, b) which has the following properties:

Pl:  d(D,2,b) =0ifb¢ D(L).

P2: If =020, QNQ,= &, where Q; are bounded open
subsets of B and if b¢ B(0RQ)), i = 1,2, then d(PD, 2,b) = d(D, 2,,b) +
d(P, 2, , b).

P3: (Homotopy Invariance) Let [a, b] be a finite interval in # and U
be a bounded open set in B X [a, b] under the product topology. Set
Uy={ueB:(u,N)eU}. If O(u,])) is a completely continuous mapping of
U—B and beB, b¢ ®2U,, N for all Xe[a,b], then d(®(u,N), U, ,b)
1s constant for A € [a, b).

By definition, d(®, @, b) = 0.
If u is an isolated solution of P(u) = b and H(e) is a ball centered at u
of radius ¢, then lim_,, d(P, B(e), b) = i(P, u, b) is well defined and called
the index of u.
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P4:  Let D(u) = u — N(u) be a completely continuous mapping of B— B
and D(uy) = 0. Suppose one is not a characteristic value of the linear operator L
which is the Fréchet derivative of N at uy. Then uy is an isolated solution of
D(u) =0 and (D, uy, 0) = (—1)" where m is the sum of the orders of the
characteristic values of L lying in (0, 1).

PS:  If Q2 is an open subset of B, D1(b) N Q,C S, then d(D, 2, b) =
d(D, £y, b), provided b ¢ D(082), D(082,).
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