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I. INTRODUCTION

Any biological or physical mechanism which causes a delay
in the growth rate response of a population to changes in its
environment is generally considered to be a destabilizing
agent. This is a widespread tenet in population biology and
it finds theoretical support in a large variety of mathemati-
cal models which exhibit a loss of the stability of an equili-
brium in the presence of a sufficiently large delay. There
are, of course, a great many such delay causing mechanisms,
but as pointed out by Ricklefs (1973) the primary ones are
concerned with the fecundity of the population. Those speci-
fically detailed by Slobodkin (1961) are gestation and matura-
tion periods (taken together these are often referred to as
the "generation time" needed to produce a new generation) and
age-specific differentials in resource consumption. Many
mathematical model equations in the literature which attempt
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to incorporate delays into the growth dynamics of a population
are very inadequately derived with regard to the exact mecha-
nism causing the delay and very often are inappropriate as far
as these specific, primary delay causing mechanisms are con-
cerned. A good example is the overworked delay-logistic equa-
tion which is certainly inappropriate for any of these parti-
cular delay causing mechanisms.

In a recent paper (Cushing (1980)) the relative effects
on stability and instability caused by delays due to gesta-
tion periods, maturation periods and age-specific resource
consumption as it affects age-specific per capita fecundity
were considered. It was argued there that the effects on the
stability of equilibria caused by these primary delay mecha-
nisms are in general substantially different and distinct.
While instability (and accompanying oscillations and even
"chaotic" behavior of population size) usually does occur
when these delays are sufficiently large...particularly in
the case of gestation period delays and certain types of age-
specific density or self-regulating effects on fecundity...
this was found not always to be the case. 1In particular,
maturation periods were often found not to be strong desta-
bilizing agents.

My main purpose here is to justify an even stronger state-
ment concerning maturation periods: for a broad class of
model equations, it is short maturation periods which are
destabilizing and longer ones which are stabilizing.

The model equations considered here are based on
McKendrick's equation for age-structured population (Hoppen-
steadt (1975)) under certain simplifying assumptions stated

in §2. Unlike the single equation models considered by
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Cushing (1980), the model equations (4) considered below
include an equation governing the growth of the population's
resources (which are lumped into one resource function). 1In
structure then, the model has the form of a predator-prey
system in which the predator population is assumed to have a
significant age structure and age-specific fecundity. It is
first shown (Theorems 1 and 2) that there is a threshold
value of the resource's inherent carrying capacity below
which the population cannot survive and above which coexis-
tence is possible (and is assured if the resource carrying
capacity is near the threshold value). Then it is shown
(Theorem 3) that a positive equilibrium exists and is unsta-
ble for short maturation periods. For long maturation periods
the model has no positive equilibrium (Theorem 4). Formal
proofs of theorems are given in V. A summary of the conclu-

sions appears in VI.

II. THE MODEL EQUATIONS
Let p = p(t,a) denote the density of (female) indivi-
duals of age a at time ¢t and let P(t): = { p(t,alda
0

denote the total population size (of females). If u > 0

is the per capita death rate, taken here to be a constant

independent of age and time, then + p_+ up = 0 for

Pe a

a >0 and -» < t < +» (McKendrick's equation) expresses
the assumption that removal from the population is by death
only. Additions to the population, assumed to occur by birth

only, are governed by the equation
B(t) = J f B(t-al)exp(-ual)da (1)
0

for the total birth rate B(t): = p(t,0) where f 1is a per
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capita fecundity or fertility function which is assumed to be
a function of age a. The fecundity function f will also
be assumed to be a function of time ¢, not explicitly, but
by means of a dependence of f on the total population size
of both the population P and its resource R. Thus, we
write f = f(x,P,R). Any gestation period has been ignored
(see Cushing (1979, 1980)) as have been initial conditions.
An equation to be satisfied by the total population size
P(t) can be derived from McKendrick's equation and (1). It
is easy to see from McKendrick's equation that P'(¢) + uP(t)
= B(t) from which, together with (1), is obtained the inte-

grodifferential equation
P'(t) + P(t) = f f(a,P,R){P'(t-a) + wP(t-a)lexp(-ualda.
0

Under the assumption that f(a,P,R) 1is continuously differ-
entiable in a and is bounded for a > 0 and all values
of P,R and that P(t) 1is bounded for all =t =< ¢, an

integration by parts yields
P'(t) + uP(t) = J fa(a,P,R)P(t-a)exp(—ua)da (2)
0

where the reasonable assumption that newborns have zero fecun-
dity, i.e, f(0,P,R) = 0, has been made.

A more general equation for P(¢t) when u depends on ¢
(explicitly or through a dependence on P,R) and including
a gestation period can be derived in a similar way (see
Cushing (1979)).

Equation (2) constitutes the first equation in the model
to be studied here. To this equation will be added an equa-
tion for the dynamics of the resource's total population size

R = R(t). One can also derive this equation in a similar
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manner, but inasmuch as the resource will be assumed to have
no significant age structure affecting its growth dynamics
these details will be skipped. It will be assumed that the
dynamics of the resource population is governed by the dif-
ferential equation R' = rR(1-R/K) - Rg(P) where » > (0 |is
the inherent growth rate of the resource population, x > 0
is its carrying capacity in the absence of the predator popu-
lation P and g(P) describes the effect of predation by P
on the per capita growth rate of R. Assume g(0) = 0. This
predation equation is general enough to encompass many if not
most predation models found in the literature in which the
resource (prey) is assumed to obey a logistic growth law in
the absence of predators.

Finally it will be assumed that the fecundity function
f has the form f = bR(a)h(R) where g(a) is a bounded,
continuously differentiable function which satisfies the

conditions

B(al = 0, B(0) = 0, J g(alda = 1, 0 < I agl(a)da < +w. (3)
0 0
The model equations to be studied are then

P'(t) + uwP(t) = bh(R(t)) [ £'(a)P(t-s)exp(-ualda
0

(4)
R' = rR(1 - T)-Rg(P).

The assumption on f implies, of course, that the fecun-
dity of the population P 1is independent of its own popula-
tion size. This assumption (termed "laissez faire interac-
tive" for plant-herbivore systems by Caughley (1976)) is
appropriate for predators, such as non-territorial ungulates,
who do not interfere significantly with each other's search

for food.



168 J. M. Cushing

It is made here purely for mathematical simplicity. The anal-
ysis below can be carried out, at the expense of additional
complicating details, for fecundity functions f which de-
pend on P as well as R. The constant b > 0 will be
called the giggg_modulus and the normalized function B8 (a),
which describes the age-specificity of fecundity, will be

called the maturation function. It is this function which

describes the nature of any maturation period for the indivi-
duals of population P. The function & describes the func-
tional response of fecundity to changes in the resource popu-

lation size R.

III. AN EXAMPLE

The following simple example illustrates and motivates
the general results for (4) in IV and V below. Let g(P)
= yP, vy > 0, and Ah(R) = R 1in (4). These linear predator-
prey response functions are like those used in the classical
Volterra-Lotka predator-prey equations (with density regula-
tion) and suffer the same criticisms as are often made of
this famous equation. As will be seen in V below, however,
many of the important qualitative properties of this simple
example are shared by the more general model equations (4).

The maturation function Rg(a) = T_2aexp(-a/T) describes
a population for which 7 > 0 is the age of maximum fecundity
(the "maturation period"), but which has a rather broad "re-
productive window" (i.e. fecundity is rather broadly distri-
buted throughout age classes). With these choices of g, %
and g, (4) has three equilibria (PO,RO): namely, (0,0)

(0,K) and
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R, = (ur + 1)%/b, P, = (K - R,) /Ry (5)
It is easy to see that (0,0) 1is unstable. A linearized

(local) stability analysis of the

it depends on the
qualitatively the
b = pr =

w=1,

positive equilibrium is

B equilibrium (5) is positive and stable while

unstable.
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two remaining equilibria as

two parameters KX and T yields a result

same as that shown in FIGURE 1 in which

and y = 1/10. 1In region A the only

(0,K) and it is stable. 1In region

(0,K) 1is

Both of these positive equilibria are unstable

is fixed and KX 1is increased

one observes first a bifurcation of equilibria and

K passes through the critical

as the equilibria (0,k) and (5)

This is a common feature of predator-prey models

and can be interpreted as a threshold phenomenon for the

prey's carrying capacity K

above which coexistence is pos-

sible and below which the predator cannot be sustained and
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and goes to extinction. As x is increased further a sec-
ond critical value is reached at which (5) becomes unstable
and a Hopf bifurcation to a limit cycle occurs. This is
Rosenszweig's "paradox of enrichment" (Rosenszweig (1971)).
(It is interesting to note that the bifurcation of a limit
cycle as it occurs here cannot occur for linear response
functions in non-age structure predatory-prey models, but
requires a "hump" in the prey isocline.)

More interestingly, observe what happens if ¥ 1is held
fixed (¥ > 1/10) while the maturation period 7 1is changed
in FIGURE 1. The same sequence of bifurcations occurs as
described above for fixed 7, but in this case for decreasing
7. Stable coexistence is possible only for a finite interval
of T values determined by the region B in FIGURE 1. 1In

particular, small maturation periods 7T vyield instability.

tion to share a stable equilibrium with its resource.

IV. EQUILIBRIA AND STABILITY

In this section a detailed study of the stability and
instability of equilibria will be undertaken for the system
(4). It will be shown that the basic features of the equili-
brium stability diagram in FIGURE 1 are present for the more
general case of system (4). The response functions are

assumed throughout to satisfy the conditions
g,h € cL(r*,R*), g(0) = nco) = 0.

The death rate u, the birth modulus » and the resource
inherent growth rate »r are fixed positive constants.

It is usually the case for equations of type (4) (i.e.
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for predator-prey models which have a self-inhibitory term)
that there is a threshold value Kcr of the natural carrying
capacity K of the prey PR below which the resource cannot
support the exploiting species P and above which coexistence
is possible. This phenomenon is examined in part (a) of this
section for the general system (4). In part (b) the stabili-
ty of positive equilibria is studied as a function of a
"maturation period" introduced below for the population P.
Note that (4) has at least two equilibria (P(t),R(t))
= (PO,RO): namely (0,0) and (0,K). The trivial solution
(0,0) 1is easily seen to be unstable. 1In order for (PO,RO)

to be positive equilibrium the equations
g(Po) = r(Z—Ro/K), bh(RO)B*(u) =1 (6)

must be satisfied.

(a) Consider now the equilibrium (0,%¥) and linearize
(4) around this equilibrium by setting x, =P, ¢, = R-K and
ignoring higher order terms:

x! = =nx

H g bh(K) J B'(a)x](t—a)exp(—ua)da,
0

e ’ s
x, = -Kg (0)x1 re,

The asymptotic stability of this linear integrodifferential
system and hence the local asymptotic stability of the equili-
brium (0,%¥) of (4) is determined by the complex roots =z of
the characteristic equation (z+r)(z+u)(1-bh(K)B*(z+u)) = 0
where B%*(z) 1is the Laplace transform of pg. If this equa-
tion has no roots 2z satisfying Re z = 0 then (0,K) is
locally asymptotically stable whereas if Re z > 0 it is

unstable (Miller (1972), Cushing (1975)). Since »,u > 0 we
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become concerned with the equation
A(z,K) : =1 - bh(K)B*(z+u) = 0. (7)
Define the constant

N = N(K) : = b*(u)h(K)

which biologically is the net reproductive rate (i.e. the

expected number of (female) offspring per female over her
lifespan) under the assumption that the resource population
is held constant at its inherent carrying capacity: R(t) = K.

Since |B*(z+u)| < g*(u) for Re z > 0 one easily gets the

following result.

THEOREM 1. The equilibrium (0,K) of (4) +<is loeally
asymptotically stable if the net reproductive rate N(K) <s

less than one.

The conclusion of this theorem is to be interpreted as
the inability of the population P to survive if its indivi-
duals cannot at least replace themselves when the resource
population is at its inherent carrying capacity.

In particular, ©N(K) < 1 holds when Kk 1is sufficiently
small since #k(0) = 0 and hence ©N(0) = 0. Suppose now
that as X 1is increased from zero it reaches a critical
value Kcr at which the net reproductive rate equals one.
Specifically assume that

there exists a positive real Ky & 0

H1 =

: )
such N(Kc ) 1l and h (Kcr) > 0.

ha

The question is now: what happens for K > Kcr?

If g'(0) > 0 then (4) has a positive equilibrium given
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by

-1
P, =g (r(l—Kcr/K)), R, =K, (8)

for X % K,,. Note that for ¥ = . this equilibrium coin-
cides with the equilibrium (0,k) and thus there occurs a
bifurcation of equilibria as KX increases through Kcr' The

next theorem states that an exchange of stability takes place

between these equilibria.

THEOREM 2. Assume H1l holds. For K 3z Bow the equili-
brium (0,K) <s unstable. If g'(0) > 0 then for K > K.
the positive equilibrium (8) is locally asymptotically stable.

The conclusion to be drawn from these two theorems is that
for populations whose growth dynamics are, together with that
of their resource populations, described by the general sys-
tem (4) there is a threshold phenomenon with respect to the
survival of the population and the magnitide of the inherent
carrying capacity of the resource population. As was seen in
the example of section II it is possible that the stable co-
existence of the population with its resource can be lost
upon further increase of X (i.e. enrichment of the resource)
and a second bifurcation to a limit cycle can occur. This
phenomenon will not be studied here. 1Instead the stability
and instability of a positive equilibrium will now be studied
as it depends on the maturation function Bg(a).

(b) Let Bo(a) be a maturation function which satisfies
the conditions in (3) and which has been chosen in such a way
that age a =1 1is, by some suitable definition, the "matura-
tion period". For example g(a) might have a global maximum

at a = 1 such as is the case with the frequently used func-
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(nn+1/n!)anexp(—na), 7= Ly Bissew . Or one could

1
require that J g(a)da
0

tions

[ 8(a)da . 1In any case, maturation
1

functions defined by

i) a
B(a) = 7 Bo(f)’ T > 0 (9)

whose maturation period is a = T will be considered here.

Another way to define "maturation period" would be as the
first moment of g. 1In this case one could take a normalized
function eo(a) with first moment equal to one (in place of
sto(a)da = 1) and consider maturation functions g(a) =
(?/TLz)BO(a/TL) , L:i = reo(a)da , which then has first
moment equal to T. OnlyOthe simpler case (9) will be consi-
dered here, although the analysis below can be carried out
for this case as well.

Assume that

there exists a positive solution (PO,RO)

H2 = (Pg,Rg) of the equations bh(Ro) = 1,
g(Py) = r(1-Ry/K) for which h'(Rg) > 0,
g'(Pg) 3 O
This assumption means that a positive equilibrium exists (as
a solution of (6)) when T = 0. Then it is easy to see that
(6) with g*(u) = BB(UT) has a positive solution and hence
(4) has a positive equilibrium (PO’RO) = (PO(T),RO(T)) for
small T > 0 which is continuously differentiable in T and
satisfies (PO(D),RO(O)) = (Pg,Rg) . The next theorem deals
with the instability of this equilibrium for small T.

For technical reasons Bo(a) is also assumed to have a
Laplace transform which is analytic and nonzero for Re z = -§

for some constant ¢ > 0.
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THEOREM 3. Assume H2 and that Ba) <s given by (9).
Then for small T > 0 the positive equilibrium (PO(T),RO(T))

of (4) is unstable.

Consider now the case of large maturation periods 7. As
T +» +o, g*(yu) = BE(UT) + 0. Thus from the second equation
in (6) either RO(T) > 0 fails to exist for large T or
R, »+o as T » +», In the latter case, however, a positive
solution P of the first equation in (6) fails to exist for

0
large T.

THEOREM 4. If g(a) tis given by (9) then the system (4)

has no positive equilibrium for large T.

The four theorems above establish for the general system
(4) the essential features of FIGURE 1 with regard to the
stability properties of equilibria and the parameters X and

r.

V. PROOFS
In this section proofs of Theorems 2 and 3 are given.

By H1l equation (7) has root 3z = 0 when ¥ = ¥ i.e.

’
er
©

) = bh(k ) I agl(a)exp(-yalda
er 0 £
> 0, the implicit function theorem implies that (7) has a

A(O’Kcr) = 0. Since Az(O’Kcr

roots 2z = z(K). =z2(K__) =0 for K close to X . Now
or exr

= o ' . P 0 _

AK(O’Kcr) = -bh (Kcr)/Az(O,Kar) < 0 and an implicit differ
ey : F i

entiation yields =z (Kcr) = _AK(O’Kcr)/Az(O’Kcr) > 0 so that
Re z(K) > 0 for K 3 Kcr. This proves the first conclusion
of Theorem 2.

The final conclusion of Theorem 2 will follow if the

characteristic equation associated with a positive equilibrium
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(PO’RO) of system (4), which turns out to be the equation

rR
- 0 st(z+u)
D(z,K): = (2 + —% )(z + ) (1- e,
(10)
+ ubB*(u)PoROh'(Ro)g'(Po) = 0,
has no roots satisfying FRe z = 0 when K 2 K, .- This will

be shown to be true by a contradiction argument.

Suppose that D(z ,K ) =0 for Re z =0 and K_ > K
n n n n

er’

B, # K, p Tt is easy to see from the definition of D that
since D(zn,Kn) = 0 the sequence =z must be bounded and

hence, by extracting a subsequence if necessary, 3z, > Z;,-

Clearly Re 3z, 2 0. From the continuity of D(z,k) and the
fact that PO > 0 as K ~» Ker it follows that 3*(zo+u)

= g*(u) (see (10)). But (3) then implies that 3, = p and

we have sequences zn,Kn such that

B, 0, Re 2z, 2 0, Kn > Kcr’ Kn > ch, D(zn’Kn) = 0.(11)

The proof will be completed by showing that (l1) contradicts
the implicit function theorem.

Since PO is a function of K, write PU = PO(K). Then

PO(Kcr) = (0. From D(O’Kcr) = 0 and

o

D 0K ) = ru[O agla)e "%da/s*(u) > 0,

DK(O’Kcr) = “bB*(U)Pé(Kcr)Kcrh'(Kcr)g'(O)

one finds by the implicit function theorem that (10) has a

unigue root =z = z(K), Z(Kcr) - 0, differentiable in X
near Kcr’ An implicit differentiation yields z'(Kcr) =

- 3 ' = - L 4
DK(O’Kcr)/Dz(O’Kcr) and hence sign 2 (Kcr) sign PU(Kcr)'

From (8) Pé(Kcr) = r/Kcrg’(O) > 0. Thus, sign z'(Kcr) < 0
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and Re 3(K) < 0 for K z K, e Since this is the only root

near 2z =0, K = Kcr a contradiction to (11) results. This
completes the proof of Theorem 2.
To prove Theorem 3, first note that g*(z) = 35(zT) and

that the characteristic equation (10) can be written

PR (T) 85(3T+UT)
(z + “7—) (Z+u)(1— W} +C(T) = 0 (12)
where C(T): = pbsg(uT)Pa(T)Ro(T)h’(RO(T))g'(PO(T)). Let
g = ;/Tl/g and rewrite this equation as
143
rT ()
Qlc,T): = g(g + T tx + 1 Pmcg, ) I
e;(;T +uT)
(13)
B2(uT) - gA(cr?/% 4+ u1)
Hig,T)e = 02/3 g 373
T eg(uT)sg(;T + uT)

LEMMA 1. H(g,T) defined by (13) is continuous in 5T
and continuously differentiable in ¢ for Re ¢ > 0 for

small |T|.

Proof. Write H(g,T) = G(c,T)/Bg(uT)85(§T2/5+ uT) where

Gz T)e = [B;(uT) - BE(CT2/3+ uT)]/ch/g. Clearly the assump-
tions made on 65(2) in section IV imply that the expression
J/BS(uT)BS(uT2/3+ uT) 1is continuous in ¢,T and continuously

differentiable in ¢ for Re r > 0 and for small ]T

Consider

2/3)

G(g,T) = I BO(a)(Z'e”p(gng )exp(-uTa)da .  (14)
0 tr

Because the term in parentheses is bounded and continuous in
t,T and continuously differentiable (in fact analytic) in
¢ for Re ;¢ > 0, small |T| and each g > 0, standard

theorems concerning functions defined by integrals imply the
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result.
LEMMA 2. H(g,0) =m: = J aBO(a)da for Re r > O.
0

Proof. By (3), 83(0) - 1. This lemma follows from the
dominated convergence theorem together with the easily seen
fact that the term in parentheses under the integral in (14)

approaches a as T - 0 for any Re t > 0.
LEMMA 3. HC(C,O) =0 for Re ¢ > 0.

Proof. Differentiation of (13) with respect to ¢ yields

(d/dz)85(5T2/3+ uT)

1 1
H (g,T) = - = H(g,T) - = r
‘ d E [s;(;TJ/3+ ur) 12
Now (d/dz)sg(cT2/3+uT)|T=0 = - m. Thus by Lemma 2, HE(Q,O)
- _.m_ 1, =
- % 3 (-m) 0.

By means of these lemmas, Theorem 3 will be established by
showing that the characteristic equation (12) has roots in
the right half plane for |[T| small.

By Lemma 1, Q(¢,T) is continuous in ¢,T and continuous-
ly differentiable in ¢, Re ¢ >0 for small |7|. Further-
more, by Lemma 2 follows Q(g,0) = csm + C(0) where c(0)
= ungRgh'(Rg)g'(Pg) > 0. Thus the equation «(z,0) = 0 has

roots

g, * ooy mi/3c1 ¢ 131722

lying in the right half plane Re ¢ > 0.

To solve Q(z,T) =0 near g = co, 7 = ( oOne can use an
early form of the implicit function theorem due to Goursat
(1903) which requires, for the existence of a continuous root

g = ¢(T), 5(0) =Ty the continuity of o in ¢,T, the
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continuous differentiability of Q@ only in ¢ (not in 7T)
and of course that Q;(CU’O) # 0. Since H2 and Lemma 1 guar-
antee these smoothness requirements, only the last inequality
needs verification. From Lemma 3 one finds that QC(CO’O) =
Sggm # 0

Theorem 3 is now proved, for it has been shown that the
characteristic equation (12) has roots of the form =z = ¢(T)/
Tl/s, ¢(T) continuous and ¢z(0) = Ty which lie in the

right half plane Re ¢ > 0 for |T| small.

VI. CONCLUSIONS
The model equations (4) offer a possible description of
the growth dynamics of a population P and its resource R.
It is assumed that the population has a constant death rate,
but an age-specific fecundity which depends in a general way
on the total population size of the resource F£F. For simpli-
city, it is also assumed here that members of the population
do not significantly interfere with each other's search for
the resource FR. The resource population grows logistically
in the absence of the population P, but in the presence
of P has a general growth rate response function g4(P).
Under very weak restrictions on the response functions
h,g two basic conclusions (which are examplified in FIGURE
1) are drawn concerning the possible coexistence of P and
R. (Here coexistence is meant in the sense of the existence
of a stable positive equilibrium of (4).) First, there is
a threshold value of R's inherent carrying capacity below
which P cannot survive and (slightly) above which coexis-
tence occurs. This is a typical phenomenon for predator-prey

models.
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Secondly, and more interestingly and surprisingly, it is
found that with regard to maturation periods coexistence is
impossible for short maturation periods. This is in marked
contrast to the usual tenet found frequently in the litera-
ture that an increase of a maturation period (or "generation
time") will result in a destabilization and even oscillations
in population sizes. Here the situation is exactly reversed:
destabilization of the positive equilibrium occurs as the
population's maturation period is decreased. It is also
shown above that coexistence is impossible if the maturation
period is too long, but this is because of the nonexistence
of a positive equilibrium in this case. The phenomenon of
destabilization of an equilibrium (and presumably the onset
of oscillations and possibly eventually chaos, although these
possibilities are not studied here) occurs for decreasing,
not for increasing maturation periods in the general model

(4) studied here.
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