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SOME COMPETITION MODELS FOR
SIZE-STRUCTURED POPULATIONS

J. M. CUSHING

1. Introduction. Ordinary differential equations (ODE’s) have
long played a central role in the history of theoretical ecology. Nonlin-
ear systems of ordinary differential equations, as exemplified by either
the famous classical models of A. Lotka and V. Volterra or any of the
vast number of other models that can be found in the literature, have
been used to provide theoretical support for many of the well estab-
lished principles in both theoretical and field ecology, principles such
as competitive exclusion, ecological niche, predator-prey oscillations,
etc. Such models continue today to serve, and will no doubt continue
to serve for some time to come, as valuable tools for investigating the
qualitative implications of various ecological assumptions and situa-
tions.

ODE models for the dynamics of multispecies interactions are, of
course, based upon a great many simplifying assumptions. It was, in
fact, an explicit goal of the early investigators to attempt to provide
some measure of understanding of the extraordinarily complex biolog-
ical world by focusing on simple, but key, principles. As a part of the
natural development of the subject researchers extended and continue
to extend the models in such a way as to incorporate more realistic
features, while always being confronted by the brutal trade-off between
complexity and analytical tractability.

Most of the sophistications of the classical ODE models (and their
innumerable offspring) address the assumed homogeneities in these
models. ODE models are almost exclusively based upon a description
of the rates of change of some population level statistic such as number
of individuals, total biomass or dry weight, etc. They generally assume
a homogeneous environment, in space and time, and homogeneous
populations made up of identical individuals. Spatial inhomogeneities
have been widely investigated in recent years by means of partial
differential (“reaction-diffusion”) equations (and by compartmental
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ODE models as well). To a lesser degree the effects of environmental
fluctuations, both stochastic and regularly periodic, have also been
studied using nonautonomous versions of established model equations.

Almost totally unexplored, however, are the effects of inhomogeneities
within species on multispecies interactions due to important physiolog-
ical differences between individual members of both the same and dif-
ferent species making up the community. Such physiological differences
can be due to any number of factors: chronological age, body size or
weight, life-cycle stages, morphological differences, genetical variants,
etc. A fundamental question in so-called “structured” population dy-
namics is how such physiological differences at the level of the individual
relate to the dynamics of population level statistics.

Although models of structured populations have only relatively re-
cently attracted a great deal of attention and interest, there is a long re-
search tradition dealing with one type of structured population, namely
age-structured populations. Developed mainly by demographers in-
terested in human populations, age-structured population dynamics
was, until recently, primarily a linear theory for the growth of a single
isolated population. Within the last few years the fundamental the-
ory of nonlinear age-structured populations and even interacting age-
structured populations has reached a high level of sophistication and
completeness (Webb [7]). Nonetheless, with the exception of some age-
structured predator-prey models, the detailed investigation of specific
age-structured ecological models is still in its infancy. For example,
there is very little in the literature dealing with models of competition
between age-structured species.

It is frequently pointed out by biologists that age, however, often
is not (some would say rarely is) the important determining factor in
a population’s dynamics, but that body “size” is the relevant physi-
ological factor. Clearly size is one of the most important attributes
of an individual organism. It is significant in determining an organ-
ism’s energetic requirements and ability to exploit resources for growth
and reproduction and its interaction with its physical and biological
environment, including predators, prey, and competitors (Werner and
Gilliam [8]).

Zooplankton communities provide one example in which size struc-
ture has been of primary significance in the study of multispecies in-
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teractions. The importance of individual body size in determining the
structure of zooplankton communities can be found in the overwhelm-
ing attention paid to it in zooplankton research literature and in the
formulation of the so-called “size efficiency hypothesis” (SEH) (Brooks
and Dodson [1]). The basic tenets of this hypothesis are that large size
zooplankton species are more efficient resource exploiters, providing the
means for competitively excluding smaller species, and that size specific
predation by large bodied predators, which falls more heavily on the
large bodied zooplankton, can mediate this exclusion of small species.
This hypothesis has been the main theoretical framework of much zoo-
plankton research since its formulation, and many experimental studies
have attempted to test its assumptions (Hall et al. [4]). Although the
SEH has fallen somewhat into disuse in recent years, it is not due to
the lack of importance of size structure in zooplankton communities,
but, on the contrary, to the realization that the dynamics is even more
complicated than had been originally thought.

The importance of body size in competition interactions in a broad
range of taxa is stressed in the survey article by Werner anda Gilliam
[8]. They also discuss the importance of body size in other types of
interactions as well and, even more interestingly, how size- and stage-
structured populations can have such complicated interactions as to
defy the usual classifications of competition, predator-prey, mutualism,
etc. Werner and Gilliam point out the almost total lack of mathemat-
ical modeling of size-structured ecological interactions.

The purpose of this paper is to derive and study a competition
model for m size-structured species attempting to exploit a single
(unstructured) resource. Under certain explicitly stated simplifying
assumptions, including a key assumption that resource uptake rates
are proportional to a power of body length, it is shown how the
dynamics of certain population level statistics are governed by a system
of ODE’s. The assumptions of the model, while retaining a certain
degree of generality, are particularly relevant to small organisms such
as zooplankton.

The positivity and boundedness of solutions are proved (Theorems 1
and 3), and it is shown that the asymptotic dynamics are governed by
a reduced, transformed competition ODE system of a general type
appearing in the literature for unstructured populations (Theorem
3). However, the models considered here, unlike the usual ODE
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competition models, include parameters related to basic physiological
properties of individual members of the species.

Regardless of the asymptotic dynamics of these models, it is proved
that the average size of individuals in each species (i.e., average indi-
vidual body length, surface area or volume) asymptotically equilibrates
to a positive value. This result provides a way by which the “size” of
a species can be compared to its competitive effectiveness or vulnera-
bility. These results are illustrated by an application to competition
in a chemostat, to which results of Butler and Wolkowicz [2] can be
applied.

2. Models of size-structured population growth. In order to
build a dynamical model for the growth of a population it is neces-
sary to specify submodels for the rate of additions to and removals
from the population, i.e., to describe how these vital rates depend on
physical environmental parameters, on interactions with other biologi-
cal species, on physiological properties of individuals, etc. For “struc-
tured” populations in which individuals have been categorized within
the population, it is also necessary to describe rates at which individuals
transfer between the specified categories. In particular, for populations
in which an individual’s size is an important factor affecting vital birth
and survival rates (or is otherwise of interest), it is necessary to build
a submodel for the growth rate of individuals.

When these submodels are given, the dynamics of a population
density p = p(t,s) can be described by means of balance equations
involving the hyperbolic first order partial differential equations below.
Here, t is time and s is a measure of size, such as body length, surface
area, or volume. If b and d denote per unit density birth and removal
rates and if g = ds/dt denotes the growth rate, then

(2.1) Op + 0s(gp) = —dp, t>0,5> sp,

(2.2) 9Pls=sp :/ bpds, t>0,
s

J

describe the rate of change of density (due to removals) and the rate
of additions (due to births), respectively, under the assumption that
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all newborns have the same length sp and only individuals of length
greater than a juvenile length s; > sp reproduce. In general, the
submodels must specify g,b, and d as functions of ¢, s, and p, as well
as possibly other important parameters such as food resource densities,
densities of other interacting populations, physiological parameters of
individuals such as metabolic rates, resource uptake rates, reproductive
efficiencies, etc. Thus, these equations are, in general, nonlinear.
Coupled with an initial condition p(0,s) = po(s), they presumably
determine the future density as a function of time. See Metz and
Diekmann [5] for an in-depth treatment of this modeling procedure.

The growth rate g depends on the ability of an individual to obtain
and assimilate food resources. This ability may depend significantly on
the size of the individual as well as on the density of the resource, which
we denote by R. The assimilated resource is then allocated between
growth, reproductive, and metabolic (respiration) processes (assimi-
lated food can also be stored, but this is ignored here). There is con-
siderable biological evidence that growth, reproductive, and metabolic
rates scale exponentially to body length [ (Werner and Gilliam [8], Hall
et al. [4]).

Suppose that the resource uptake rate is given by ul” i.e., is propor-
tional to {7 for some v > 0. If some portion of consumed resource is
utilized for metabolism, then there is a net amount of resource available
for growth and reproduction. Hall et al. conclude (for microorganisms
such as appear in zooplankton communities at least) that “it is gener-
ally safe to express the difference between assimilation rate ... and res-
piration rate as an increasing exponential function of body length.” In
accordance with this law suppose that the resource utilized for growth
and reproduction is assimilated at a net rate nl” so that weight change
is given by dw/dt = knl? /i, where k is the fraction of this available re-
source allocated to growth and 7 is a conversion factor relating weight
to resource units. Then

knlY ds

n dw’

The remaining fraction of available resource is assumed allocated to
reproduction so that

1—k
wwp

b=

nl”.
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Here w is a resource to offspring conversion factor and wp is the
weight of newborns. If volume (via an appropriate choice of units)
is interpreted as weight, then w = [*> and wp = 1%, where Ip is the
length at birth.

The dependence of resource uptake on resource density R is expressed
by u = u(R),n = n(R).

Typical values for v for many species of zooplankton lie between 2
and 3 (Hall et al. [4]). The two cases v = 2 and 3 will be considered
here, i.e., resource uptake and net resource availability for growth and
reproduction scale to body surface area and body volume or weight,
respectively.

MOoDEL I. For v = 3, it is convenient to use volume s = w = [® as
the structuring variable in the model above. Thus

(2.3a) g = Bn(R)s
(2.3b) b= asz'n(R)s,
where

a=(1-k)/w, B=Ek/n.

MobEL II. For v = 2, simpler equations result if we use length s = [,
so that

(2.4a) g=

B

(2.4b) b= asz’n(R)s>.

Finally, in this paper the simple assumption that deaths or removals
occur independently of size or time is made so that

(2.5) 0 < d = constant.

Equations (2.1)—(2.2), together with (2.5) and (2.3) or (2.4), con-
stitute the basic size-structured growth model to be considered here.
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They will be coupled with a dynamical equation for the growth of the
resource species R = R(t) of the form

dR
i k(R) — u(R)S,

where k(R) describes the resource dynamics in the absence of the
predator species and where
s(1) f;; wp(t, w) dw = total population volume for v =3
t) =
f:: I2p(t,1) dl = total population surface area for v = 2.

More generally, we will be interested in the case when m > 1 species
utilize and compete for the resource R, in which case m systems of
these equations are coupled:

(2.6) Opi + 0s(gipi) = —dipi, t>0,8> sp,
(27) gipi|s=sBi = / bzpl d37 t>0
S‘Ii
dR -
2. = _ ) .
(28) &~ HB) -3 u(s,
where

Bin;(R)s  for Model I when s = w

2. ;=
(29) 7 {,3mi(R) /3 for Model II when s = [

a;spini(R)s  for Model I when s = w
(2.10) b = i

aisgfni(R)s2 for Model IT when s = I.

Let Ry = [0, 400). It will be assumed throughout that

u;,n; - Ry =& Riand k: Ry — R are once continuously
(H1) differentiable with u;(0) = 0,n;(0) = 0, k(0) > 0.
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3. Two specific models. The treatment of the model equations
(2.6)—(2.10) will be carried out by reducing them to an equivalent and
more tractable system of ordinary differential equations for appropriate
population level statistics for each species. This will be done under the
simplifying assumption that the juvenile period is insignificant, i.e.,
that

SJ; = SB;-

Define s; = sp,,w; = wp,, and [; =Ip,.

(a) Model 1. Equations for the rates of change of the moments

S, =W, = pi(t, wwdw, P;= / pi(t, w) dw,

wq wq

can be derived by integrating equation (2.6), multiplied by w” for v =0
and 1, with respect to w from w = w; to co and using (2.7). This results
in

(3.2) Wi = (—di + (0 + B)mi (R) W
(3.3) P} = —d;p; + a;w] 'ni(R)W;
(3.4) R(0) >0, Wi(0)>0, P;0)> 0.

The parameters
a; = (1= ki)/wi,  Bi = Ki/mi
will be referred to as reproductive and growth efficiency coefficients,

respectively.

(b) Model 11. Equations for the rates of change of the moments

Si=di= [ ptE L
l

L:/pﬂﬁW,H:/P#ﬁ%
L Li

which are the total area, total length and total number of all individ-
uals, respectively, can be derived from (2.6) by integrating equation
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(2.6), multiplied by [¥,v = 0,1, and 2, with respect to [ from | = I; to
oo and using (2.7). The resulting equations can be written in matrix
form:

(3.5) W =kR) - Y w(RA,
(3.6) P} = —d;p; + ni(R)M}p;
(3.7) R(0) >0, p;i(0)>0

where p; = col (4, L;, P;) and

Oéi/li Oéi/l? az/lf’
(3.8) M;=|28/3 0 0
0 Bi/3 0

For each i the matrix M; has the form of a Leslie matrix. Some facts
about this matrix will be needed below. The Perron-Frobenius theory
tells us that M; possesses a positive, strictly dominant eigenvalue,
which we will denote by u; > 0, and that this eigenvalue is associated
with strictly positive right and left eigenvectors v; > 0,w; > 0. An
investigation of the cubic characteristic polynomial of M; shows that
the remaining two eigenvalues are complex conjugates with negative
real part v; < 0 and imaginary part v; # 0.

The eigenvalue p; will play an important role below. It is important
to notice that it depends on (and only on) the physiological parameters
l;, a;, and (; of the i-th species. In particular, it does not depend upon
the resource uptake rates u; and n; or the resource dynamics k. Thus
w; encapsulates the physiological properties of individuals in the model
for the population level dynamics.

The nature of the dependence of p; on the length at birth [;, the
reproductive efficiency coefficient «; and the growth rate efficiency
coefficient 8; was studied by Cushing [3]. It turns out that it can
be written in the form

(3.9) pi = a;zi(ri)[li,  ri = Bi/ o,

where z; is a strictly increasing function of its argument with z;(0) = 1.
Thus p; is an increasing function of 8; and a decreasing function of [;.
It can also be shown that p; is an increasing function of «;.
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4. Positivity. First we show that the positive cone is positively
invariant under the dynamics of Models I and II.

THEOREM 1. The solutions of Models 1 and II, respectively, remain
positive for all time t > 0.

PROOF. (a). From equations (3.1)—(3.3) it is easy to see that W;(t)
and P;(t) are positive. If R(t) vanishes at a first point ¢y > 0, then
0 > R'(tg) = k(0), which is an immediate contradiction if k(0) > 0. If
k(0) = 0, then, by uniqueness, R(t) = 0, another contradiction.

(b). A similar argument shows R(t) > 0 for equations (3.5)—(3.7) as
well. Let ¢ be arbitrary but fixed. Suppose now that t; > 0 is the first
point at which at least one component of p; vanishes. Say A;(t;) = 0,
the following argument being similar if it should be that either L; or P;
vanishes first. Then A4;(¢t) > 0,L;(¢t) > 0, and P;(t) > 0 for 0 <t < ¢;.
From the first component of the system (3.6), follows

t
Ai(t) = A;i(0)e %t 4 / e B )ep(s) ds
0

¢(t) = ni(R) (j—:Ai + ;BiL,) .

Since ¥(t) > 0 on [0,t;] it follows that A;(¢;) > 0. This contradiction
shows that no such ¢; exists. O

5. Asymptotic average size. It is proved in this section that,
regardless of the asymptotic dynamics implied by either Model I or
II, the average “size” of individuals in each species asymptotically
equilibrates. This result permits a comparison between competitive
success and the “size” of a species, where, by “size,” is meant the
asymptotic average volume, surface area or length of an individual.

Define the averages
[Wil(t) = Wi(t)/Pi(t),  [Ai](t) = Ai(t)/Fit),  etc.
For Model I an easy calculation using equations (3.2)—(3.3) shows that
[W;] solves the equation
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A change of variables 7; = fg do/n;(R(0)) yields the logistic equation
d a;
— Wil = | + 0 — — Wi il-
Wil = (054 8- 22w ) v

Consider Model II. From the component equations of (3.6) one can
straightforwardly calculate

L = i) (3 + el 4] = 150l AL

Using the same change variable t — 7;, we can transform this system
to the plane autonomous system

4
dTi
d

dr;

(A = 17 ol ] + SBHIL] — 1 e [A
(5.1) .
[Li] = 36: + ;2 Ad] = 120 [Ai] [Ly).

It is easy to verify from the direction field associated with (5.1) that
the positive quadrant [A;],[L;] > 0 is positively invariant and all
trajectories in the positive quadrant are bounded. It is also easy to
show that there exists a unique equilibrium in this quadrant (which
is given by the limits in the statement of Theorem 2 below) and that
this equilibrium is locally asymptotically stable. If the divergence of
the vector field defined by the right-hand sides of (5.1) multiplied by
[4;]7[L;]~! is taken, then it will be found that the result is negative
in the positive quadrant. Consequently, by Dulac’s principle, there are
no limit cycles in this quadrant.

These facts, together with an application of the Poincaré-Bendixson
theorem, imply that all positive trajectories approach the unique posi-
tive equilibrium.

We summarize these facts in the following Theorem.

THEOREM 2. For all solutions of Model 1,

(Wil(t) = (1 + Bi/ i )w
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and, for all solutions of Model 11,
[Ai)(t) = pil} /i > 0, [L)(t) = li + Bi/3pi > 0

as t — +00.

6. Asymptotic dynamics. We’ve already seen that all solutions
of Models I and II remain positive for ¢ > 0. Under the hypothesis

Every solution of R’ = k(R) with R(0) > 0
(H2) is bounded for ¢ > 0,

we can show that these solutions also remain bounded for ¢ > 0.
Consider first Model 1.

LEMMA 1. Under hypotheses (H1)—(H2), every solution of Model 1 is
bounded for all t > 0.

ProoF. Since R’ < k(R) for any solution of (3.1)—(3.4), it follows
from familiar comparison theorems that R > 0 is bounded for ¢t > 0.
Set U =R+ >, W;/(a; + ;) > 0. From (3.1)—(3.2),

Zd W+k iuz ) —n;(R)) W;.

i=1

Let d = mind; > 0. Then
U'<—dU + ¢(R qul

where ¢(R) = dR + k(R) and ¢;(R) = u;(R) — n;(R). Inasmuch as
#i(R) > 0 and R (and hence ¢(R)) is bounded for ¢ > 0, we have from
U’ < —dU + ¢(R) that U > 0 is bounded above for ¢ > 0. Since R and
W; are positive it follows that W; is bounded for ¢ > 0. O
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Since equation (3.3) decouples from the system (3.1)—(3.4), the
asymptotic dynamics of this model can be determined by the equa-
tions (3.1)—(3.2) and (3.4) which have the form

(6.1) R =k(R) — Z ciui(R)x;
(6.2) i = (—d; + pini(R)) z;
(6.3) R(0) >0, z:(0)>0,

where ¢; = 1, u; = a; + 5; and x; = W,.

Next we show that the asymptotic dynamics of Model II are also
governed by a system of this same form (6.1)—(6.3). Let T; be a matrix
for which

w00
TT'MT;=| 0 % w
0 —v

The first column in 7; is the right eigenvector v; > 0 and the first row
in Tf1 is the left eigenvector w; > 0. Let & = col(ey;, €94, ¢3;) denote
the first column of T[l. Note that cy; is the first component of w; and
therefore, c1; > 0. If the change of variables q; = T!p; = col (x;, i, 2i)
is made in equation (3.2), then Model I equations (3.1)—(3.3) become

(6.4) i k(R) — Zui(R)fi 0 g

x; = —d;x; + ,U«ZTLZ(R)wl

y; = —diyi + ni(R) (viyi — vizs)
zi = —d;zi + ni(R) (viyi + vizi)
R(O) > 0, Iz(O) = U; Opl(O) > 0.

~—~ ~~ —~

S O O O
— — — —

.5
.6
7
.8
If we define §; = y; /T, Z; = #;/T;, where

T;(t) = exp (—dit + v /Ot n;(R) ds> ,
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then it follows from (6.6)—(6.7) that

d o oo

(i 2) — 0

dt @+ %) =0,

and, hence, y?(t) + z2(t) = (y?(0) + 22(0)) T;(¢t). Since v; < 0 we have
proved the following lemma.

LEMMA 2. For any solution of (6.4)—(6.7), it is true for all i that
yi(t) > 0,2 (t) = 0 as t— +oo.

The next lemma can be proved using only slight modifications of the
proof of Lemma 1.

LEMMA 3. Under hypotheses (H1)—(H2), every solution of (6.4)—(6.8)
is bounded for all t > 0.

COROLLARY. Under hypotheses (H1)—(H2), every solution of Model
IT is bounded for all t > 0.

By Lemmas 2-3, the omega limit set of every solution of (6.4)—(6.8)
lies in the face y; = z; = 0, which is easily seen to be an invariant
set of (6.4)—(6.8) on which the dynamics are given by the reduced
system obtained by setting y; = z; = 0 in (6.4)—(6.8). The resulting
equations have the form (6.1)—(6.2) with u; equal to the dominant
positive eigenvalue of M; and ¢; = c15, ; = v; 0 p;.

The results of this section are summarized in the following theorem.

THEOREM 3. Under hypotheses (H1) and (H2), all solutions of Models
I and 1T are positive and bounded for t > 0. Moreover, the asymptotic
dynamics of these two systems are determined by (6.1)—(6.3) with

{ a; + B; for Model 1
M =

the dominant positive eigenvalue of M; for Model I1
{ c1; >0 for Model 1
C; =

1 for Model 11’

(6.9)
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where x; = W; = total population volume or weight for Model 1 and
x; = v; o p; = a weighted average of A;, L;, P; for Model II.

The asymptotic dynamics of (6.1)—(6.3) are not obvious and, in fact,
can be quite complicated. There are some special cases, however, that
have been thoroughly studied in the literature. One such case is treated
in the next section.

7. An application: size-structured competition in a chemo-
stat. Models for competing species of microorganisms being contin-
uously cultured in a chemostat have been studied by many authors
(e.g., see Butler and Wolkowicz [2], Paul Waltman [ 6] and the cited
references). However, none of the literature deals with models which
attempt to account for size dependent physiological properties of in-
dividual members of the species, many of which are widely recognized
as important determining factors of the dynamics of, for example, zoo-
plankton communities. (The chemostat, incidentally, can be thought
of as a simple experimental model of a zooplankton community in a
natural lake.)

Models for the chemostat will be considered here which, by means
of the results above, reduce asymptotically to a type of chemostat
model for unstructured species extensively studied in the literature.
The variables and parameters in our model, however, will have different
interpretations. This will allow the outcome of the competition to be
related to physiological properties of individuals, including average size.

For simplicity, only the case when the resource uptake rates u;(R)
are monotonically increasing in R will be considered (although the
more complicated case of non-monotonic rates could be studied in a
similar way using the results of Butler and Wolkowicz [2]). The class of
monotonic resource uptake rates include the frequently utilized Holling
IT or Michaelis-Menten case u; = ¢;R/(a; + R).

In the chemostat model the resource (or substrate) dynamics are
given by k(R) = (Ro — R)d, where Ry > 0 is the input concentration
and d is the washout (and input) rate. It is also assumed that the
inherent death rate of all species is small compared to this washout
rate, so that d; = d for all .
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One last assumption will be made, namely that the metabolic de-
mands of individuals of all species are small compared to the resource
demands of growth and reproduction. We will, in fact, assume that
metabolic demands are negligible and set n;(R) = u;(R).

According to the results in §6, the asymptotic dynamics of the
resulting Models I and II are determined by the reduced equations

dR m
(7.1) g~ Bo—R)d- EMR)w R(0) > 0,

;1;; = —dxi + Niui(R)xia 371(0) > 0.

As can be seen from Theorem 3, the coefficients ¢; and u; depend only
upon the reproductive and growth efficiency coefficients «; and (§; and,
in the case of Model II, the size at birth [;.

The results of Butler and Wolkowicz [2] imply that the asymptotic
dynamics of (7.1) are determined by the break even values A; of the
species’ growth rate as defined by the equation

These results, together with the results of §6, imply that all species
densities will equilibrate and all species will asymptotically die out with
the possible exception of one. Thus this size-structured competition
model is commensurate with the ecological principle of competitive
exclusion which asserts that at most one species can survive on one
resource.

More specifically, if there is a smallest );, say, without loss in
generality A\; < A; for ¢ # 1, then (A;(¢), L;(¢), P;(¢t)) — 0 as t — +o0
for i # 1. Species i = 1 will also equilibrate, but whether it survives
or not depends on whether )\; is less than or greater than the input
concentration Ry as follows:

Model 1. (R,W1, P1) = (Roo; Weo, Px) as t — 400, where

A1 > Ry = ROOZR(), We =P =0
M<Ry = Re=M\,
W = (Ro — A1)(a1 + B1), Ps = (Ro — A1) /ws.
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Model 11. (R, A1, L1, P1) = (Roo, Aoos Loy Peo) as t — 400, where

M>Ry =
)\1<R0 —

=Ry, Ao =DLo=Py=0
=AM, Awx = (Ro— M),

= (Ro — A1) (1 + B1/3u1ly) /13,
=(Ro — M) /3.

[T~y
§U888

Thus for both Models I and II the outcome of the competitive
interaction is determined by the resource equilibrium level \; defined
by (7.2). The winning species is the one that can exploit the resource to
the lowest positive level \; and still survive at that resource level. For
a given washout rate d and given uptake rates u;, the crucial parameter
A; depends upon the physiological parameters «;,3; and, in the case
of Model II, on the length at birth [; through the dependence of p; on
these parameters. Any change in a species’ model parameters which
decreases \; will enhance that species’ chances for surviving.

Given the assumption that wu; is monotonically increasing in its
argument, it follows from (7.2) that )\; is inversely related to ;.
A species’ survival chances are thus improved by an increase in its
parameter value p; as defined by (6.9), i.e., by an increase in either its
reproductive or growth efficiency coefficients «;, 3;.

Comparing this result with the results about the asymptotic size of
each species in §5 we find that, for these models at least, there is no
general correlation between competitive success and species size.

To illustrate this point consider the case when all species have
identical resource uptake rates u;(R) = u(R). By (7.2), the smallest
A; corresponds to the largest u;, and, hence, the surviving species is
determined solely by the physiological parameters «;,3; and size at
birth w; or [;.

For Model L it is clear that the largest pu; = a;+8; does not necessarily
correspond to the largest asymptotic weight [W;] = (1 + 8;/a;)w;.

Under some further restrictions it can happen that the largest species
will always be the competitive survivor. For example, if the species are
made even more similar by assuming that they all have the same weight
at birth, w; = w, and the same reproductive efficiencies, a; = «, then
i = o+ B; and [W;] = (14 Bi/a)/w are simultaneously maximal as a
function of the growth efficiency coefficient f;.
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However, under other restrictions, the complete opposite can hold.
For example, if all species have the same weight at birth, w; =
w, and identical growth efficiencies, 8; = 3, then u; = a; + ( is
maximized when [W;] = (1 + 8/a;)w is minimized, namely for the
largest reproductive efficiency coefficient «;. In this case the smallest
species is the winning competitor.

Identical conclusions can be shown to hold for Model II by using
formula (3.9) for p; and using, as a measure of species size, any weighted
average of the asymptotic area and length as given in Theorem 2. For
more details see Cushing [1988], where the case of a logistically growing
resource k(R) = r(1 — R/K)R is also considered.

8. Concluding remarks. We have seen how an ODE competition
model for m size-structured species exploiting a single resource can be
derived under certain simplifying assumptions from integro-partial dif-
ferential equations for size specific densities that describe size specific
birth and death processes. Mathematically, it was shown that solu-
tions of the model are positive and bounded and that the asymptotic
dynamics are governed by a more tractable reduced system of ODE’s.
Moreover, it was found that the model implied that the average size
of individuals in all species asymptotically equilibrates to a positive
value, regardless of the asymptotic dynamics and the outcome of the
competition. This average size was compared to competitive effective-
ness in the application to competition in a chemostat, and it was found
that species “size” was a poor indicator of competitive success under
general circumstances. This result can perhaps be interpreted as pro-
viding some theoretical evidence as to why attempts at experimental
verification of the SEH have been equivocal.

The key assumptions in the model studied here are that the consumed
resource is allocated (after metabolic demands are met) between growth
and reproduction, that resource uptake scales to an integer power of
body length (viz. to power 2 or 3), and that there is no apprecia-
ble juvenile, nonreproductive stage. That resource scales to a power
of body length seems well established (Werner and Gilliam [8]), par-
ticularly for small organisms like zooplankton (Hall et al. [4]). The
latter assumption of no juvenile stage is a serious restriction in the
model, but seems a necessary one for the mathematical analysis carried
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out above. Juvenile stages, being a source of time delay, can signifi-
cantly affect the resulting dynamics, and models which include them
would be of interest. It would be of interest to incorporate many other
important features into size structured models as well, including a fi-
nite adult size (which is usually the measure of species size referred
to in the biological literature), resource storage capability (Metz and
Diekmann [5]), starvation and growth cessation (dormancy), size-
structured resources, and size-specific predation, to name just a few.
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