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Abstract

A nonautonomous ordinary differential delay equation for the birth rate of a model age-siruciured popuiation is
derived under the assumptions that nonlinear density effects on fertility exhibit an “Allee effect”. It is shown how
this assumption produces an interval of inherent net reproductive numbers less than one on which there exist two
stable (asymptotic) equilibria. Furthermore, in the presence of a maturation delay and a sufficiently narrow
age-specific fertility window, numerical solutions show that a certain type of attracting, large amplitude * synchro-

noue’’ ngeillat: alen exict thic interual A haunrictic aror nt oivan for tha qtanc, osel
nous’” oscuiation can aiso exist on this intervai. A heuristic argument 1S given for the existence of such 0OsClL

using the model obtained when the length of the fertility window shrinks to zero.
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1. Introduction

In autonomous models of single-species population dynamics oscillations in population
densities are most commonly attributed to growth rate delays in response to changes in
population density. If asymptotic dynamics are studied as a function of some model parameter
that measures population fertility (such as the “inherent net reproductive number’’; see below),
the usual scenario is as follows. The population goes extinct until the parameter is increased
beyond a critical value, after which the population survives by equilibrating to a positive
equilibrium level. Mathematically, a transcritical bifurcation of equilibrium branches occurs at
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the critical value of the paramcier ana there is an excl
(extinction) equilibrium and the positive equilibrium on the b f urcating branch. As the parame-
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ter is further increased, the stable positive equilibrium can, in the presence of a time delay, in
turn lose stability as a Hopf bifurcation occurs and small-amplitude periodic oscillations arise
around the positive equilibrium. For example, see [11].
In the above scenario the model equations are nonlinear because of “density dependence”,
e., the assumption that fertility and survival rates are affected by population density. The
usual assumption is that these density effects are deleterious and consequently that fertility and
survival rates decrease as population density increases. It is under these assumptions that the
above described scenario takes place.

It is well-documented, however, that the adverse effects of increased population density on
both fertility and survival may hold only for large population densities and that, in fact, at small
densities increased population density can be advantageous. See [2] for an extensive early
discussion of this phenomenon. This “Allee effect” has been observed, for example, in beetles,
starfish, protozoa, shrimp, grasshoppers, Drosophilia and waterfleas [2], paramecium [14],
rotifers [13)], various species of insects [18], pines [17], and annual plants [16]. The “Allee
effect” has also been called the “allelocatalytic effect” [15] and “strict depensation” [4].

Our purpose here is to show that the combination of an Allee effect and a time delay can
cause a certain type of oscillation to occur in model populations, an oscillation of an entirely
different type from the small-amplitude oscillations that arise from a Hopf bifurcation. These
oscillations occur suddenly as large amplitude oscillations when the inherent net reproductive

number increases unrOUgu a critical value (1 ss than one). Moreover, they have the property
that age cohorts are “synchronized”, i.e., at any given time certain age cohorts are entirely
missine and hence the nopulation consists of individuals from only distinct age classes. These

missing and hence the population consists of individuals from only distinct age classes. These
kinds of oscillations were first observed in simple discrete population models by the author [5]
and were later studied in certain kinds of age-structured models [1].

In this paper the occurrence of these “synchronized” oscillations will be studied in a model
population with an Allee effect and a delay due to an age-specific maturation period. The
model is described in Section 2 and shown to lead to a nonautonomous differential delay
equation. It is also shown in Section 2 how the Allee assumption leads to a subcritical
bifurcation of “asymptotic” equilibria and consequently to an interval of inherent net reproduc-
tive numbers less than one on which there exist two stable “asymptotic” equilibria the positive
state and the zero state. In Section 3 evidence for “synchronized” oscillations is given by means
of numerical solutions when the age-specific fertility window is sufficiently narrow. A heuristic
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argument is given for the existence of these oscillations using the model equation obtained by

letting the fertility window shrink to a single-age class.

2. An age-structured model with Aliee effect

In the age-structured model considered here it will be assumed that only adult fertility is
age- and density-dependent and that the death rate of all individuals is a constant 6 > 0. The
total population birth rate b(¢) at time ¢ > 0 is the sum of the total birth rate x(¢) of all those
individuals who were born after the initial time # = 0 and the total birth rate b(¢) of all those
individuals who were initially present at time ¢ = 0 so that

b(t) =by(t) +x(t), t>0. (2.1)
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Let r denote the “inherent net reproductive number”, i.e., the expected number of offspring
per individual per lifetime in the absence of density effects. Denote the inherent birth rate of
an individual of age a > 0, that is to say, the number of offspring produced (per unit time) in
the absence of density effects, by r¢(a) where ¢ is a nonnegative function normalized so that

[(;w(b(a)exp(*ﬁa) da=1, (2.2)

so that the formula [, “r¢(a)exp(—38a) da for the inherent net reproductive number correctly
equals r.

The number of individuals of age a at time ¢ > a equals the number of individuals born f —a
units ago, b(¢t —a) da, multiplied times the probability exp(—da) of surviving to age a. The
number of offspring contributed by these individuals at time ¢ is r¢(a)b(t — a)exp(—da) da.
Suppose, however, that fertility is affected by population density so that the number of
offspring is instead r¢(a)fb(t —a)exp(—38a) da where the density-dependent factor f now
accounts for this effect. Specifically, it is assumed in this paper that the fertility of every adult
individual is affected by the total population birth rate at the time of that individual’s birth.
This kind of density-dependent fertility is called the “Easterlin hypothesis” [7-9]. Thus
f=f(b(t —a)) and

x(t) = /O’r¢(a)f(b(t — a))b(t — a)exp(—8a) da. (2.3)

Consider a population in which individuals become reproductive mature only after reaching a
maturation age a = m, after which fertility is a monotonically decreasing function of age. To
model this kind of age-specific fertility, the normalized age-specific birth rate ¢ is written as

¢(a)=aH(a —m)exp(—Ba), a>0, >0, (2.4)

where H(x) is the Heaviside function and ay lexp(—ém)=1, y=8+6 >0, by (2.2). With
this ¢, (2.3) yields

0, for0<t<m,
x(t) = ra/tf(b(t—a))b(t——a)exp(—'ya) da, fort>m.
Eq. (2.3) now becomes a nonlinear Volterra integral equation (with delay) for the total birth
rate b(¢). However, a differential delay equation can be derived for x(¢) by differentiating
0 forO<t<sm,

x(t)= rafot_mf(b(a))b(a)exl’(_7(’_”)) da, fort>m,

to obtain x'(¢) = —yx(t) + rae " f(b(t —m))b(t —m) for t > m or, by (2.1),
x'(t) = —yx(t) +rae ""f(bo(t —m) +x(t —m))(bo(t —m) +x(t —m)), t>m. (2.5)

This equation together with the initial condition x(¢) =0 for 0 <¢ <m and a prescription of
the total birth rate b,(z) of the initial population determine x(¢) for ¢ > m, which in turn, by
(2.1), determines the total birth rate b(z).
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Because the probability of living a finite length of time ¢ decreases exponentially with rate &
in our model, it is reasonable to assume that b,(¢) decreases to 0 as ¢t — + o« at this same rate.

Finally, something must be said about the density-dependent term f(z). Because ¢(a) is the
inherent fertility rate (at low, or technically zero population density), it is required that
f(0)=1. As discussed in the Introduction, it is generally accepted that density effects are
deleterious, at least at high population densities, but that at low population densities the
reverse (Allee) effect is present in many species. To qualitatively capture these features, it is
assumed that

f(0)=1, f(z)>0, for z>0, f(+x)=0, f'(0) > 0. (2.6)

Thus f(z) > 1 at least for small z > 0, but f(z) <1 for large z > 0.
From the normalization (2.2) follows

ay lexp(—ym)=1, y=B+38, (2.7}
which when substituted into (2.5) yields the equation

xf(t)= (—x(t)+rf(b0(t—m)+x(t—m))(b0(t—m)+x(t—m))), t>m, 28)

el Y — N -+ & 211 ’

.k\ } Uxt x I,

for the birth rate x(z).
In (2.8), by(¢) is a nonnegative, continuous function that decreases to 0 as ¢ — +o. The
“limiting equation” is the autonomous differential delay equation

V(O)y=y(=y@)+rf(y(t —m))y(t —m)), t>m. (2.9)

vy
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Besides the trivial equilibrium y = 0, this equation h
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the equation f(e )= 1/r. The assumptions (2.6) made on f(z) imply the existence of at least
uilibri e
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one positive equilibrium for » > 1 and at least two positive equilibria for r, <r <1 where
-1 _
ro'=max| f(z)]
z20
(see Fig. 1).
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. 1. A density-dependence factor f(x) satisfying f'(0)> 0 in recognition of an Allee effect (as in assumptions
)) mplies the existence of two positive solutions of the limiting equilibrium equation f(e)=1/r for values of the
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In Section 3 a special kind of oscillation will be studied for r < 1. First we observe that there
are asymptotically constant solutions of (2.8). Given an equilibrium e >0 of the limiting
equation (2.9), define

b§(t) =e(1 - ‘/:qS(a)exp(—(Sa) da].

Note that b5(¢) — 0 as ¢ = + follows from the normalization (2.2) of ¢. It is not difficult to
show that the solution of (2.8) for t > m with b(t) = b{(¢) is

x,(t)= ej:d>(a)exp(—8a) da, t>m, (2.10)

and that by (2.2), x,(t) = e as t > +=, i.e., x (¢) is an asymptotically constant solution of (2.8).
Let |blo=sup,,,|b(1)|. We will say that an equilibrium y =e >0 of the limiting equation
(2.9) is stable if for any e > 0 there exists a 8 > 0 such that | b, — b§ | < € implies that x(¢) — e
as t — +oo. If, however, there exist by(¢) arbitrarily close to b§(¢) (with respect to the sup norm
|- | o) for which the solution of (2.8) does not approach e as t > +o, then y =e will be called
unstable. The following theorem is proved in the Appendix.

Theorem. Corresponding to each equilibrium y =e > 0 of the limiting equation (2.9) there is at
least one solution of (2.8) asymptotic to e as t = +oo. If r <1, then e =0 is stable, and if r > 1,
then e = 0 is unstable. If e > 0 is a positive equilibrium of (2.9), then it is stable if f'(e) <0 and
unstable if f'(e) > 0.

For example, with an f(z) as in Fig. 1, Eq. (2.8) has two “stable asymptotic equilibria” e = 0
and e =e, > 0, and one “unstable asymptotic equilibrium”, e; > 0.

3. Oscillations

We are interested in this paper in the possibility of a certain type of oscillatory solution of
(2.8) under the Allee assumption (2.6) on the density-dependence factor f(z). As r is increased
through the critical value r, <1, there will suddenly occur, according to the Theorem above
and assumption (2.6), a positive asymptotic equilibrium of “large” amplitude which will coexist
with stable state e =0, at least so long as r remains less than 1; cf. Fig. 2. The type of
oscillation sought is one in which the birth rate x(¢) rapidly changes periodically between x =0
and the other stable positive equilibrium state. We will refer to these oscillations as ‘“synchro-
nized” because they imply that at any time only certain age cohorts are present, alternating
with entirely empty age cohorts. This can be seen from the formula b(t — a)exp(—éda) =x(t —
a)exp(—6&a) for the density of age class a at large time ¢ (cf. [10]).

Although we will give no rigorous proof, we will give some numerical evidence that such
kinds of oscillations can asymptotically occur if the fertility period is “sufficiently narrow”, i.e.,
if B is sufficiently large. A heuristic motivation for these oscillations can be obtained from the
limiting equation (2.9) by rewriting it as the singularly perturbed equation

ex'(t)y= —x(t) +rf(x(t —m))x(t —m), t>m,
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Fig. 2. In the presence of an Allee effect (i.e., assumptions (2.6) on the density-dependence factor f(x)), the limiting

equation has a branch of posmve equ111br1a which bifurcates “subcritically” from e =0 at r =1, but which turns
around at a critical value r,, <1 where the larger stable equilibrium branch meets the smaller unstable equilibrium
branch.
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and setting e =1/y=1/(B + 6) =0 (corresponding to B = +). This yieids the functional
difference equation

x()y=rf(x(t—m))x(t —m), t>m. (3.1)

Consider an f(z) whose graph appears as in Fig. 1 for which the graph of f(z)z appears as in
Fig. 3. In this case there are two positive equilibria 0<e,<e,. Let xO(t) > 0 denote a given
initial function defined on [0, m]. If t,€[0, m] is such that z,=x{f,) €[0, e,), then the

sequence defined by z,=2z(z,) for t,=t,+im, i=0, 1, 2,..., which satisfies z,,, = rf(z)z,,
will tend to § as ¢ — +oo, while the same sequence will tend to e, if z,> e, (see Fig. 3). Thus

7
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|
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Fig. 3. The “cobweb” diagram for the difference equation x;,, = rf(x;)x; when r, <r <1 shows how initial x>0
that are smaller than the unstable equlllbrlum 2 lead to sequences tending to zero while those larger than e, lead
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Fig. 4. The graphs of two solutions of (2.8) with (3.2) and (3.3) are shown when r = 0.6 < r_, = 0.64. This illustrates
that the model population goes extinct when r < r_.. Parameters values used were m=4,8§=2,y=1,a=1,b=03.

801 5 =10 r=0.75

D 10 20 30 40 50 60 70 80 90 100
t=time

Fig. 5. The graphs of two solutions of (2.8) with (3.2) and (3.3) are shown when the model parameter values are the
same as in Fig. 4 except that r has been increased to r = 0.75> r = 0.64. As predicted by the Theorem, there are
two attracting asymptotic equilibrium states, ¢ =0 and e, = 5.1 > 0, when r <1 exceeds r,.
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Fig. 6. The effect of increasing y (from 1 to 4) on one of the solutions in Fig. 5 (the one corresponding to ¢ = 10) can
be seen by its graph. The solution still equilibrates to the positive equilibrium e, = 5.1, but initially suffers large

amplitude oscillations in which the solution drops very near zero for over ten model generations (a generation is
m = 4 time units).
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l“lg 7. The effect of further mcreasmg Y \[0 75) on the solution in rlg 6 is seen uy its gldpll After some transient
oscillations shown in Fig. 7(a), the solution apparently settles into a “square wave” type of periodicity shown in Fig.
7(b) in which the solution alternates between 0 and the positive equilibrium e, = 5.1. In this example the oscillation
has persisted for over 100 model generations, although we have no mathematical proof that the solution has
stabilized on this periodicity for all ¢ > 0.

the solution of (3.1) will resemble for large ¢ a discontinuous function of period m which equals
0 on the set {t €[0, m]: x,(t) <e,}, equais e, on {r €{0, m]: x,(¢) > ey}, and equais e, on
{t [0, m]: x,(2) =e,}.

A simple function that satisfies all of the above conditions is

f(z)=(Q1+az)exp(—bz), a>b>0. (3.2)

Solutions of the delay equation (2.8) were numerically calculated with initial birth rates of the
form

by(t) =c exp(—6t), c>0. (3.3)

In Fig. 4 we see examples of solutions that tend to 0 because r <r, =ba ‘exp((a — b)/a),
while in Fig. 5 we clearly see the two asymptotically constant solutions guaranteed by the
Theorem when r_ <r <1, namely x =0 and e, > 0. The solutions in Figs. 4 and 5 are for
“small” y. As vy 1s increased, the asymptotically constant solution tending to e, begins to
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exhibit lar igl-ar

in Figs. 7(a) and 7(b) we see oscillations Wthh are persistent for
over 100 generatl()ns Extensive simulations show that in order to obtain such long-term
synchronous oscillations the initial birth rate b,(¢z) must assume both sufficiently small and
sufficiently large values, that B8 (specifically y) must be sufficiently large, and r must lie in the

interval (r_, 1) guaranteed by the Allee condition.

de GSCiHathnS hetweaan emall vqlnpc near x = n and laropr VQIIIPQ near Pz
’

4. Concluding remarks

We have investigated a model population whose density-dependent fertility rate exhibits an
Allee effect, i.e., a fertility rate that increases when low-level population densities are
1ncreased but decreases when hzgh level populatlon densities are increased. It was shown how
1 bifurcation of asymptotic, positive equilibria as the
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inherent net reproductive number r of the population is increased. This in turn implies the
existence of an interval (r_, 1) of r values on which the model population has two stable
asymptotic equilibria, one positive and one identically zero.

The main conclusion to be drawn here is that when these biological features are coupled
with an age-specific maturation period and a sufficiently narrow age-specific fertility window,
there can exist asymptotic synchronous oscillations, in addition to the stable asymptotic
equilibria, on the interval (r_, 1). This is shown by means of numerical simulations and a
heuristic argument based upon the model equations (2.8) and (2.9). “Synchronous” oscillations
are oscillations in time in which the birth rate rapidly alternates between intervals on which it
equals the stable positive equilibrium and intervals on which it equals zero. These oscillations
give rise to population densities in which age cohorts are entirely missing, i.e., in which
individuals appear in synchronized age classes.

We have, however, no mathematical proof of the existence nor the stability of these
synchronous oscillations for the delay equation (2.8).

Appendix

Proof of the Theorem. The first sentence is proved by x(z) given by (2.10). Consider now the
trivial equation e = 0 of the limiting equation (2.9). By (2.1) and (2.3) the total population birth
rate b(¢) satisfies the Volterra integral equation

b(t) =by(t) + [O’r¢(a)f(b(t — a))b(t — a)exp(—da) da. (A1)

The linearization of this equation at b(t) = 0 yields
b(t) =by(t) + fo’r¢(a)b(t — a)exp(—ba) da.
The characteristic equation associated with this linear equation is
- [0+°°r¢(a)exp(—(5 +2)a) da =0, (A2)

which can, using (2.4), be rewritten as —y exp(mz) +ry —z exp(mz) =0 or, with { =mz, as
—vy exp({) + ry —m~ ¢ exp({) = 0. Hayes Theorem [3] applied to this last equation shows that
(A.2) has no roots with Re(z) > 0 if and only if r < 1. Suppose first that r < 1. [12, Theorem 2]
implies that there exists an € > 0 such that | b, | < € implies b(¢) — 0 as ¢ > + o, Inasmuch as
by(t) = 0 implies x(¢) =b(z) —by(¢t) >0 as t = 4+, we have proved that e =0 is stable if
r < 1. If r > 1, the instability of ¢ = 0 follows from [6, Corollary 4.3].

In a similar fashion, it can be shown that the linearization of (A.1) at a positive equilibrium
e > 0 of the limiting equation (2.9) has characteristic equation

1 —Aj;:wrd)(a)exp(—(ﬁ +z)a)da =0,

where A =f(e) +ef'(e). A calculation of the integral and a rewriting as above leads to the
equation —vy exp({) + Ary —m ¢ exp(¢) = 0. An application of Hayes Theorem shows that
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there are no roots of this equation satisfying Re(z) > 0 if and only if rA < 1, i.e., if and only if
f'(e) <0. [12, Theorem 2] and [6, Corollary 4.3] now imply the last sentence of the Theorem.
O
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