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PERIODIC TIME-DEPENDENT PREDATOR-PREY SYSTEMS*

J.M. CUSHING*

Abstract. The general system of differential equations describing predator-prey dynamics is
modified by the assumption that the coefficients are periodic functions of time. By use of standard
techniques of bifurcation theory, as well as a recent global result of Rabinowitz, it is shown that this
system has a periodic solution (in place of an equilibrium) provided the long term time average of the
predator’s net, unihibited death rate is in a suitable range. The bifurcation is from the periodic solution
of the time-dependent logistic equation for the prey (which results in the absence cf any predator).
Numerical results which clearly show this bifurcation phenomenon are briefly discussed.

1. Introduction. The classical predator-prey model

) N1=Ni(b1—c11N1—c12Np),
(1.1)
N3 = Ny(—by+c21N1—¢22N>),

where '=d/dt describes the dynamics of a predator-prey interaction where N,
and N, measure, in some convenient units (such as number of individuals,
biomass, etc.), the prey and predator population sizes respectively. Here b, —b,
are the inherent net birth rates (i.e., the birth rates in the absence of any
constraints) per unit of population per unit time of the prey and predator
respectively; c; for i # j measures the effect (on the corresponding growth rate in
(1.1)) of the interaction of the two species; and ¢; is the self-inhibition (or logistic)
coefficient. In this classical model all coefficients are constants and

(1.2) ¢; =0, b;>0 and c¢;>0 fori#j.

Our concern in this paper is with the more general case when these coefficieiits are
functions of time #, or more specifically, periodic functions of time. Such a
generalization seems a natural one considering the oscillations to which any
ecological parameter might quite naturally be exposed (for example, those due to
seasonal effects of weather, food supply, mating habits, hunting or harvesting
seasons, etc.). Although, to the author’s knowledge, such time-dependent systems
have not been studied in any generality, the time dependence of the coefficients
was a suggested (but unexplored) explanation for the oscillatory data obtained by
Utida in his experimental studies [9]. Our goal is to establish the existence of a
positive N; >0, periodic solution for such a time-varying predator-prey syster.
The trajectories of this solution in the phase plane of Ny, N, will take the place of
the equilibria solutions of the classical systems (1.1).

To motivate not only the type of results we will obtain but also the approach
and method of proof, we consider for a moment the classical system (1.1) with
constant coefficients satisfying (1.2). If ¢;; >0, then it is easy to see that (1.1) has
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two equilibrium solutions in the right half-plane N; > 0 given by

E _( bicpr+brciy  bicai—bacyy )
1= ) >
€11€C22+€12€C21 €11€22+C12C21

b
Ezz(—1,0>.
C11

The equilibrium E| lies in the first or fourth quadrant if
bicr1—byc11>0 or <0

respectively. In order to motivate our approach to the time-dependent system, we
wish to recognize within this constant coefficient case a bifurcation phenomenon.
Towards this end we treat b, (the predator’s inherent net death rate in the absence
of all constraints and all prey) as a free parameter. Then we observe the following:
(i) for by>b;ca1/c11 there is no equilibrium in the first quadrant; (ii) for b, <
bicz1/c11 the equilibrium E| lies in the first quadrant; (iii) E, and E, coincide for
by =b1cz1/¢11; and (iv) for all b, the equilibrium E, remains fixed. Thus, with b, as
a parameter we may view E; as an equilibrium which bifurcates from the
stationary equilibrium E,. With these facts in mind, together with the powerful
general techniques available for studying bifurcation phenomena, we will prove
the existence of periodic solutions of the time-dependent system (1.1) treating the
average [b,] of b,(t) as a parameter. The point of bifurcation (played by E, above)
should be, of course, a positive periodic solution of (1.1) when N, =0; i.e., of the
time-dependent logistic equation

(1.3) * Ni=Ni(b1—c11Ny).

This equation has such a solution when [b,]>0 and ¢;; = ¢41(¢) >0 for all £ [2].

Our results are given in Theorem 2. We also discuss very briefly the stability
of the periodic solutions of (1.1) found in Theorem 2. In § 3 we give numerical
results for a periodic example of (1.1) which quite clearly show the bifurcation of
the periodic solutions (as the average of b, varies) as well as their global
asymptotic stability (as is the case for E; above). Our results are formally proved
in § 4.

In arecent paper [6] Pimbley uses bifurcation theory to prove the existence of
periodic solutions of a certain predator-prey model. There is no overlap with our
results here, however, since Pimbley considers a different question for a different
model. Specifically, Pimbley considers the problem of nonconstant periodic
solutions in the presence of an equilibrium for an autonomous model, while we
consider the question of periodic solutions of nonautonomous models in the
absence of equilibria. If the equilibrium in Pimbley’s model is viewed as a branch
of a bifurcation from the single species equilibrium as suggested above for (1.1)
with constant coefficients, then from the point of view of bifurcation theory,
Pimbley’s study is one of secondary bifurcation in the autonomous case. Our
concern here, on the other hand, is with the primary bifurcation from the single
species ‘‘time-varying carrying capacity”’, but in the nonautonomous case.

2. Results. Let B denote the Banach space of continuous, w-periodic func-
tions under the supremum norm: |N|o = Supo=,=., |[N(#)|. Throughout this paper w
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is an arbitrary, but fixed period. We will also consider the product space BXB
which is a Banach space under the norm |(N;, Ny)|o = |Ni|o+|Na|o. For N defined
on [0, w] we define average of N to be

[N]=0! Lw N(s) ds.

We begin with an existence and uniqueness theorem for the logistic equation
(1.3).

THEOREM 1. Suppose that by, c11 € B satisfy [b1]>0 and c1,(t) >0 for all .
Then (1.3) has one and only one solution N, € B satisfying N, >0 for all t.

By asolution of (1.3) (or (1.1)) in B (orin B X B) we mean functions which are
in addition differentiable.

Let N¥(t) € B denote the unique solution of (1.3) as described and guaran-
teed by Theorem 1. Our main results are contained in the following theorem.

THEOREM 2. Suppose thatb;, c; € B, that [b1]>0 and c; =0 for all t, and that
€11, €12>0, ¢21#0 for all t.

(a) Thereis a constant by, 0=b,<[c,1NT], such that for each b, € B satisfying
bo=[b,]1<[c21NT] there exists a solution (N;, N,)e BXB of (1.1) satisfying
0<N;<N7¥,N,>0 forallt.

(b) If in addition c,, >0 for all t, then by =0.

Part (a) of this theorem is local in nature in that solutions in B are guaranteed
only for [b,] near (and less than) the number [c,; NT]. Part (b) asserts that b, may
lie anywhere in the full interval [0, c,; NT) if the predator has a logistic coefficient
¢y bounded away from zero. In the case of constant coefficients, this added
assumption on c;; is not necessary for the validity of part (b) and in fact periodic
solutions (namely, E;) exists for b, in the whole interval [0, c,1b1/c1;1) even if
¢22=0. The proof of part (b) given below in § 4 definitely requires the condition
22> 0; this is pointed out in § 4. Moreover, numerical results carried out by the
author as described in § 3 below give, for the specific systems considered, no
definite indication of the existence of a periodic solution when ¢,, =0 and [b,] is
near zero. This seems to indicate that the condition c¢,, >0 may not be eliminated
from part (b) of Theorem 2, although it may be the case that this condition could
be weakened.

When all coefficients are constants, this theorem is consistent with the above
discussed observations where the periodic solution, whose existence is asserted in
Theorem 2, is just the equilibrium E; and where the condition [b,]<[c,1NT]
reduces to bicy;—byc11>0 (since in this case NT=b,/cy;). In this case E, is
(globally) uniformly asymptotically stable. In the more general case with coeffi-
cients lying in B one would hope that the solutions lying in B X B guaranteed by
Theorem 2 possess some stability properties. It is not our purpose here to study
this stability question in depth, although we will offer a few simple observations.

Suppose (N1, N,) € B X B is a solution of (1.1) as described in Theorem 2, and
suppose we linearize (1.1) about this solution; i.e., let x; = N; — N,, make this
substitution into (1.1) and drop all terms in x; of order two or more. This results in
the system

x1=(N1/Ni—c1:N)x1 + (—c1.Ny)x,,

(2.1) _ o _
x3=(c21N2)x1+ (N3 /Ny — 20N, )x,.
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Well-known theorems tell us that if this linear system is uniformly asymptotically
stable, tl_1en the same is true (locally) of (N7, N,) for (1.1) [1], [4]. If we further let
y: = x;/ N, then (2.1) becomes

y1=(=c1iNDy1+(=c12N2)y2,
y5=(c21N1)y1+(—¢22N,)ys,

and (2.1) is uniformly asymptotically stable if and only if (2.2) is also. In general it
is difficult to determine the stability properties of a nonautonomous system such as
(2.2), even in this case where all the coefficients are w-periodic. Certainly the
average of the trace of (2.2) is negative, and hence at least one characteristic
exponent has negative real part, but, as is usually the case, the other characteristic
exponent is difficult to locate in general. One well-known technique which does
yield some stability criteria for (2.2) is that which uses a certain ‘“measure”
1 (A (1)) of the coefficient matrix A (¢) = (a;;(¢)) of the system; u depends on the
vector norm used and for the norm |(v;, v,)| = |v4] +|v,]| is given by [1]

(2.2)

w(A (1)) =max{ai +|azl, az+l|al}
=max {(c21 —C11)N1, (c12— 022)1\72}-

If Y(¢) is a fundamental matrix for (2.2), then [1]

1Y() Y (s)| =exp ( I t /.L(A(u))) du,

and hence (2.2) is uniformly asymptotically stable (i.e., |Y(£)Y '(s)| decays
exponentially to zero as ¢ +00) if

(2.3) c1i—c11<0, c1p—¢2<0

for all t. Under these conditions, the solution (N;, N,) will be (locally) uniformly
asymptotically stable. If the same technique is applied to (2.1) with the vector
norm |(vy, v,)| = max |v;], in which case u (A (f)) = max {aq; +|ai2|, az2 +|az [} [1],
then one arrives at the criteria

(2.4) 12N> —¢11N; <0, c21N1 —¢22N, <0

in place of (2.3). Although these criteria do give stability results for the periodic
solutions of (1.1), they are rather restrictive; both demand in the dynamics of the
interaction that the self-inhibiting effects of both species are the more significant
factors.

Next we consider the stability of the “trivial” solution (Ny, N,) = (NT, 0). If
we let x; = N;—N¥in (1.1), ignore terms of order two or more in x; and N, and
let y; = x1/NT we find that

yi= (_Clllyalk))’l +(—c12)N>,

(2.5)
N5 = (=by+c21NT)N,.

Just as with the case above, if this linear system is (locally) uniformly asymptoti-
cally stable, then the solution (N7, 0) will be also. From the second equation for
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N, in (2.5) we have

Nt) = NfO) exp (eanNT =) ex (| p() ds),

where p(t)=c,;NT—b,—[c;1N¥—b,]; note that [p]=0 and hence that
{6 p(s) ds € B. Thus, for [b,]>[c,1N¥] we find that N, tends exponentially to zero
as t > +00. Since [¢11NT] = co[NT]> 0 for some constant c,(t) = ¢ > 0, it is easily
seen that the same is true for y;, and hence that (2.5) is uniformly asymptotically
stable provided [b,]>[c,,NT]. Clearly (2.5) (and hence that solution (N¥, 0) for
the nonlinear system (1.1) [1]) is unstable if [b,]<[c,1NT].

Thus, as is often the case in bifurcation theory, we see an exchange of stability
from one branch of solutions to another as the parameter [b,] passes through its
critical value. These stability results are summarized in the following theorem.

THEOREM 3. Assume the hypotheses of Theorem 2. (a) If [b;]>[c,1N7], then
the trivial solution (N7, 0) of (1.1) is (locally) uniformly asymptotically stable. (b) If
[b2)<[c21NT), then this trivial solution is unstable. In this case, however, the
nontrivial periodic solution whose existence is guaranteed by Theorem 2 is (locally)
uniformly asymptotically stable, at least if either (2.3) or (2.4) holds.

Ecologically, Theorem 3 says that if the net death rate of the predator is too
large, then the predator will go extinct while the prey will tend to its time-varying
carrying capacity N7 (¢). On the other hand, if this death rate is small enough, then
coexistence is possible. We suspect that the conditions (2.3) or (2.4) necessary for
this latter statement can be weakened and that the exchange of stability described
in Theorem 3 occurs under, in fact, more general conditions.

We make one final remark concerning stability. If all coefficients in (1.1) lie in
B but are sufficiently close to constants satisfying (1.2), and if by¢,, — bocq1 > 0 for
these constants, then well-known perturbation (or small parameter) techniques
[4] imply that (N;, N,) € B X B is uniformly asymptotically stable (since E; is). In
fact, under these very restrictive conditions on the coefficients one can also deduce
the existence of (IN; N,) € B X B near E; using known theorems [4].

The proof of Theorem 2 part (a) involves sufficiently general techniques that
this result is valid for systems of more generality than (1.1). The proof given in § 4
below remains essentially unchanged for the functional equations

Ni=Ni(b1—c11N1—Fp5(t, Ny)),
N3 = Ny(=by+ F,(t, N1) — Fas(t, N,))

for any continuous operators provided (compare the hypotheses of Theorem 2)
only that F;; = 0(|N|o) near N =0, that F}; possesses a Fréchet derivative Fj; at
N =0 which satisfies F;N =0 and #0 for all ¢ and all Ne B, N=0, and that
12N >0 for all ¢ and all N € B, N> 0. Note that the operators F}; may involve
time-lags or integral operators (continuously distributed time-lags or hereditary
effects). See [3] for a general study of such systems for functionals involving
time-lags and their possible secondary bifurcations. These functionals may
involve quadratic terms in N; or N, as in the model considered by Pimbley in [6].
With regard to further generalizations of Theorems 2 we point out that the
more general case of almost periodic coefficients can be treated similarly in order
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to obtain the results of part (a) (provided the technical assumption that co; NT —
[c,1N¥] has a bounded antiderivative is met). Technically the proof of Theorem 2
in § 4 fails for the case of almost periodic coefficients because the linear operator L
in Lemma 1 is not compact; L is, however, bounded and hence Theorem 1(a) can
be proved using standard Lyapunov—Schmidt expansion techniques (e.g., asin[6],
[8)). This requires complicated details which we prefer not to give here. The global
results in [6] would not be available using this approach, and consequently the
global assertion in Theorem 2(b) is left open for the case of almost periodic
coefficients. The remarks concerning stability and in particular, Theorem 3
remain valid for almost periodic solutions provided that they are, when positive,
bounded away from zero.

3. Some numerical results. System (1.1) was investigated numerically for the
coefficients

b2=B—%sint, b1=ci,-=1+%sint;
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these coefficients satisfy all the hypotheses of Theorem 1 and 2 with w =27
Equation (1.3) has the 27r-periodic solution N = 1 so that, according to Theorem
2(b), system (1.1) should have 2#-periodic solutions for at least each B €[0, 1)
(since, in this case, [c2;NT]=[c,1] = 1). Actually 27r-periodic solutions lying in the
first quadrant were found for all B € (—1, 1) examined; see Figs. 1 and 2. One can
see quite clearly in Fig. 1 the bifurcation of the periodic loops from, the point
(1, 0) as B passes from values larger than one, through the value one, to values less
than one. The numerical evidence also indicated that the periodic solutions are
globally asymptotically stable; this is illustrated in Fig. 3 where several trajectories
are graphed for the value B = 0.6 in addition to the periodic solution. For B = -1
and B =1 the solutions (N7, N») = (0, 1) and (1, 0) were found respectively to be
globally attracting in the first quadrant; several trajectories for each B =—1 and
B =1 are drawn in Figs. 1 and 2 to illustrate this fact.

The system with these same coefficients, except that c,, =0, was also solved
numerically for many values of B. Again 27r-periodic solutions were clearly seen
to bifurcate from (1, 0) for B less than, but near one. However, in this case, unlike

B =00 = -04

Predator N,

Prey N,

F1G.2
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Predator N,

Prey N,
F1G.3

the case above when c¢,, #0 as graphed in Figs. 1-3, we found that as B
approaches zero from above the periodic trajectories disappear; at least no
clear-cut evidence was found of periodic trajectories for B near zero (specifically,
for B <0.2) and, moreover, the N, components of the solutions grow seemingly
without bound as B — 0. It was also found numerically in this case that for B
nonpositive, N, > +00 and N;- 0 (which is consistent with the case of constant
coefficients and c¢,, = 0). These facts seem to indicate that in order to be guaran-
teed periodic solutions for all [b,] in the full interval [0, [c,;NT]) in Theorem 2(b)
it is necessary to require at least that c,, #0. Hence the necessity of a condition
like ¢y, >0 as appears in Theorem 2(b).

4. Proofs.

Proof of Theorem 1. That a positive solution N € B exists is shown in [2]; we
have thus only to prove that this solution is unique. First we make an observation
concerning a certain weighted average of N;. Dividing both sides of (1.3) by N,
integrating from 0 to w, and dividing the result by w we find that 0 =[b; —c;;N;] or

4.1) [b1]=[c11N4].
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Turning now to the uniqueness question, we suppose that N*, N** ¢ B are
different solutions of (1.3) satisfying N* >0, N**> 0 for all t.-Let N = N* — N**,
Since the uniqueness of solutions of initial value problems for (1.3) implies that if
N*= N**for some t then N* = N** for all ¢, and since N*, N** are assumed to be
different, we conclude that N # 0 for all . Assume without loss of generality that
N >0 for all ¢. From (1.3) we have that

N/=N.(b1_011N*_C11N**)

for all «. Dividing both sides by N and integrating from O to w we find from this
equation, upon dividing by w, that

4.2) 0=[b1]-[c11N*]~[c11N*].

But N*, N** solve (1.3) and hence satisfy (4.1). Taken together, (4.1) and (4.2)
imply the contradiction [b;]=0. 0O

Before proving Theorem 2 we state and prove some lemmas.

LemMma 1. Suppose a;€B. (a) If [ax]#0, [a11]#0, then the linear
homogeneous system
4.3) )’:1=011)’1+a12)’2,
y2=azy>

has no nontrivial solution in B X B. In this case the nonhomogeneous system
!
x1=anuxi+apx;+fi,

(4.4) ,
X3=axnxt+f

has, for every (f1, f») € B X B, a unique solution (x, x,) € B X B and the operator
L :BXB - B XB defined by (x1, x2) = L(f1, f2) is linear and compact.

(b) If [a22]=0 and [a1,]# 0, then (4.3) has exactly one independent solution
in BXB.

Proof. (a) Since

(4.5) y2=y2(0) exp (J’O ax(s) dS)

the condition [a;;]#0 implies that y,ZB unless y,=0. But then y;=
y1(0) exp (Jo a11(s) ds) and [a;1]# 0 in turn implies y, € B unless y, =0.

In this case x5 = a,x,+f, has a unique solution x, € B and the operator
L,:B - B defined by x,=L,f, is linear and compact [4]. Furthermore, x} =
ay1x1+f3 for f;€ B has a unique solution (since [a;;]#0) in B and x;=L;f3
defines a linear, compact operator L; : B - B. Thus, (4.4) has a unique solution in
B X B given by (x1, x5) = L(f1, f»), where

(4.6) . L(fy, f2) = (Li(a12Lof2+f1), Lof>).

(b) Under the stated assumptions, y, as given by (4.5) lies in B for all initial
conditions y,(0). Now if [a;,]# 0, then z’' = a,;z has no nontrivial solution in B
and hence

t

t
y1=any1+any:(0)exp (I as; dS)
0
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has a unique solution in B. This defines a one-parameter family of solutions
(y1, y2) of (4.3) which since (4.3) is linear and homogeneous is actually a
one-dimensional subspace of BXB. [

LEMMA 2. Suppose a € B and [a]=0. Then x' = ax +f, f € B, has a solution
x € B if only if [f exp (—[o a(s) ds)]=0.

Proof. See [4, p. 226].

Proof of Theorem 2. Let x;=N;—N7¥, x,=N, in (1.1). Then

x1=(b1—2c11ND)x1 = c1oNTx2+ g1(x1, x2),

@7 , )
x2=(c21NT —b2)x2+ ga(x1, x2),

where
_ 2
81(x1, X2) = —C11XT— C12X1X2,
_ 2
82(x1, X2) = €21X1X2— C20%5.

Notice that since c,;NT=0, but #0, we have that

(48) [C21N=1k]>0.
Define
(4.9) pa2(t) =by(t) —A, A =[b,].

Then b, =p,+A and [p,]=0. With these new symbols (4.7) becomes

4.10) x’l=(bl_'2011N>1k)x1_ClzNikx2+81(x1,xz),

x5 = (c21NT —p2)x2— Axz+ gax1, X5).

The linear homogeneous system
y1=(b1—2c11NT)y1—c12NTy,
y2=(c21NT—p2)y>

satisfies the hypotheses of part (a) of Lemma 1; this is because by (4.8), (4.9) and
(4.1) we have

[a22]1=[c21NT —p2]1=[c21NT1#0,
[ai]=[b, _2C11N>1k] =—[b1]#0.

Consequently we have available the compact linear operator L : BXB - B X B
given by (4.6). Using L we can equivalently write system (4.10) as the operator
equation

(4.11) (x1, x2) = AL*(x1, x2) + G (x4, x2),
where
L*(x1, x2) = (L1(c12N1L2x3), —Loxs),
G (x4, X2) = (L1(—€c12NTLga(x1, X2) + 81(X1, X2)), L28(x1, X2)).

Here L*: BX B - B X B is linear and compact and G : B X B - B X B is continu-
ous and compact (since L, and L, are compact) and satisfies G = o(|(x1, x,)|o) near
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(0, 0). This operator equation (4.11) is consequently of the type to which standard
bifurcation theorems and techniques apply. A nontrivial solution (x, x,) # (0, 0)
of (4.11) in BXB for some A €R (R is the set of reals) yields a solution
(N1, N2) = (x1+ N¥, x,) of the predator-prey system (1.1) for [b,]= A. Solutions
(N1, N,) # (N¥, 0) will be called nontrivial solutions of (1.1).

To prove part (a) of Theorem 2 we apply well-known local bifurcation
techniques to (4.11). As is well known [5], bifurcation can occur only at the
nontrivial solutions of the linearized problem

4.12) (1, y2)=AL*(y1,y2), (Y1, y2)#(0,0), AeR.

If (y1, y2) € B X B is a solution of (4.12) for some A € R, then by the very manner in
which L* was defined, (y;, y,) solves the system

y1=(b1—2c11NT)y1 —c12N¥y,,

(4.13) , .
y2=(c21NT—p2—A)ya2,

and conversely. Using Lemma 1 above we see that (4.13) and hence (4.12) has a
nontrivial solution in B X B if and only if A =A™ where

(4.14) A*=[cyNT].

If A =A* then, by part (b) of Lemma 1, (4.12) has one independent solution in
B X B. A well-known result [5], [7] implies that bifurcation in fact occurs at this
simple eigenvalue; hence there exists a continuum € ={(A ; x;, x,)} = R X B X B of
nontrivial solutions of (4.12) such that the closure € of € contains (A *; 0, 0). This
continuum gives rise to a continuum C={(A; N;, N,)} < R X B X B of nontrivial
solutions of (1.1) whose closure C contains the bifurcation point (A *; N¥, 0).

To see that solutions in C correspond to solutions (N, N) of (1.1) with all the
properties described in Theorem 2, we investigate the nature of the continuum €
near the bifurcation point (A*; 0, 0) by expanding A and (x,, x,) in Lyapunov—
Schmidt series [8]:

AzA*+A1£+' e,
X =X16 + X0+ -+, i=1and?2,

for x; € B where ¢ is a small parameter. If we substitute these series into the
differential system (4.10) and equate coefficients of £ and £ we find that

ro_ % %
x11=(b1—2¢11N7)X11—c12NT X271,

(4.15) , N «
x21=(c21NT —p2—A%)x24
and
(4.16) xgz'—f(b1_2011N’1k)X12‘ClzNszz_Cux%l_012x11x21,
.16

X5y = (Cz1N>1k —p2—A *)xzz —A1X21+C21X11X21 — szxgx
respectively. Thus, (x1;, X2;) € B X B must be a solution of (4.12). We choose the
specific solution satisfying the initial conditions x,;(0) = 1. Then

t

X1 =epr‘ (c21NT—p—A*) ds>0.
0
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Moreover x;;<0 for all ¢. (This is because [b; —2c;;NT]1<0 implies that the ‘
Green’s function for the first equation in (4.13) is positive.) Using Lemma 2 on the
second equation of (4.16) we find that

A1 =[c21X11—€22%21]<O0.

Thus we see (also refer to [7]) that near the bifurcation point (A*; 0, 0) (say, for
|A —A*| <bo) the continuum C has two (subcontinua) branches corresponding to
€ >0, £ <0 respectively: '

€ ={(A;x1,x)€G:A*—bo=A<A* x,<0, x>0},
€ ={(A;x1, %) € G AF<A=A*+bg, x,>0, x,<0}.

It is the solutions on C* which prove the theorem, part (a), since A * —by=A <A *
is equivalent to [c,1N¥]—bo=[b,]<[c21NT]. We have left only to show that
N, =x,;+N7T>0 for all ¢. This is easy, for if b, is small, then N is near. N7 in the
sup norm of B; thus since NT> 0 is bounded away from zero, so is Nj.

(b) We prove the second part of Theorem 2 by applying a global alternative
of Rabinowitz [7, Thm. 4.1] from which follows the existence of a continuum
C% < R x B x B of nontrivial solutions which locally coincides with C* and which
either is unbounded in R X B X B or bifurcates from another trivial solution
(A**; N¥,0) for A** # A *. However, since A ** must then be a characteristic value
of L (i.e., there must exist a nontrivial solution of (4.12) for A = A **) and since it
follows from Lemma 1 applied to (4.13) that A * is the only possible such value of
A, we conclude that the second alternative is impossible and that as a result the
continuum C is unbounded. This implies that if A< R is the projection of C™*
onto R and if X < B X B is the projection of C* onto B X B, then at least one of
these two continua must be unbounded. Now we establish several facts about C,
and A and about solutions of (1.1).

(i) If (N1, N>) solves (1.1), then both N; are of one (but not necessarily of the
same) sign. This is because N;(¢)= N;(0)exp (_ﬂ, g(s)ds) where g(s)=
b;—c¢11N1—¢12N>. A similar argument works for N,.

(ii) If (A; N1, N») € C, then N>> 0 for all t. Since N, > 0 for solutions near
the bifurcation point (A *; N¥, 0) (where Cx coincides with C") and since Cx is a
continuum we have by (i) that if N, <0 for some solution at some time then there
would exist a solution of Cyy for which N, = 0. For this solution we would have, by
Theorem 1, that N;=N7 in contradiction to the fact that C% contains no such
trivial solutions. »

(iii) If (A; Ny, Np) € C™ with A €[0, A *), then N, >0 for allt. Suppose N; were
negative for all #. Then, since C is a continuum, there would existaA’ € (A, A *) for
which N; =0 (recall that N, > 0 is near the bifurcation point). For this solution we
find that

N’z =Ny(—br—c22N;)

which, by (ii) and the same argument used to deduce (4.1), implies the contradic-
tion

0<[coaN,]=—[b]=—A"=0.
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(iv) If for some (A} Ny, N,) € Co, we have N1 <0, then [0, A*) = A. The proof
of (iii) shows that A <0 and hence that A contains negative reals. Since A is a
continuum (interval) whose closure contains A * the result follows.

) If A;Ny,Ny)eCw and Ny>0 then for some constants c,d >0
independent of (A ; N1, N,) the estimate |(N, N>)|o=cA +d holds. Let t' be chosen
so that Ny(#') =|Ni|o and Ni(t') = 0. From the first equation of (1.1) we have that
fort=t¢,

by(t") —c11()N1(t') — c12(t)N,(t') = 0,

and hence (since N, >0 by (ii)) we have
(4.17) |N1|0=N1(t')§|b1\0/a,

where « is a constant for which ¢11(¢) =« >0 for all ¢.
For N, we do something very similar: let ¢’ be such that N,(¢') =|N,|o and
N5(#") = 0. From the second equation in (1.1) we have that

—N,(t) = (b2(t') — c21(t')N1(t)) / c22(2').

If B is such that ¢,,(¢) =B >0 for all ¢, this easily yields the estimate

IN2lo = (|b2]o +|c21]0lN1lo) /B-

Since |(N1, N2)|o = |N1lo+|N2|o we find from this estimate together with (4.17) the
desired estimate with

C=ﬁ;1 and d=|b1|0a*1+(|p2|0+|621|0|b1|0a‘1)ﬁ‘1.

(vi) If for every (A; Ny, N2)€ Cx, it is true that N1 >0 for all t, then A is an
unbounded interval, bounded above. By (v), if A were bounded, then X would also
be bounded in contradiction to the above stated fact that at least one of these is
unbounded. Suppose now that A were unbounded above so that we can find a
solution (A ; Ny, N,) € Cx with N; >0, N,>0 and

A > |eailolbiloe ™" + |pafo+ 1.

From the second equation in (1.1) and from the estimate (4.17), we find that
N5 < —N, which contradicts N, € B.

We are now able to prove that [0, A*) = A as required in part (b) of Theorem
2. There are two cases: either N; >0 for all solutions on Cx, or N; <0 for some
solution on Cy. In the first case, (vi) implies the desired set inclusion while (iv)
yields the same result in the second case.

At this point we have proved that for any A =[b,]€[0, A*), there exists a
solution (N1, N,) € B X B of (1.1) satisfying N; >0 and N, > 0. All that remains to
prove of part (b) of Theorem 2 is that N; < N7 for all ¢ and all such solutions.

Consider the subcontinuum of Cy, obtained by restricting A to [0, A *). Near
the bifurcation point A* we know (part (a)) that N; <N?* for all ¢. Suppose that
this inequality fails to hold for some A €[0, A *). Then since Cx is a continuum, we
could find a A’ €[0, A *) such that the estimates 0<N; =N7¥, N,>0 hold for all ¢
and such that Ny(#') = N¥(¢') for some ¢'. The first equation in (1.1) implies for
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t =1t that
'1=N1(b1_C11N1)_C12N1N2=N>1"'_012N1N2<N’1k’-

Thus the difference N; — N vanishes and has a strictly negative derivative at £ = ¢'.
This implies the contradiction N; < N7 for <t but near ¢'. 0

To prove part (b) of Theorem 2 we use an estimate |(Ny, N»)|o = Ac +d where
¢22Z 3 >0. The numerical results discussed in § 3 above seem to indicate that
such an estimate may not be valid if ¢,,=0.
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