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1. INTRODUCTION

VOLTERRA [1] was the first to study mathematically the effects of time delays on predator—prey
interactions. He did this by modifying the famous Volterra—Lotka predator—prey model in such a
way as to describe interactions between the two species which are in general functionals (of
Volterra integral form) of past population sizes. Volterra then proved that all solutions of this
integrodifferential model oscillate about a unique positive equilibrium, but he did not consider
the question of whether these oscillations converge or diverge. (See [ 2] for an English presenta-
tion of the work of Volterra). In this work of Volterra there is no term to account for self inhibition
of either species on its own per unit growth rate and consequently the prey, in the absence of
predators, grows exponentially without bound. If a finite carrying capacity were to be assumed
for the prey then one might expect the oscillations described Volterra’s model to converge in
keeping with the stabilizing nature of such effects. This however may or may not be true, depend-
ing on various trade-off possibilities amongst the parameters in the system [4-7].

May [7] considers Volterra’s model under the assumption that there are significant delays in
the self inhibition effects of the prey. May’s analysis is carried out in terms of the inherent (un-
constrained) birth and death rates of the prey and predators respectively and a measure of the
delay in the self inhibition term. It is concluded in [ 7] (also see [6]), amongst other things, that if
the delay measure is small (for fixed values of the birth and death rates) then the equilibrium is
stable (i.e. the oscillations converge) while on the other hand if the delay measure is large then the
equilibrium is unstable (i.e. the oscillations diverge). Mathematically speaking May’s analysis is
purely a linear analysis carried out on a specific model with a specific delay functional form. The
divergence of the oscillations or the possibility of periodic oscillations was not established for the
nonlinear model.

Our purpose here is to study a very general predator-prey model with very general delay
characteristics and to show that for ‘small delays’ (for fixed values of the inherent birth and death
rates of the prey and predator respectively) the equilibrium is locally stable while for ‘large delays’
the solutions tend to have divergent oscillations (at least for a finite time interval after the initial
time reference). In the latter case we will obtain, by singular perturbation techniques, a first order
approximation to the divergent oscillations valid on short time intervals. For divergent oscilla-
tions (at least of significant magnitude) it is only reasonable to consider a finite time interval since
populations of small sizes are subject to extinction or other drastic phenomena caused by random
effects unaccounted for in the model. Moreover, differential models assume sufficiently large
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populations sizes for their validity. Thus, we only concern ourselves with finite time intervals in the
case of divergent oscillations whether or not these oscillations are unbounded as t —» + 0.

One would expect, of course, for intermediate values of the delay to see sustained, but bounded
oscillations or even exactly periodic solutions. The bifurcation of periodic solutions from equili-
brium at critical values of the delay and the birth and death rates has been studied in [5, 8,9] and
although only models with quadratic interactions are considered in these references the mathe-
matical analysis, proofs and theorems there still apply to the more general models we consider
below. (This is because the bifurcation analysis in [8,9] only depends on the interactions being
higher order.) For this reason we will not explicitly consider the existence of periodic solutions
here.

2. GENERAL PREDATOR-PREY DELAY MODELS

We consider the following integrodifferential system

N /N, =bg, <-[_ \Nl(s)kll(t - s)ds,f

—

t

N, (s) k,,(t — 5) ds>

NN, = b2g2<J N, (s)ky,(t — 5) ds> (2.1)

for t > 0 under the assumptions.

(a) k;{)e CORL,RL), k(1) = 0, IR ki{)dt =1, b, > 0;

(b) g,(e;, e;) = g,le;) =0 forsome e,eR' e, > 0,9,(0,0)=1,4,0) = 1:

(c) g,(<, n) and g,(S) are twice continuously differentiable in their arguments in a neighborhood

of ¢ =e,.n = ¢, and ¢ = e, respectively

(d) Og,(e;,e,)/0 <O, dg,le;,e,)/dn <0, dg,le)/oc > 0. 2.2)

Here ' = d/dt and, R* is k-dimensional Euclidean space.
(2.2) the solution N, = ¢, is an equilibrium in the neighborhood of which the interaction between
the species whose population sizes N (¢) are governed as functions of time ¢ by (2.1) is that of a
predator N, and prey N,. The constants b, and —b, are (by 2.2b) the inherent birth and death
rates of the prey and predator respectively. The functions k,(t) describe the precise manner in
which the past population sizes effect the per unit growth rate of each species and are accordingly
referred to as the delay kernels.

Actually our analysis below is valid for models of other general forms as well. This is because
the techniques we use involve an investigation of the linearized system (which could be the same
for the other general models) and utilize only the fact that the model is a higher order perturbation
of this linearization. For example the theorems below remain valid for the more general system
with the integrals in (2.1) replaced by integrals of the form

t
f SNkt — s)ds
under the restrictions in (2.2) together with obvious restrictions on the kernels f of the sort
necessary to make this a predator—prey model, at least near some equilibrium.

The delay model considered by Volterra in [1] is obtained from the general model (2.1) by
letting g, be linear in its arguments.

Each delay kernel k, (t) weighs the effect of the past population size of the jth species on the
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growth rate of the ith species. We now suppose that some measure T;; > 0 of the length of this
delayisdetermined. Forexample, a frequently used kernelin delay modclsisk; (1) = a;; *texp(—t/a;)
for some constant a;; > 0 [5-7]. Since the unique maximum of this kernel occurs at t = a,; one
might reasonably take T; = a;; Other means of measuring the delay represented by a delay
kernel are also conceivable; e.g. T;; = [¢ tk, (1) dt (the first moment of k;) or [{k(r)dt = 1/2
(since fg k(1) dt = 1). As far as the qualitative features which we will study here are concerned
itdoes not matter in the least how T, is specifically defined and hence we simply assume it has been
determined in some meaningful way for each kernel k. (For that matter, it does not matter that
T;; measures the ‘length’ of the delay, but could just as well be some other measure of the delay
effects, e.g. of their ‘magnitude’). Finally we assume that these three non-negative numbers T;
are averaged or otherwise combined to yield a positive constant T > 0 which is in some way a
reasonable and meaningful measure of the total delay present in the system modelled by (2.1).
Again we do not wish or need to be specific here, but only need to assume that T 1s calculated in
some reasonable manner.
In order to introduce explicitly the delay measure T > 0 into the analysis of (2.1) we choose
T as the unit of time and make the change of variable t' = ¢/T.If(2.1) 1s then rewritten as a system
for N{(t') = N(t'T) one finds that the resulting system has exactly the form of (2.1) with b, replaced
by b,T and the delay kernels k; (¢) replaced by Tk, AC'T). Thus, without loss in generality we con-
sider, in place of (2.1), the system
t
Ni/N, = bng1<[ N (s)k,(t — ) ds,f

t

N,(8)k,,(t — 5) ds)

- o

(2.3)

t

Ny/N, = bZTgZO N, (s)ky,(t ~ 5) ds>

-0

where k;; and g, still satisfy (2.2) and where the total delay represented by these delay kernels is
now equal to one. For simplicity we have suppressed the primes on the new time variable.

We wish to study the solutions of (2.3) as they are functions of the parameters §, = b, T.

Since predator—prey interaction models are stable when no delays are present we expect
the equilibrium N, = ¢, of (2.3) to be stable for §, small. If (2.3) is linearized at the equilibrium
(a procedure justified in [10]) and the resulting linear integrodifferential system is analysed by
means of its characteristic equation [11] we can verify the expected stability as stated in the
following theorem. The details of this proof are given in Section 4 below.

THeoREM 1. In addition to (2.2) suppose that {3 tk, (r)dt < + . Then there exist constants
By = Bolg k;;) > 0 such that 0 < f; = b,T < i implies that the equilibrium N, = ¢, of (2.1)
1s (locally) asymptotically stable.

By locally asymptotically stable we mean that for solutions with initial values N (1) = N%(1),t <0
sufficiently close to equilibrium, say [N?(t) — ¢ < d,¢ < 0, it follows that N(f) — ¢, > 0 as
t— + .

In order to study the opposite case when [, = b, T are both large we introduce an auxiliary,
small parameter ¢ > 0 and write 8, = o,/e” for arbitrary, but fixed constants o, > 0. Since only a
finite time interval after the initial time ¢ = 0 would be of interest in the case of divergent oscilla-
tions we change the time scale in such a way as to magnify small time intervals: u = t/ec. After
making this change of variables in (2.3) we look for solutions of order ¢ near the equilibrium. The
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results are contained in the following Theorem 2, the details of whose proof appear in Section 4
below.

THEOREM 2. In addition to (2.2) assume that k€ C ! in some neighborhood of t = 0, k 12(0) >0,
k,,(0) > 0. Let t, > 0 and o, > O be arbitrary but fixed given constants. Let y(t) be arbitrary,
integrable functions defined for ¢ < 0 which have compact support.

There exists a constant &, = £(t,) > 0 such that for all ¢ satisfying 0 < ¢ < &, the solution of
(2.3) with b, T = a,/¢* subject to the initial conditions

N(D) = e exp (82(/0), £ <0

is of the form
N(t) = e, exp (ey(t/e) + ezft/e,e)), O <t <et,

where z,(u, €) = 0for u < 0, |z(u, &)] = O(e) uniformly for 0 < u < t, and where y(u) is the unique
solution of the elementary initial value problem (4.8)+(4.9) below (and hence has the divergent
oscillatory form (4.10)).

The functions (4.10) exhibit, in general, divergent oscillations and hence so do the first order
(in ¢, that is to say in T~ /%) approximations to N, given by

N(1) ~ e;exp (ey(t/e)), 0 <t < et,.

Thus Theorem 2 says roughly that solutions starting near equilibrium tend to oscillate in a
divergent manner, at least for a finite time interval.

The conditions k‘.}.(()) > 0,7 # j mean that at least some instantaneous effects are present in the
interaction of N, and N,. These are, however, merely technical requirements and since these
constants may be arbitrarily small in comparison to the later delayed effects represented by k, (1),
i # jfor values of > 0 these conditions do not actually make any strong restriction one way or
the other with regard to the nature of the delay in the system. The real restriction on the delay is
in the requirement that ¢ > 0 be small and hence that both b, T be large. This may for example be
thought of as meaning that the delay measure T is large compared to both the prey’s inherent
birth rate b, and the predator’s inherent death rate b,.

3. ANUMERICALLY INTEGRATED EXAMPLE
The system

1
N/N, :4sz<l —;J N, (s)t — sye “79ds —%j

e o}

t

No(s)e “™¥ ds)

t (3.1)

/N, :28‘2<—-1 +j Nl(s)e"“"’ds>
was integrated numerically for various choices of ¢ > 0. (This was done by converting the system
to a differential system of higher order by repeated differentiations and substitutions making use
of the special nature of the delay kernels appearing in (3.1).) Here, in keeping with the remarks in
[6,7], we have chosen an example for which the prey birth rate is larger (in fact double) the
predator’s death rate and for which the delay kernels k,,(t) = k,,(t) = exp(—1) and k, (1)
—1 exp (—1) are appropriate to the requirement that the delay effects in the self inhibition of the
prey be more significant than those in the interactions between the two species. This is because
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k;{t), i # jis monotonically decreasing while k, (¢) increases until t = 1 and only after this time
does it monotonically decrease. This model has a unique positive equilibrium N (¢) = 1 and all
of the hypotheses on the delay kernels in both Theorems in Section 2 are fulfilled. Consequently we
expect to see convergent oscillations for ¢ ‘large’ and divergent oscillations for ¢*small’, all taking
placearound N, = 1.

The results of our numerous computer integrations may be summarized as follows. For values
of & greater than, but not ‘close’ to & = 2 the solutions show what are definitely convergent
oscillations about equilibrium, the damping of the oscillations growing stronger with increasing .
This is illustrated in Figs 1(a) and (b). As £ was decreased to values ‘near’ ¢ = 2 the oscillations
became sustained (either they were apparently periodic or, more often, apparently asymptotic
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Fig. 1(b). Convergent oscillations of a solution of (3.1) for ¢ = 2-4.
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to periodic oscillations). This is predicted by the theorems of [8] and is illustrated by a single case
in Fig. 2fore = 2-1. When ¢ was further decreased to values less than ¢ = 2 the oscillations became
divergent, even for solutions starting near equilibrium, in such a way that ultimately the solutions
spend larger and larger time intervals very near zero, followed by sharper peaks of increasing
magnitude. This is illustrated in Figs. 3 (a) and (b). All of these qualitative features were found to
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Fig. 2. Sustained oscillations of a solution of (3.1) for & = 2-1.

be independent of the initial states chosen.
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Fig. 3(a). Divergent oscillations of a solution of (3.1) for & = 1-8.
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Fig. 3(b). Divergent oscillations of a solution of (3.1) for & = 1-6.

4. PROOFS OF THEOREMS 1 AND 2

(a) We begin the proof of Theorem 1 with a lemma.

LEMMA. Assume (2.2) and [ tk, ,(r)dt < + oo hold. There exists a constant 8, > 0 such that the
equation

O

z + 0k¥(z) =0, k¥ (2) =f e “k,,(r)dt

0

has no roots satisfying Re z > 0 provided 0 < 6 < §,,.

Proof. Define ¢(z,0) = z + 0k¥,(z) and note that g(0,0) = 0, ¢,(0,0) = 1. By the implicit
function theorem there exists a unique continuously differentiable solution branch of ¢(z, 8) = 0:
z=1z2(0), 20 =0, 6] <0, 6,>0.

Moreover, an implicit differentiation of g(z(6), 6) = 0 yields z'(0) = —1 so that
Rez(0) <0, 0 <0 <4, (4.1)

Suppose that the assertion of the lemma is false. Then there exist sequences 6, > 0, 0, — 0,
Rez, 20,n=1,2,...suchthat g(z, 0,) = 0. Since z, = —0 k¥,(z,) and since |k’f1(zn)| < 1 for
Re z, > 0 we find that z, — 0 as n — + oo. But Re z, > O then contradicts (4.1) and the unique-
ness of the solution branch z(6).

We set x; = N; — ¢, in (2.3) and neglect all terms which are higher order in x,. If we denote

¢y = —0gyle, )0l >0, ¢, = —0dg,le;,e,)/0n >0, ¢,, =dg,le)/dé>0
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then we arrive at the linearized system

t

t
X = —b1T<elcllj x,(t — s)ky,(s)ds + 61012_[ X,(t — )k, ,(s) ds)
0 0

¢ 4.2)
X, = b,Te,c,, f x,(t — 8)k,,(s) ds.

0

Here we have also ignored inhomogeneous terms which tend to zero as t - + oo. According to
established results for integrodifferential systems [10, 11] the equilibrium N, = ¢, is locally
asymptotically stable as a solution of (2.3) provided x; = 0 is asymptotically stable for (4.2) and
the latter is true if (and only if) there exist no zeros of the characteristic equation p(z) = 0 satisfy-
ing Rez = O where

plz) = z(z + Bie,c, 1kT1(Z)) + BiBieje ¢ 50,, K5 (2)k3 (2)

kA(z) = j e~k (1) dt.

]

We wish to show that this is in fact true for 8, sufficiently small.

Let By = 0y/e,c,, where 6 is as in the Lemma and choose any $, such that 0 < 8, < f.
We consider p as a function of both z and §,: p = p(z, 8,). Suppose that it is not true that p has
no roots Re z > 0 for f, sufficiently small. We desire to reach a contradiction. Under this assump-
tion there exist sequences f,(n) and z, such that

B,n) >0, B,n)—>0, Rez, 20, p(z,p,n)=0.

It is clear that z, unbounded implies that p(z,, f,(n)) is unbounded. Thus, it must be the case that
the sequence z, is bounded. Without loss in generality we assume that z, — z,, for some limit z,;
clearly Re z, = 0. By continuity

P(zg, 0) = zo(zg + Bre,cy kT i(zp)) = 0.
By the way f; was chosen we have from the Lemma that expression in the parentheses cannot
vanish and hence z, = 0. Thus
z,~>0, Rez, >0, plz, B,n) =0, B,n) —0,p,n>0. (4.3)
We will reach the desired contradiction by showing that (4.3) contradicts the implicit function

theorem. Note that p(0,0) = 0, p,(0,0) = ,e,¢,, # 0 and hence there exists a unigue solution
branch

z = z(B,), z(0) = 0, |B2| < ﬁ(z), Bg >0

of p(z, B,) = 0. An implicit differentiation of p(z(8,), f,) = 0 yields z'(0) = —e,c,,c,,/c;; <O
so that Re z(8,) < Ofor0 < 8, < B9. This contradicts (4.3) and concludes the proof of Theorem 1.
(b) To prove Theorem 2 we make the following change of variables:

u=t/e, x(u=xfue), x{t)=InN(t)e,

where ¢ > 0 is a small parameter. If these substitutions are made into (2.3) together with
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g.= b,T = a,/e* we obtain the system
u

X, = ozla_lgl(sel ju k, (e(u — s5)) exp (X,(s)) ds, sezf k, y(e(u — s)) exp (X,(s)) ds

. - (4.4)
X, = “28_192<861J‘ kyy(e(u — s)) exp (X,(s))d )
where now ' = d/du. We look for a solution of (4.4) in the form
X(u) = eyuy + ezfu,e), 0<<u<t, 4.5)

for a fixed t, > 0 where y,(u) = y(u) is given for u < 0 and where z(u, &) = 0,u < 0, and
|z{u, ¢)| = Ofe) uniformly on 0 < u < ¢,. If we write

kfj(t) = My + mfj(t)a Ky = krj(()) 0, m,| t) = 0(t)

and substitute (4.5) into (4.4) we obtain, by equating terms of order ¢, the following linear system
for y, (after a cancellation of a factor of ¢)

Vi = —“1(91c11ﬂ11j yyls)ds + eZCXZHIZJ

0

u

y,(s)ds + t<1>

0

V2 a2<e1C21M1J yi(s)ds + Kz) (4.6)

0

where
0

0
Ky = €1C11Hy j ys)ds + "2012/‘12J vols)ds

— o > ¢

0
Ky = 5’2521#21J y(1)(5) ds.

e ol

The higher order terms in ¢ yield a nonlinear system to be solved for z;:

= — o (elc“uuj‘ z,(s)ds + eZCIZMIZj z,(s)ds ) + &7 ey, + ez)

0 0

zy = O‘291‘321:‘121J z(s)ds + &7 ey, + e2) (4.7)

0

where f; = f(J) e CHRL,RY), f(0) = f1(0) = 0. Thus | f{3)| = o(|c]) and f; satisfies a local Lip-
schitz condition

(D) — RGN < LIS, — &l ] < p.L, = 067

for some p > 0. If Y(y, 5) is the fundamental matrix of the linear system (4.6) [10, 11] and if we
write f = col(f,, f,), Z = col(z,, z,) then (4.7) is equivalent to the integral equation

0

Z(u) = J Y(u,5)e™ 'f(ey, + ez)ds = N(Z,8), 0 <u <1,

Let B(t,) denote the Banach space of continuous vector valued functions Z(u) on 0 < u < ¢,
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under the usual supremum norm |Z|, = sup, ¢« |2(1)|. Let S(r) = {Ze B(ty): [Z|, < r}, ¥ > 0.
Given any j = col(y, y,)e B(t,) the above described properties of f, imply that |N(z, &)
— N(z*, ¢)|, < L(s)|z — 2*|, for Z, 2* € S(r) and some constant 0 < L(g) = O(¢). Thus there exists
a constant ¢, > 0 such that 0 < ¢ < ¢, implies that N is a contraction mapping from S(r) into
itself. As a result, for small ¢ the system (4.7) may be uniquely solved for z{u, &) once y, is given.
It follows immediately from the above integral equation for 7 that |Z|, = O(¢) uniformly on the
finite interval 0 < u < 1.

To finish the proof of Theorem 2 we need only prove that (4.6) is solvable for y, and that the
solutions have the desired properties.

System (4.6) has a unique solution, for the initial values y?(0), which is defined on 0<u <1, [3].
A simple sequence of differentiations and substitutions shows that both of the solutions y, must
satisfy the same higher order equation

YW+ Ay" + By =0 (4.8)

where A = a,e,c; iy, = 0, B = 2,9,€,€5¢,,¢5 515, > 0 subject to initial conditions

yA0) = yP(O0), ¥1(0) = oy, yy(0) = 2,5,

Y1) = —oy[e ey, 9700) + e5¢,02,,¥5(0)]

V30) = oye,05,45,300), VA0) = —o 0,050, %,

YNO) = —oy(o e, ¢y ypty Ky + 05e5¢, 505 K,). (4.9)

It is not difficult to show that the characteristic quartic polynomial associated with (4.8) has two
roots in the right- and two roots in the left-hand plane (note that B > 0): o,y j=12
where 6, < 0,5, > 0,y; > 0. Thus the solutions y,(u) have the general form

vi{u) = e(K} cosy,u + K7 siny,u) + e>*(K? cos y,u + K7 sin 7,u) (4.10)

1

where of course the constants K; are determined by the initial conditions (4.9). Since 6, > 0
these solutions in general exhibit divergent oscillations.
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