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ABSTRACT. A stage structured host-parasitoid model is
derived and the equilibria studied. It is shown under what
conditions the parasitoid controls an exponentially growing
host in the sense that a coexistence equilibrium exists. Fur-
thermore, for host populations whose inherent growth rate is
not too large it is proved that in order to minimize the adult
host equilibrium level it is necessary that the parasitoids at-
tack only one of the larval stages. It is also proved in this
case that the minimum adult host equilibrium level is attained
when the parasitoids attack that larval stage which also max-
imizes the expected number of emerging adult parasitoid per
larva at equilibrium. Numerical simulations tentatively indi-
cate that the first conclusion remains in general valid for the
model. However, numerical studies also show that it is not
true in general that the optimal strategy will maximize the
number of emerging adult parasitoid per larva at equilibrium.

KEY WORDS: Host-parasitoid, biological control, nonlin-
ear difference equations, equilibrium, .

1. Introduction. Biological control by releasing natural preda-
tors, competitors, pathogens, parasites or parasitoids of a pest species
has become increasingly important. The successful implementation of
such control programs depends crucially on an understanding of the
underlying population dynamics of the species involved. Mathematical
models have been used as an aid in this understanding, particularly
for predation or parasitization interactions between the host (pest)
and the introduced species. Simple difference equation models have
been widely used, for example, to explore theoretically the various fac-
tors that can influence a pest control program based upon introducing
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natural parasites and parasitoids into a pest population. See, for exam-
ple, Hassell [1978], Hochberg, Hassell and May [1990] (and the many
references cited therein), Factors such as host refuges (Hassel and
Moran [1976]); spatial heterogeneity of the habitat (Beddington, Free
and Lawton [1975]); competing parasitic species attacking a single host
(Dobson [1985]); specialist and generalist enemies attacking a common
prey (Hassell and May [1986]); parasitoid and hyperparasitoid inter-
actions (May and Hassell [1981]); density dependence (Barclay [1986],
May et al. [1981]); host-parasitoid-pathogen interactions (Hochberg,
Hassell and May [1990]) have been considered by means of simple mod-
els.

One major simplification in the vast majority of host parasite models
considered in the literature is the lack of structure within the popu-
lation. (See, however, age-structured cases studied in (Barclay [1986],
Godfray and Hassell (1987], Bellows and Hassell [1988], Murdoch et al.
[1987]). That is to say, modeling is done at the population level, using
gross statistics such as the total population sizes of the species. Signifi-
cant physiological differences among the individuals such as chronolog-
ical age, body size, or life cycle stages are ignored.

Class specific effects due to age, size or life cycle stage can, however,
have profound effects on the dynamics of the interacting populations. In
particular, since arthropod species often undergo dramatic changes in
physiology, behavior and interactions with their biological and physical
environments during their life cycles, it is appropriate and important
to use structured population dynamics to investigate the dynamics of
such species,

- Barclay [1986] introduced several age-structured models for a host-
parasitoid interaction in which the parasitoid oviposits in only one lar-
val instar of the host species. He studied the effects that various mod-
eling assumptions and model parameters have on equilibrium levels,
and in particular, that of the adult host (pest). Amongst other things,
Barclay concluded that the most effective or optimal control (i.e., the
lowest adult host equilibrium level) occurs when the parasitoid attacks
only the youngest host larva instar.

Our goal here is to investigate the robustness of Barclay’s assertion
and to extend his result in several ways. First of all, we will derive and
utilize a (larval) stage-structured host-parasitoid model as opposed to
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an age-structured model. Thus, individual larva do not necessarily
spend equal time in each stage. Secondly, unlike Barclay, we will
allow the parasitoid to parasitize all larval classes according to some
attack preference distribution and study the effect that this lack of
specialization has on the control of the adult host population.

We will draw two major conclusions from our host-parasitoid model.
First, under the assumption that the inherent growth rate of the host
population is not “too large,” we prove that the minimal adult host
equilibrium level is obtained when the parasitoid attacks only one of
the larval stages. Secondly, we will give a mathematical criterion which
determines which larval stage should be parasitized in order to obtain
minimal adult host equilibrium level. The biological interpretation of
this criterion is that the optimal larval stage to be parasitized is that
stage which, when only one stage is parasitized, yields the maximal
expected number of adult parasitoid emergences per parasitized larva at
equilibrium. For host populations with “large” inherent growth rates,
numerical simulations lead us to the tentative conjectures that the
first conclusion still holds and that the optimal strategy is unchanged,
although it may not any longer be the same strategy that maximizes
the number of adult parasitoid emergents. '

2. The model. Let the unparasitized host larvae be divided into
m > 2 stages (e.g., instars), and let z;(t), 1 < i < m, denote the
densities of host larvae in these stages at time £t = 0,1,2,.... Let
Tm+1(t) denote the density of host adults, and let y(t) denote the
density of adult parasitoids at time ¢,

In the absence of parasitization it is’ assumed that the dynamics of
the distribution vector of host larva and adult densities

x(f) = [z (Bt

i=1
are governed by the matrix equation

(1) | x(t+1) = Ax(t)
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where the projection matrix is given by the “Usher” matrix

r81(1—m) 0 0 b 7
1M s2(l—72) --- 0 0
2) A= 3272 . 0 0
( : : O : :
0 0 o 8p(l- V) 0

L 0 0 v 8mYm Smt1 4

Thus, it is assumed that all newborns are in the first class and s; is the
probability that an ith stage individual survives one unit of time, v; is
the fraction of surviving sth stage individuals that advance to the next
stage in one unit of time and b is the host adult birth rate (per unit
time). In this paper we will ignore density effects in the host population
dynamics. Then the coefficients

(3) si € (0,1], v € (0,1], b>0

are constants.

We have not yet specified the unit of time in the above model. We do
this now by taking the unit of time to be the time from the oviposition
of a parasitoid egg to the emergence of the adult parasitoid, which
is assumed fixed and independent of the host larval stage parasitized.
Let y(t) denote the density of adult parasitoids. In order to compare
different host larval attack strategies we assume that a fraction f(y) of
the unparasitized larvae is parasitized in one unit of time and that this
fraction is distributed over the larval stages according to a distribution
vector satisfying

m
(4) p=[Alts,  ieln1], S g=1
i=1
This simpléx of vectors will be denoted S. Thus, the fraction
Fi(y)=1-¢if(y)

of the ith stage escapes parasitization in one unit of time and the
fraction s;;F;(y) survives and advances to the next larval stage in one
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unit of time. This means that under parasitization thé host dynamics
are now governed by the nonlinear matrix equation

() x(t +1) = A(y(t))x(t)
s1(1-m)F1(y) 0 0 b
simFAily) sa(l-m)FR(y) - 0 0
(6) Aw)= samaFy(y) o 0 0
- : : o :
0 0 vor sm(l=ym)Fm(y) 0
0 0 vee 8mYm Fm () Sm+1

The adult parasitoid density satisfies the difference equation

(7) yt+1)= [E ni0ibi; (t)] f(y(®) +oy(t)

i=1

‘where n; is the number of adult parasitoids that emerge from an
ith stage host larva, o; is the survival probability of emerging adult
parasitoids, and ¢ is the survival probability of adult parasitoids,

(8) gi,0 € [0,1], n;=12,3,....

The fraction f = f(y) of host larvae that is parasitized per unit time
is assumed to be an increasing function of adult population density.
Mathematically, this means

9) feCY([0,+),[0,1)), >0, f(0)=0.

This implies that the limit f(+00) = foo < 1 exists and represents
the maximal fraction of unparasitized larvae that can be parasitized
in one unit of time by the parasitoid population. Examples include
f=fo(l—€e")and f = fooy/(a+y),a>0.

If all 4; = 1 then the projection matrix A becomes a Leslie matrix and
the model in effect reduces to an age-structured model as considered by
Barclay [1986]. However, unlike Barclay’s model we allow stage specific
survival s;, parasitoid attacks on multiple larval stages, and multiple
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(larval stage specific) adult parasitoid emergents per parasitized larva
ng.

We have assumed that the adult parasitoids cause no host mortality
except to the host larvae although this and any other kinds of interac-
tions between the host and parasitoid populations could be included in
the model by assuming that the appropriate model parameters depend
on the other species densities. Furthermore, density dependence can
be included in the model by assuming that any of the model param-
eters are dependent on appropriate components of the unparasitized
host density distribution vector x or on the adult parasitoid density y.
For example, density dependent larval or adult host mortality or par-
asitoid adult mortality would involve assuming such a dependence in
the parameters s;,0; or 0. Similarly, the stage transition probabilities
(or larval growth probabilities) +;, the number of oviposited parasitoid
eggs per larva host n;, the attack distribution vector ¢ and the host
adult fertility rate b could be taken as density dependent. We will not
consider such (presumably stabilizing) factors in this paper in order to
concentrate on the host-parasitoid interaction.

3. Analysis. Our goal is to understand the equilibrium properties
of the model equations (5)-(7) and to find what attack distribution ¢
minimizes the adult host density equilibrium level Tm+1. First we con-
sider the host population in the absence of the parasitoid population.
The assumptions (3), (4), (8) and (9) are in force throughout,.

3.1. In the absence of parasitoids. The dynamics of the host
population governed by the discrete matrix equation (1) are determined
by the eigenvalues of the projection matrix (2). From the characteristic
polynomial of this matrix given by '

(= sma) [T - sit = ) = [ o

i=1

it is not difficult to see that all eigenvalues lie inside the complex unit
circle if b < b, and there exists a real eigenvalue greater than 1 if
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b > be where

) 1 —8;(1 -
bcr=(1—3m+1)HM

=1 8i7i
s 1-—s;
=(1-3s 14 ’].
( '"H),.:Hl[ 8

Thus, if b < ber the population dies out exponentially and there exist
constants k > 0 (depending only on the initial population distribution
x(0) > 0) and 0 < n < 1 such that

(10) 0<|x(t) <kn',  t=0,1,2,....

If b > b then the population grows exponentially.

Since the host population dies out exponentially if b < b, it is not,
in the long run, a pest. Therefore we assume throughout the rest of
this paper that b > b. In the next section we turn our attention to
questions of whether the parasitoid population can successfully control
(i.e., bring to equilibrium) this exponentially growing host population
and, if so, what attack strategy will minimize the host adult population
density.

3.2. The host-parasitoid model. In this section we will study the
dynamics of the nonlinear host-parasitoid model equations (5)-(7). In
particular, we will consider the existence of positive (coexistence) equi-
" libria and determine, under certain conditions, which attack strategy
é = [¢:] will minimize the adult host equilibrium level.

We begin by recalling that if b < ber then as t — 400 the host
population dies out -exponentially in the absence of the parasitoid;
see (10). It is only biologically reasonable that for b < b, the
host population should also die out in the presence of the parasitoid.
Mathematically, this can be seen from the host-parasitoid equations
(5)-(7) as follows. Note that for any solution starting at nonnegative
initial values the host population distribution x(¢) must satisfy the
inequalities -

0 <x(t+1) L Ax(t)

(because all Fi(y) € [0,1]). It follows by a simple induction argument
that such a solution x(t) must be dominated at each time ¢t by the
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corresponding solution of the linear matrix equation (1). Therefore,
x(t) must also satisfy the bound (10) and consequently tend to zero
as t = +00 if b < ber. Of course, it is expected that the parasitoid
population will also then die out. To see this mathematically, note
from (7) that for all t =0,1,2,...,

0<y(t+1) <cnt +oy(t)

where ¢ = kY31 | njo;. By induction it follows that

t
0<y(t) < otly(0) + D ot~ier

i=0

R 7
<ot yY(0) + e Y pt it = oty (0) + ctpt

i=0

where 1 = max{o,n}. Since u < 1 it follows that y(t) — 0 as t — +oo.

This means that the extinction equilibrium (x(£),y(t)) = (0,0) is
globally asymptotically stable when b < b,,.. However, when b > b,
this equilibrium is unstable. This can be seen from the linearization
of the equations (5)(7) at (0,0) which has a coefficient matrix of the
block triangular form

A ¢
0 o

where the (m + 1) x (m + 1) matrix 4 is given by (2). (Here c is an
unspecified column vector with which we need not be concerned.) The
eigenvalues of this matrix are o < 1 together with those of A which
has a real eigenvalue greater than 1 when b > b... We have proved the
following preliminary result.

THEOREM 1. If b < be, then the equilibrium (x,y) = (0,0) of the
host-parasitoid equations (5)-(7) is globally asymptotically stable. If
b > be, then (0,0) is unstable.

We now consider the possibility of positive (coexistence) equilibria for
the host-parasitoid equations (5)—(7) when b > b,. The equilibrium
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equations are
z1 = z1(1-71) 1 (¥)21+bTm 11
z; = 8i—1%i-1Fic1(¥)zic1+8i(1-%) Fi(y)zi, 2<i<m
T4l = sm'YmFm(y)xm+3m+1mm+1
m
y = f(v) D njo;$;z;+0y.
i=1

A straightforward induction argument shows that these equations are
equivalent to the equations

(11) z; = bei(y)Tmsr, 1<is<m
SmYmFm
(12) Tmy1=Db 1'?'_1718 _ff) em(y)wm+1
. b "
(13) y= 1—_c;f(y)xm+1 > pi(y)¢:
i=1
where

pi(y) = nioiei(y)
ei(y) = 1/(1 = s1(1 = 11)F1(y)) fori=1
ST\ M2 sn @)/ (a1 -8;(1-1) Fy @) for 2<i<m.
The number e;(y) is the expected time spent in stage 7 by a host larva
if the adult parasitoid population were held fixed at level y > 0. The
number p;(y) is the expected number of adult parasitoids that emerge

from an individual larva host if the adult host population were held
fixed at level y > 0 and larvae are parasitized only at the ith stage.

The equivalent equilibrium equations (11)-(13) can be solved for a
positive (coexistence) equilibrium as follows. If 2,41 is to be positive,
then Zm41 can be canceled from both sides of equation (12) to obtain ,
the single scalar equation ‘

i — bsm’YmFm(y) ‘

or

1- Sm+1 1

(14) = Sm’YmFm(y) €m (y)
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for y > 0. If this equation has a positive solution y > 0, then equation
(13) can be used to define

. 1=l Y l—-0 S
" TR T pi(0) 9

after which x; for 1 < ¢ < m can be found from (11)

(15) 0

(16) i = bei(Y)Tmi1 >0, 1<i<m.

Thus, there exists a positive equilibrium of the host-parasitoid model
equations (5)~(7) if and only if equation (14) has a positive solution
y>0.

The assumption (9) implies that the limit f (+00) < 1 exists and
hence that the limits Fj(+o00), ei(+00), pi(+00) exist and are finite.
Furthermore, under this assumption, the right hand side of equation
(14) is easily seen to be an increasing function of y > 0 which ranges
from a minimum at y = 0 of :

l—sm-l-l, 1 =(1—'3 l)ﬁl;su-_—_b
8mYmE, m(o) em(o) m ' 8% °r

i=1

to a maximum at y = 400 of by < +00 given by

b = 1- Sm+1 1
%7 8mYm Fim (+00) em(+00)

= (1= 8m41) ﬁ 1= 8i(1 = %) Fy (o)

P 8i7iFi(+00)
(17) A m 1- SgF,'('f'oo) '
=(1- 3m+1)g (1 + m)
o m 1-s;(1- ¢'f(+00))
= (1 8m+1)il=—_! (1 + -9;'7:'(1 - ¢,f(+°°)) )

It follows that there exists a unique positive solution y > 0 of equation
(14) if and only if b lies between ber and bo,. This yields the following
result.
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THEOREM 2. There exists a positive (coexistence) equilibrium of the
host-parasitoid equations (5)—(7) if and only if bse > b > ber and this
equilibrium is unique when it exists.

From our analysis of equation (14) we see that limp_p .+ y = 0 and
hence from (16) and (15)

lim = =20 .= 1 1 1=
ag ML T Im T b £1(0) iz, pids
i 1 l1-0
lim o =of = 2 1<i<
botbort Y g0y 1(0) oy i forl<ism

where we have defined p; = p;(0). We also see that

lim = 400 lim z =400
b—boo y ! b—boo— m+1 +oo,

lim z; =+ forl1<i<m.
b—boc —

Note that the host model parameters determine the critical value b,
but that both the host and the parasitoid model parameters determine
the critical value (17) of b.

According to Theorem 2 in order for the adult host population to
be controlled (brought to an equilibrium state) the parasitoid attack
distribution ¢ = [¢;]7%; and the total fraction f(+o00) of host larvae
that are parasitized per unit time at large adult parasitoid population
levels must be so that boo given by (17) exceeds b.

‘Let us suppose then that b < b < bso. We wish next to determine
what attack distribution vector ¢ will minimize the adult host equilib-
rium level 2,41 > 0. We will do this analytically for the case when
b~ ber. In this case y ~ 0 and Tpm4q ~ 20, and as a result z,,41 will
be minimized when b = b, if the sum

(19) - > ot
i=1

is maximized (see (18)). Since ¢ must lie on the simplex S defined
by (4), it follows from a basic result in linear programming that the
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maximum of the sum (19) occurs at a corner point. If we make the
“generic” assumption that the p; are distinct '

(20) pi#p  forallisj

then the maximum of (19) occurs at and only at a corner point of
the simplex S. Since the value of the sum at the Jth corner point
¢ = [5,-,-]}';1

L JO i#g

is pj, it follows that the maximum occurs at the corner point ¢/ where
J is the subscript of the largest p;. We have proved the following result,

THEOREM 3. Assume (20) and by, > b > b,,.. For b ~ ber the
adult host equilibrium level will be minimized if and only if exactly one
larval host stage is attacked by the parasitoid adults. Furthermore,
the optimal strategy is to attack the jth stage where j is such that
pj = max{p;} (where p; = p;(0)).

For b close to bc, the equilibrium level of the adult parasitoids y
is close to 0. Given the biological meaning of pi(y), this result can
be interpreted as follows. If the adult host equilibrium level is to
be minimized, then the parasitoids should parasitize only that larval
stage of the host which results in a maximum expected total number
of emerging adult parasitoids per larva at equilibrium,

We have analytically proved the optimal result given by Theorem 3
only when b = b, that is to say, only when the host (pest) population
does not grow exponentially at too great a rate in the absence of the
parasitoid. We conjecture, nonetheless, that at least part of this result
holds for large values of b < by, as well. We need to state the conjecture
carefully.

As we have seen, the parasitoid can control the host (i.e., there exists
a coexistence equilibrium) only if by, > b. Since boo depends on ¢ it
can happen for large b that this inequality holds for some ¢ and not
for other ¢ on the simplex S. Define the feasible set ® to the set of
¢ € S for which b, > b. In general, for a fixed set of model parameter
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values, the feasible set & may not be nonempty or connected or even
simply connected.

For any b > ber we conjecture that if the adult host equilibrium level
has a minimum as a function of ¢ € ¥, then this minimum must occur
at a corner ¢ = ¢’ of the simplex S.

For b near b, the second sentence of Theorem 3 implies that the
optimal parasitoid attack strategy is determined by the maximum of
the quantities p;(y) = p; = pi(0), where y ~ 0 is the adult parasitoid
equilibrium level. Numerical simulations show that the criterion of
attacking that stage corresponding to the maximum p;(y) is not in
general true for all b > bc, (e.g., see Figures 2b and 3b). In other
words, it i3 not true in general that the optimal attack strategy that
minimizes adult host equilibrium will also mazimize the number of adult
parasitoids emerging per larva at equilibrium.,

Our numerical simulations have shown, however, that the optimal
strategy described in Theorem 3 based on the mazimum value of p; =
pi(0) does remain unchanged on the feasible set. This we tentatively
take as a second conjecture about our model.

In Figure 1 adult host equilibrium levels z3 are plotted against b and
¢ = ¢ for the case of two larval stages (m = 2) in the model equations
(5)-(7) with

(22) )= (f f;

and selected parameter values (see figure captions). For any value of b
the minimum value of x3 occurs when ¢ = 0 (i.e., when only the second
larval stage is attacked). Two cross sections at fixed b values are shown
in Figure 2a,b, where it is clearly seen that the minimum of x5 does
occur at ¢ = 0. It is interesting to note that z3 is not a monotonic
function of ¢ for larger values of b in Figure 1 (see also Figure 2b). This
means that for these b values the worst strategy is a mixed strategy and
that attacking either class alone is better than attacking both.

For the parameter values used in these graphs p, > p; for small b, as
can be seen by the plot of the positive difference p2 — p; in Figure 3a.
This is consistent with Theorem 3. For larger b, however, p; < p; (as
can be seen in Figure 3b) even though the minimum of z3 still occurs
at ¢ =0.
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x3

FIGURE 1. The host adult equilibrium level 3 is plotted against band ¢ = ¢;
for the case of m = 2 host larval stages in model equations (6)—(7) with the
total fraction of larva parasitizes given by (22). Model parameter values are
81 =04, 32 =06, 53 =08, 71 = 0.7, y2 = 0.3, n1 = 13, ng = 20, 0y = 0.3,
o2 = 0.5 and o = 0.

Theorems 2 and 3 deal only with the existence of positive coexistence
equilibria. The stability properties of these equilibria are also impor-
tant, of course. The positive coexistence equilibria guaranteed by The-
orem 2 give rise to a continuum of host-parasitoid coexistence equilibria
(x,y) that bifurcates from the equilibrium (x%,0) as the parameter b
increases through the critical value b,,. Recall that the extinction state
(x,y) = (0,0) is stable for b < ber and unstable for b > b,,.. This kind
of “supercritical” bifurcation of positive equilibria, with the loss of sta-
bility of the “trivial” equilibrium (0,0), is generally associated with
a stable bifurcation, at least near the bifurcation point (see Cushing
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(1988, 1993]). Thus, we expect that the bifurcating positive coexistence
equilibria in Theorem 2 will be stable at least for b near ber. However,
it turns out that the equations (1)-(2) fall into a “degenerate” case to
which the general theorems that guarantee stability for supercritical
bifurcations do not apply. This is because in our model the dynamics
of the host population in the absence of parasitoids are governed by
a linear model (1). The eigenvalue A = 1 of linearization of the host-
parasitoid equations (5)—(7) at (x,y) = (x°,0), b = b, is not simple as
is required in the general theory. Specifically, the coefficient matrix of
this linearization has the block triangular form

(6 1

where A is given by (2). Since A has 1 as a simple eigenvalue when
b = bey, it follows that 1 is an algebraically double eigenvalue of this
block triangular matrix,

We will not analytically study the stability of the coexistence equilib-
ria for b near b,. In all computer simulations we made, including those
used to generate Figures 1-3, global equilibrium stability was observed
for all parameter values tested.

At this point we know that both populations die out if b < ber
and there exists a positive coexistence equilibrium if b, < b <
beo. In conclusion, we show that for the remaining values of b >
beo both populations grow exponentially, i.e., the parasitoid fails to
control the host population, To see this note that since Fi(y) is a
decreasing function which is bounded below by F;(+00) it follows that
for any solution of the host-parasitoid equations (5)~(7), starting with
nonnegative initial values), we have that

x(t+1) > A(+o0)x(t) > 0

where the matrix A(+o0) is given by

s;(l—yl)F1(+oo) 0 es 0 b
8171 F1(400) 82(1 - v2)Fa(400) -+ 0 0
8272 Fa(+00) een 0 0

: : m] : :

0 0 v 8m(l = Ym)Fm(400) 0

0 0 e 8mYm Fm (+00) Sm+1
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It follows by induction that
x(t) > z(t) > 0.
where z(t) is the solution of
z(t+1) = A(+o0)z(t),  2(0) =x(0).

The asymptotic behavior of z(t) is consequently determined by the
eigenvalues of the matrix A(4o00) whose characteristic polynomial is

m m

(A = 8m41) [ TN — 8:(1 = %) Fy(+o00)) — b [T seviFi(+o0).
i=1 i=1

As with the linear equation (1) and its coefficient matrix (2) it is not
difficult to see that there exists a real eigenvalue greater than 1 if b
exceeds the number

m
1 - 5i(1 = %) Fi(+00)
1-35 .
(1= #ms1) ,1;‘! 817 Fi(+00)
From (17) we see that this number is precisely beo. Thus, for b > by
the vector z(t), and hence x(t), grows (exponentially) without bound
as t = +oo. From equation (7) it easily follows that y(t) also grows
(exponentially) without bound.

THEOREM 4. If b > b, then the solutions of the host-parasitoid
equations (5)-(7) are exponentially unbounded as ¢ — +o0.

Thus, when b > by, the parasitoid cannot control the host population.

4. Concluding remarks. We have derived a stage structured host-
parasitoid model in which parasitoid adults are allowed to attack a
distribution of larval stages or instars. Using this model we showed that
an exponentially growing host population (b > b, in (1)) is controlled
by the parasitoid if and only if the parasitoid attack distribution vector
¢ and the maximal fraction of host larvae that can be parasitized in
one unit of time fo = f(+00) are such that by, > b. In this case
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there exists a host-parasitoid coexistence equilibrium. For hosts whose
inherent exponential growth rate is not too large (i.e., for b near the
critical value bcr) we used our ‘model to prove that the optimal control
of the adult host, in the sense that minimal adult host equilibrium
level is obtained, requires that only one of the larval host stages be
parasitized. We conjecture that this conclusion remains valid for all b.

For b near the critical value b, we also proved that the optimal lar-
val stage to attack is that stage which results in the maximal expected
number of emerging adult parasitoids (per larva) at equilibrium (i.e.,
the stage with maximum- p;(0)). Numerical simulations show that this
same strategy, which is determined when b is near b.. and adult par-
asitoid equilibrium levels are low (technically 0), remains the optimal
strategy for all feasible b > b, and this we tentatively conjecture as
generally true for our model populations. However, in general it is
not true for all b that the optimal strategy that minimizes host adult
equilibrium levels is the same strategy that maximizes the number of
emerging adult parasitoids (per larva) at equilibrium (i.e., that maxi-
mizes p;(y)). The graphs in Figures 2b and 3b illustrate this fact.

Our results corroborate and extend one of Barclay’s main conclusions
in (Barclay [1986]). From his age-structured model (y; = 1) Barclay
concludes that the optimal strategy is for the parasitoids to attack the
youngest larvae. In Barclay’s model the larval stages all produce an
equal number of surviving emerging adult parasitoids (all n; = 1 and
all o; are equal) and the parasitoids attack only one larval age class.
Clearly under these conditions p; is the largest of the p;.

Mathematically, we have only investigated the existence of positive
coexistence equilibrium-solutions to our model host-parasitoid equa-~
tions. We have given no proof of stability, although based upon com-
mon bifurcation principles we conjecture equilibrium stability at least
for b near b.,. Numerical simulations show global stability for all pa-
rameter values tested. We hope in future work to investigate these
stability issues, including the possibility of nonequilibriuh dynamics
(cycles and “chaos”), as well as the case of density dependent models.
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