Journal of Difference Equations and Applications, i 199 OPA (Overseas Publishers Association) NV,

1999, Vol. 5, pp. 557-539 Published by license under
Reprints available directly from the publisher the Gorden and Breach Science
Photocopying permitted by license only Publishers imprint.

Printed in Malaysia.

Open Problems and Conjectures
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In this section we present some open problems and conjectures about
some interesting types of difference equations. Please submit your
problems and conjectures with all relevant information to G. Ladas.
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The system of nonlinear recursion equations

L1 = bArexp(—cal, — ceady),
Py = (1 — )4, (1)
AH—I = PI CXP(—f‘cuA:) N (1 - ru"d]Ar

(r=0,1,2,...) arises in population dynamics. This so-called “LPA
model” describes the dynamics of an insect population whose
individuals pass through larval, pupal and adult life cycle stages. All
coefficients are positive and 4 < 1, p, < 1. For example, this system has
been extensively used in studies involving flour beetles (sp. Tribolium).
If n=(1 — p)b/p, < 1. then the sequence (L,, P,, A,) tends to the origin
(0,0,0) as t— +oc. If n>1 there is a unique positive equilibrium
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(Le, Pe, Ae) > 0 and this equilibrium is locally asymptotically stable if
n==1. See [1].

COoNJECTURE Xx.y.1 If n> 1 is sufficiently close 1o 1, then the positive
equilibrium (Le, Pe, A.) is globally attracting, i.e., all sequences defined
by (1) with 0<(Ly, Py, Ag)#(0,0,0) satisfy Nmy_.,.o(Ly, PiAf) =
(Le, Pe, Ac).

This conjecture is a special case of a conjecture for a general class of
recursion systems. Recursion formulas of the form

X = Plx)x, =0,12,... (2)

frequently arise in population dynamics [I]. Here x, is an m-vector
(of real numbers) and P:[p,}]eC", Py =0 is a nonnegative m x m
“projection” matrix. The nonnegative cone {x >0} is forward invari-
ant and x=0 is an equilibrium. In most applications P(x) is
irreducible and primitive (for each x >0) and hence has a positive,
strictly dominant, simple eigenvalue with positive right and left
eigenvectors. In many applications P has the additive decomposition

P(x) = F(x) + T(x),
F(x) = [fy{x)]. fy € C*(R" = RY), (3)
T(x) = [m3(x)], 7€ CHR™ —[0,1)).

Suppose 7 — T(x) is invertible and F(x)(I - T(x)) ™' has a positive,
strictly dominant, simple eigenvalue n(x) with a nonnegative eigen-
vector v(x) such that (/ — T(x))"'v(x) > 0. The eigenvalue n(x) is called
the net reproductive number and n(Q0) is the inkerent net reproductive
number, The LPA model (ref: LPA) is a three dimensional example in
which

L,
x=1P |,
A
0 0 0
Tx)=|1—m 0 0

0 exp(—cpad) 1~ pa
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0 0 bexp(—cal — cead)
Fx)y=10 0 0
0 0 0
n(x)=>b (1 ; m) exp(cal — (cea + Cpa)A).
a

It can be shown for (2) that n(0)<1 implies x=0 is locally
asymptotically stable. If, in addition, p;(x) <p;(0) for all x>0 then
all sequences defined by (ref: matrix model) with x>0 satisfy
lim, . x=0. In most applications to population dynamics these
inequalities hold; they are the result of “negative” feedback assump-
tions (referred to by biologists as “density dependence”). If n(0) > 1
then x =0 is unstable. In fact if P(x)x =0, x > 0 implies x =0, then the
equation is uniformally persistent (on the nonnegative cone with
respect to x =0). A stronger negative feedback condition is

o, O

i -
. =~ <0 (: t all t
e 0 (and not all equal to 0) (4)

for k=1,2,...,m. Under this condition, if n(0) > 1 is sufficiently close
to 1 there exists a positive, locally asymptotically stable equilibrium
x>0, See[1].

CONIECTURE X.y.2 For n(0)> 1 sufficiently close to 1 there exists a
unigue positive equilibrium x. > 0 and all sequences x, defined by (2)—(4)
with 0 < xo# 0 satisfy lim,.. X, = x..

Remark Suppose r(x) is the dominant eigenvalue of the projection
matrix P(x). Then n(0) < 1 if and only if r(0) <1 and n(0)>1 if and
only if #(0) > 1. See [1].
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