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We consider the linear system of equations
t
o(t) =f() + f K(t,s)v(s)ds, t>=a (L)

and its perturbation

Mg:ﬂo+fK@gwgﬁ+f}@&wmw, t>a  (P)

Here f(¢) is a continuous n-vector valued function of ¢t > a >,
(where 2, is a fixed point), p(t,s, 2) is an n-vector valued function of
ts,x)eflt =5 =1 X {{z| <bb>0}, and K(t,s) is an n X n matrix
defined for ¢ >> s > ¢, which is locally in L' in (¢,5) for t >> s > ¢, and

satisfies the three conditions:

T
lim [ | K(T -+ h,s) — K(T, )| ds = 0,

t
sup | K(t, 5)| ds < +o0, (H1)

ast<TVva
. t+h
lim [ K(+ By 9) ds =0

uniformly for a <<t < T forall T>a>¢,.

In particular K(z, s) may be assumed continuous in ¢ and 5. The functions
o(t) and u(t) are of course unknown n-vector valued functions. The symbol
| - | will denote any vector norm or any # X n matrix norm depending on
whether it is applied to a vector or matrix, respectively. If NV is a normed
space of functions f defined for ¢ >> a with norm | f|y , then (P) (or (L)) is
called stable on N for a fixed a > t, if for each ¢ > 0 there corresponds a
8 = 8(e, @) > 0 such that | f]y <8, fe N, implies u(t) exists and satisfies
325
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326 J. M. CUSHING

[u(t)] < e for all > a. If N and 8 are independent of a > ¢,, then (P)
(or (L)) is uniformly stable on N. If (P) (or (L)) is stable on N for a > ¢,
and in addition there exists a 8 = §(a) > 0 such that to each ¢ > 0 there
corresponds a T = T(e,f) >> @ such that |u(?)] <e for all ¢ > T and
| flx <8, then (P) (or (L)) is called asymptotically stable on N for a > i, .
If T can be chosen independently of fe N, | f|y < 8, then (P) (or (L)) is
called equi-asymptotically stable on N for a > ¢, .

We are interested in the following question: under what conditions on
the perturbation term p is it true that a given stability property of system (L)
is also possessed by (P)? In [1-3], Bownds and the author considered this
question for various types of perturbations and stability properties. Other
closely related results may be found in [4, 5] (for further references see
those listed in [1]). In [1-3] it is assumed that p is such that P(¢; £) =
[2 p(t, s, &(s)) ds € CY{a, +00) for all vector functions &(s)e Cob) =
{£ € C%a, +0): | &1t)| < b for all ¢t > a} and

(%P(i; | <e®s&a)®, forallt>a and geCl), (1)

where $(¢; a)(t) = sup,<e; | €(5)|. For example, p may be such that
[p(t, 2, 2)| < g(t) | 2] and | pyt, s, 2)] < gut,s)| 2] for t >s>a and
z € R" = Euclidean n-space where g(?) = g,(¢) + ff, go(t, s) ds. It is then
assumed that g(t) is one of three types (or a linear combination of three
types): either (a) f:w g(t) dt < 4-00, (b) g(t)— 0ast— 400, or (c) g(t) = g,
for a sufficiently small constant g, . Theorem 1 in [I] states, amongst other
things, that for these kinds of perturbations (P) preserves the stability of (L)
on any space N for a given a > ¢, provided a minimal amount of stability
of (L) is present: namely, provided (i) the linear system (L) is uniformly
stable on the space of constants R, = {f: f(¢) = constant € R*} and
(i) stable on Cya) = {fe C'a, +0): | fly = | f(@)] + | f'Io < +o0,
[f" lo = supsq | f/(2)|} for a = 1, . In the special case that (L) and (P) are
integrated forms of a linear system of ordinary differential equations and its
perturbation, respectively (that is, K and p are independent of the variable ),
uniform stability of (L) on R, coincides with the usual notion of uniform
stability for differential systems [6] and stability on C,(a) coincides with
uniform asymptotic stability for differential systems (see Remark (1) in [1]).
Thus, in this special case, the above cited result reduces to several well,
known results for differential systems. For differential systems, however,
under the assumption of uniform asymptotic stability one can strengthen the
result by allowing g() to satisfy a weaker condition than either (a) or (b)
above. Stauss and Yorke [7] have shown that asymptotic stability is preserved
if g(t) only satisfies the weaker condition IZH gds—0 as t - 4 00. More
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recently, Shanholdt [11] has considered such perturbations for functional
differential systems. This motivates our attempt to obtain the conclusions
found in [1] under weaker assumptions of this type. (This type of condition
on g can also be found in the work of Massera and Schaffer [8] and Coppel [6].)
The example in Remark 5 below shows, however, that this is not in general
possible. What is necessary is a little more stability from (L) in the sense
that assumption (ii) above must be strenghtened slightly. Nonetheless we
will still obtain a generalization of the above mentioned result of Strauss
and Yorke because the stronger hypothesis we substitute for (i) (namely (i1)
in Theorem 1 below with p = 1) is still equivalent to uniform asymptotic
stability in the special case of differential systems.

Before stating our results it is necessary to state some preliminaries and
introduce some notation. The assumptions stated above guarantee the
existence for all ¢ == a of a unique solution v(¢) of (L) [9] (we consider only
continuous solutions); further, the existence of the (unique) fundamental
matrix satisfying the matrix equation

1
U(t,s):1+f K(t,r)U(r,s)dr, t=s>t,,

is assured. Let LBV [a, + o) denote those functions fe C%a, +00) which
are of bounded variation on every interval [a, t], # >> a. By direct verification
it is easy to see that for f € LBV [a, + o) the unique solution of (L) is given
by the ‘‘variation of constants” formula

o(t) = Ult, a) f(a) + ft U(t, s) df (s), t = a. (VC)

((VC) is identical to the standard variation of constants formula when (L)
reduces to a differential system.)
We assume that the perturbation term p in (P) satisfies

(H2) (¢, s, 2) is sufficiently smooth for the local existence and con-
tinuability of solutions of (P);

(H3) p*(; &) = f; p(t, s, £(s)) dse LBV[a, 4 ) for every §¢e Cb)
and t > a.

Given (H1), hypothesis (H2) is satisfied for example if p is continuous in
(2, 5, %). For weaker conditions under which (H2) holds see [9]. Hypoth-
esis (H3) is satisfied for example if dp*(¢; £)/dt is continuous for all £ e C%(b).
Problem (P) can then be seen (using (VC)) to be equivalent to the integral
equation

u(t) = o(t) + f: U, s) dp*(s; u(s)), 1> a. (P*)
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For any integer p > 1 let || f]ls,, = | f(a)| + supsso(f;” | ' [7 ds)*/? and
let BM, , denote the normed space of functions fe& C'a, +o0) for which
1 flla,» < +00. We also allow p = +oc0 and mean by this that || f|, , =
| f(@)] + supss, | f/(2)]. Without loss in generality we assume K(Z,s) =
p(t,s,2) =0forall t << ¢ and all 5, 2.

Our main results are contained in the following two theorems.

TueoreMm 1. Suppose H1, H2 and H3 are satisfied and that in addition
the perturbation term p satisfies, for a given a = 1, , the condition

(H4) | p*(t + &5 &) — p*(5; &) < hg(t) s(§; a)(¥) for all t > a, suffi-
ciently small h =2 0, and £ CUb) where g(t) > 0 is a function bounded on
finite intervals contained in [a, 4 o) such that

. t+1 1/p
0 <g,= limsup (L 8p(s) dS) <+

Jor some integer p, 1 < p << H-c0.

Suppose further that (L) is (i) uniformly stable on R, and (ii) stable on
BM, , for thisa > t,.

(2) Then there exists a constant g, > 0 for which g, < g, implies that
if (L) is stable on a normed space N for this a == t, , then so is (P).

(b) If H2, H3, H4 and (ii) hold for all a > t, then (P) is uniformly
stable on any space N on which (L) is uniformly stable.

The next theorem concerns the asymptotic relationship between # and v
and has as a corollary the preservation of asymptotic stability.

THEOREM 2. Assume in addition to the hypotheses of Theorem 1 with
gy = O that (L) has the property

. T
Jim f | U(t, 5)| ds =0, )

for all T > a. There exists a constant 8 = 8(a) > O such that if |f|y < 8
then | u(t) — v(t)] > 0 as t > 4 0.

COROLLARY. Suppose in addition to the assumptions of Theorem 1 with
&, = 0 that the Linear system (L) is asymptotically stable on R, . Then (P) is
(equi-)asymptotically stable for a = t, on any space N on which (L) is (equi-)-
asymptotically stable for a > t, .

This corollary follows immediately from Theorem 2 and the Lemma,
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part (b), below since the assumption of asymptotic stability of (L) on R,
implies (2).

Remark 1. Hypothesis (H4) is satisfied by any perturbation term p
satisfying (1) for suitable g(f). Moreover the condition on g(z) in (H4) is
fulfilled if (_f;:c0 g7 ds)t/? << 400 or if g(t) — 0 as t — 4-co for in either case
(ﬂ+1 g ds)t/? — 0 as t — + oo and hence g, = 0. (H4) is also fulfilled if
g(t) = constant = g, ; it is this case which can be used to deal with perturba-
tions p(2, s, z) which are higher order in 2 (by taking & > 0 small if necessary)
as would naturally arise under the usual procedure of linearization. Conse-
quently all perturbations considered in [1] fulfill (H4) for p = 1. Theorems 1
and 2 for p == 1 require, however, more stability of (L) than the theorems
in [1]; specifically assumption (ii) is stronger than the assumption of stability
of (L) on Cy(a) since C(a) is a proper subspace of BM,, , (also see Remark 4).

Remark 2. Intervals of unit length were used above purely for conve-
nience in the definition of the spaces BM,, , and in (H4). Intervals of any
fixed, finite length ¢ > 0 could be used (in which case the integral | :H grds
would be replaced by ¢! ﬁﬂ gr ds).

Remark 3. If K and p are continuous and independent of ¢, then the
above Corollary with p = 1 reduces to a theorem of Strauss and Yorke [7,
Theorem 3.2]. This is because it is true that stability on BM, ; in this case
can be seen to be equivalent to uniform asymptotic stability of (L). (See
the Lemma, part (c), below and [1, Remark 1].)

Remark 4. Unlike the case of differential equations (as pointed out in
Remark 3) stability of (L) on C,(a) is not equivalent to stability on BM, , ;
although, clearly stability on BM, , implies stability on the subspace C,(a).
An illustration of this is furnished by the following example. Take a = ¢, = 0
and n =1. We will construct an example for which | U(¢,s)] <1 for
0<s<t, f(t, | Ut, s)| ds << =2/6, t =0, and ff, u(t, 5) f'(s) ds is unbounded
in ¢ for a specific f€ BM,, . Thus, (L) will be uniformly stable on R, and
stable on Cy(0) (see the Lemma, parts (a) and (c), below) but unstable on
BM, . For simplicity we will use functions with step discontinuities
although it will be clear conceptionally how the example could be “smoothed”
to make K and f’ continuous. Define a function U(%, s) for t = s == 0 such
that for each positive integer n == 1

1 forse ) [24, 2 4 2],
U2n 4 n2s) = =1
0 elsewhere,
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Then for all n > 1
2n+n—2 n
[ 1ven +wrlas =3 e <.
0 i=1

Define U(z,s) for t % 2n + n~2 and 0 < s < ¢ such that 0 << U(t,s) < 1,
Ut,t) =1 and ff) Uz, 5) ds < #*[6 and such that U is (at least piecewise)
continuous. Let f(t) be defined for ¢ > 0 such that f(0) = 0 and

N U forte[24,2{ + 1%,
7= ;0 elsewhere.

Then for all z >0 we have [;" | f'| ds < (j/2)~ where j is the closest
even integer to f. Thus, f:+1 |f"|ds—0 as t— 400 so that fe BM,,.
However, from (VC) the solution of (L) for this f (the kernel K can be
constructed from U by making U smooth enough so that dU(t,s)/ds is
continuous and noting that this derivative is the resolvent R of (L) the
equation for which can be solved for continuous K when R is known) is
given by o(t) = f(t, Uz, s) f'(s) ds and hence (L) is unstable since this v is
unbounded:

v(2n + n-?) = f2n+n _2U(2n +n25)f'(s)ds = i i1
0

=1
Note that f¢ C(0) since [3 |f' |ds =35 i1

Remark 5. We can also give an example to show that hypothesis (ii)
in Theorems 1 and 2 above cannot be replaced by the assumption of stability
on C,(a) as is done in [1]. Let U, K and f all be defined as above in Remark 4.
Note that U(#, s} can be constructed such that U(¢, 0) = 0 for ¢z >> 2. Consider
the scalar equation (L) and its perturbation (P) with p(z, s, 2) = f'(s) 2. Then
p satisfies (H4) with ¢ = f' and p =1 (hence, g, = 0). By the way U(t, s)
was constructed (L) is uniformly stable on R,, and stable on C,(0) (see Lemma,
parts (a) and (c), below) and, consequently, all the hypotheses of Theorem 1
are fulfilled with the space Cy(0) replacing BM,, , in (ii). We will to show,
however, that the perturbed system (P) has an unbounded solution for all
f = ce RL By (VC) the solution of (P) in this example is given by

¢
u(t) = U, 0) ¢ + [ UG, 5)f(s) u(s) ds.
)
Let W(t, s) be the fundamental matrix for this linear equation:

Wt s) =1+ f Ut ) f ) W, 5) dr. 3)
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Then

u(t) = W(t,0)c + f "W, ) Us, 0) ds.

Thus, for ¢t > 2, u(t) = W(t, O)c. Since U and f’ are nonnegative it is clear
from (3) that W(z, 0) = 0 for all # > 0. Hence, from (3) we have W(t,0) > 1

and in turn

W, 0) =1+ fo Ut 9) £1(5) ds.

But the latter integral is unbounded in # as constructed in Remark 4. Thus,
u(t) = W(t, 0)c for ¢t >> 2 is unbounded.

This example demonstrates that for integral equations the results of [1]
are not valid for the larger class of perturbations described in (H4) without
some strenghtening of the assumptions on (L) (as provided by (ii)).

To prove the above theorems we need the following lemma which describes
the connection between U and stability on various spaces.

Lemma.  Assume (H1).
(a) (L) is uniformly stable on R, if and only if there exists a constant
m =0 such that | U(t,s)) <m forallt 25 >=1,.
(b) (L) is asymptotically (or equi-asymptotically) stable on R, for a
given a =ty if and only if | U(¢, a)l — 0 as t — + 0.
(c) (L) is stable on C\(a) for a given a = t, if and only if there exists
a constant m = m(a) > 0 such that for all t > a

1
f LU, ) ds <m, | Ut a) <m.

(d) Suppose (L) is uniformly stable on R,,. Then (L) is stable on BM,, ,
Jor a given a > t, if and only if there exists a constant m = m{a) > O such
that for allt > aand 1[p + 1/g =1

ft (J-s+1[ Ut, r) dr)l/'lds < m, if  p#1 @)

a—1 8

ar

¢
f max | U(t, r)| ds < m, if p=+1

_q s<r<stl

Proof. Parts (a), (b) and (c) are proved in [1]. We need only prove (d).
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We take p # 1, the case p = 1 being similar. First, suppose (4) holds.
From (VC) the unique solution of (L) is given by

o(t) = U(t, a) f(a) -+ f: U, r)f'(r)dr, t>a.

Let m(a) be the larger of the constants in (a) (by assumption (L) is uniformly
stable on R,) and (4). Then for all t > a

[0 < ma) L F@] + [ 1V (70 dr
—m(a) [f@) + [ [ 10 £l dsar
i 8+1 A
=m(@) [f@|+[ [ 106170)dr ds
a r t+1 at
=[S rvennisendsa =[] 1ve 56 dsdr
<@ flas+ [ [ 710G f O dr s
<m@lflos+ [ ([ 10@nE)" ([ 1760 ar) " o
Thus, | ()| < m(@) | fla.p + m(@) |fls.p = 2m(@)1] {11, Which implies the
stability of (L) on BM,, , .
Conversely, suppose (L) is stable on BM, ,. We prove (4) holds in the

scalar case # = 1. From this, the general case n > 1 can be proved following
the techniques used in [9] or [1]. Define the linear functional

t r
L?)‘}’ = f U, r) J. . y(s, r) ds dr,
a —

for arbitrary, but fixed # >> a. We first establish that L{" is a bounded linear
functional (uniformly in ¢ >> a) on the normed space .S of function y = (s, )
for which y =0, (s,7) ¢ [a, ] X [s, s + 1], ¥ is continuous in s € [a, #] and
inrefs,s+ 1], and ||y lls,, = supgsal[s™ | (s, 7)|? dr)/? < + 0. Now

J~t+1
t

r P t+1 o1
[ s, r)ds‘ ar <[ [ Ipts ) dsar
r—1 t r—1
t+1 p8+1
< f f | y(s, 7)|P ds dr (5)
t—-1%vs

s+1
<2-sup j | y(s, 7)\? dr

sza vs
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and, hence, for all t > a

0

Now by the assumed stability of (L) on BM, , we see that the linear func-
tionals _[Z U(t,r) f'(r) dr are bounded uniformly in ¢ > a with respect to
the norm || f|l,., - It follows that the linear functionals defined by

1/
ar)" <2 ylss. (6)

r »
f y(s, ) ds
r—1

ag=[ v pe)an

are bounded (uniformly in ¢ > a) with respect to the norm ||4f3 ,
SUPc>a(f L | (r)[? dr)t/?. Now (6) says that

1 r 0
s, 7)ds
1 fr—l Y( ) a,»
and inasmuch as L{Vy = A([;_, y(s,7) ds) we see that L{" is bounded
(uniformly in ¢ >> a) on S with respect to the norm | - iis , .
Next we write L, = LY + L{¥ -+ L{® where

< 2Y% |y lls.

i 8+1
Ly = f B [ vy, dras,

L2y — f f U(t, 7) y(s, 7) dr ds,

LPy = f J' UG, 7) (s, r) ds dr.

We wish to show that L, , like LV, is bounded (uniformly in ¢ > a) as a
functional on S. This will be done by showing L}» and L{® have this property.
Using the assumption of uniform stability on R, and the constant m from
part (a) of the Lemma, we obtain

28y <[ 1 v dsdr
<[ v v drds

< [T e ) s,
<mlyls.:

409/50/2-8
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Also, another use of Hélder’s inequality implies

Ly <[ [T1uen e dras

a ps+l
<[ [ 10197 dr ds
a—1s

<m|yls,»-

Thus, L, is bounded (uniformly in £ > a) on S.
For each s € [a, t] there exists a sequence of functions y,(s, ) e L?[s, s + 1]
with respect to 7 such that

USH Vals, 7)? dr)llp =1,
1/¢

L U, 7y yals, ) dr — ( f U e ar) ",

as n— o0 [10, p. 285]. (That v, is continuous in s € [a, t] is clear from
their construction in [10].) Since C%s, s + 1] is dense in L?[s, s 4 1] we
may assume y, is continuous in 7 € [s, s + 1]. A straightforward application
of Lebesgue’s dominated convergence theorem yields (since the sequence
f:+1 U(t, 7) ynu(s,7) dr is by Holder’s inequality bounded uniformly by
([ | yuls, r)|? dr)/P — m) the limit

t s+1 1/q
q
Liyy— f B ( f | Ut iedr) " ds,
as n — o0 for each fixed ¢ > a. Thus, the norm of L, has the lower bound

L] > f: (/ " U, r)e dr)l/q as.

-1 ¥s

Inasmuch as the opposite inequality is obvious (from Hélder's inequality)
we find that

(L] = f t_l ( f " U, e dr)l/q ds.

But we have shown above that L, is bounded uniformly in ¢ > a; ie.,
| L; | < m(a) for some constant m(a) > 0 and all z > a. This completes the
proof of the lemma.

Proof of Theorem 1. (a) Assume without loss in generality that ¢, > 0.
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By assumption the solution of (P) can be extended as a solution so long as
it remains bounded by b > 0. Let m = m(a) be the larger of the two
constants in parts (a) and (d) of the Lemma. Set g, = 1/4m and assume
8, <8 . Then 1 — 2gym > 0. Let €« > 0 be given (e < 4). By assumption
(L) is stable on a space IV for the given a > t; ; thus, there exists a constant
8, = 8,(¢, @) = 0 such that | f |y << §; implies

21y < (1 — 2g,m)3. (7

Referring to (H4) we may pick a* =a*(e) > a4 1 so large that for
t>=a*—1

(Jjﬂ £%(s) ds)l/p <2g,.

The first step in our argument is to prove that for | f |, sufficiently small
the solution u(t) of (P) exists on the interval [a, a*]. Specifically, suppose
| fly << 8, = 8,(¢, @) where 8, is so small that

| vy < 3¢ exp(—mka™)

where k is a constant such that | g(t)] < & for t € [a, a*] (cf. (H4)). Then
from (P*) and (H4) we have for f > a

W01 < Lola+ [ 1T 91506 s ) 9 s

S]v]o—kmkfts(u;a)(s)ds.

Thus, replacing ¢ with s and taking the supremum of both sides from a to ¢
we obtain

s(u; a) (1) < v ly + mk Lt $(u; a) (s) ds,

from which it follows by the well known Gronwall lemma that
s(u; a)(t) < | v |y exp{mk(t — a))
and consequently (since a = #, > 0)
| u(t)] < s a)(t) < | |y exp(mht) < be < < <b, (®)

for as long as u(t) exists on [a, a*]. The continuability property which
follows from the assumptions (H1) and (H2) implies that #(t) exists on
[a, a*]. We have in fact shown | u(t)| < i on [a, a*] for | f|y < 8, . It also
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follows that #(#) exists as a solution of (P) locally beyond a*; and, by con-
tinuity, | #(t)| < € locally beyond a*.

To finish the argument we will show, by contradiction, that for small
| f |v the solution u(t) actually exists and satisfies | #(t)| < ¢ for all £ > a.
Suppose this is not the case and let 7' > a* be the first point at which
| #(T)| =e. Then |u(2)] and, hence, s(u; a)(¢) are both <(e on [a, T]. For
tea*, T] we have

u(t) = o(t) + fa* UL(t, s) dp*(s, u(s)) ds + f i U, s) dp*(s, u(s)) ds. )

Let 8, be as above. We can, without loss of generality, assume that the
constant 8, = 8y(¢, @) above is chosen (smaller, if necessary) so that
| fIn < 8, implies, in addition to (8),

lu(t)] < (1 — 2g,m)(3mka™), (10)

for t € [a, a*]. Now let § = §(¢, a) = min(8, , 8,) > 0 and suppose | f |y < 8.
From (9) we obtain the estimate, using (7), (8) and (9),

)] < o(— 2gm)3 +m [ g(0)s(ui @) () ds
+] t | LU, $)) 8(s) s(u; a¥) (5) dr ds

a*’s—-1

< (1 — 2g,m)[3 + mke(1 — 2g,m) (3mka*)—* (a* — a)

n ft fr+1 | ULt 5)| g(s) s(u; a) (s) ds dr

a*—1"r
t r41 i/q r+1 1/
< 2¢(1 — 2g,m)[3 + € | Ut s)|7ds) - g(sy?rds)  dr,
<21 - 2emitef (] ) (] etre
for t € [a*, T). By the manner in which ¢* was chosen we have, continuing
with the inequalities, '

Lu(e)] < 2e(1 — 2g,m)(3 + 2eggm = 2¢(1 + g,m)/3
and, hence since g, << g, = 1/4m, we find that

[ ()] < 2¢(1 + 1/4)/3 = 5¢/6,

for ¢ € [a*, T). Thus, we have arrived at the contradiction e = | #(T)] < 5¢/6.
This proves part (a) of Theorem 1.

(b) If hypothesis (ii) holds for ail @ >> ¢, then, since (i) is true, we
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ft ( f " o, e dr)”q ds < | t ( f U e dr)l/q ds < m(t,),

P 4.1
-1 ig—k

for all t 2> a = t,. Consequently in the event that (L) is uniformly stable
on a space N the constants 8, and §, and hence & in the preceding proof of
part (a) are independent of a > 1, ; i.e., (P) is uniformly stable on V.

Proof of Theorem 2. From Theorem | we know that both #(t) and u(z)
are bounded for [f|y <(8. Let ¢ >0 be arbitrary but fixed. Choose
T = T(€) > a so large that for t = T(e)

(f:ﬂ gsy? ds)lw < efkym,

where |u(t)] <k, for t>a. This is possibie since g, = 0. Now for
t = T(e)

) — o)) = | [ V6,9 dp*(s 60 |

<k [ 1069186 ds + by [ 1 U 9] g05) ds

T

=~ L L {‘ FTT6s N\ T
%Klnj | Ui, §)|a
a

where & > | g(t)| for ¢ € [a, T] (cf. (H4)). Thus
T o ar4l
lute) ~ o) < ik [ VUG ds 4k [ [ 00 9] g6) dodr
T t r+1 1/q
< Rk f | UG, 5)| ds + By L_l ( f | UGt s)|ads) (¢/kym) dr
T
< kgt f | Utt, s)| ds —+ e,
for t = T(e). Letting # — -+ 00 we obtain

lim sup | #(t) — o(t)| < e.
t—>+40

Whereas € > 0 was arbitrary we conclude that lim, ., | #(f) — ()] = 0.

In conclusion we briefly point out that in the special case that
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(2, 5, 2) = K(¢, 5) q(s, 2), a case treated frequently in the literature, it is
possible to obtain other results (independent from those obtainable through

Theorems 1 and 2) in exactly the same manner as above except that the
starting point is the representation formula

tt) = o) — [ R(t,9) g6 )

obtained using the resolvent of (L) instead of (P*) obtained from the variation
of constants formula (VC) for (L). In this approach R replaces U in the

above arguments and we must make the hypothesis

11LS a6 W

(H5) (L) has a resolvent R(t,s) which is locally in L® in (z,s) for
t=s2>1,.
With the obvious changes in the necessary spaces and the obvious modifica-
tions of the Lemma.(with R in place of U) we can prove, exactly as above,
the following theorem.

THEOREM 3. Suppose (H1), (H2) and (HS) with p(t, s, ) = K{(¢, s) q(s, 2).
Assume q satisfies

l4(s, 2)l < () | =1,

for all s > a and all | 2| < b, 2 € R, where g(s) is as in (H4) for some p.
Assume R satisfies the two conditions

() e555uPresa | Rt S) <y, 225 >0,
Gi) [y (27 Rt )7 drV/eds < myfa), t > a,

r o

for 1/p + 1)q = 1. Then the conclusions (a) and (b) of
further g, = 0 and

heorem 1 hold. If

for all T > a then the conclusion of Theorem 2 holds.

With a slight modification of the statement and proof of this theorem the
(rather strong) assumption (i) can be dropped. Toward this end suppose

gp* =sup (f:ﬂ g(s)? ds)llp < +o0 (11)

t>a
and that (L) is stable on a space N for @ > ¢, . Then for a given ¢ > 0 we
know |fiy <8 = 8(e, a) implies | v |y <X min(e/2my(a), /2) and hence

i u(a)] = | v(a)] < e. We know then that u(¢) exists and satisfies | 4(Z)] << e
| wit)]
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locally beyond a. Let T > a be the first point at which | «(T)| = e. For
tefa, T] and | f |y << 8 we have

O] < 1o+ [ 1R g0) [ 6)] 0

<e2+ | t (] "R, s)lqu)llq ( LM 2(s)? ds)llp dr

a-1 vr

< €2 + emg, .

Thus, if g, << 1/2m, we have that |u(t)| <e, t€[a, T'], and the contra-
diction € = | %(T")| < e. Thus under this assumption, T cannot exist and
lu(t) <eforallt =aif |fly < 6.

TurEOREM 4.  Suppose (H1), (H2) and (HS) with p(t, s, 2) = K(t, 5) ¢(s, 2)
where | q(s, 2)| < g(s) | 2z | for all s > aand | z| < b, z € R with g as in (H4).
Suppose R satisfies (i) in Theorem 3. Then for g, * (as defined in (11)) suffi-
ciently small the conclusions (a) and (b) of Theorem 1 hold.

Suppose further that g, =0 and ﬂ | R(t, 5)| ds— 0 as t — —+-c0 for all
T == a. Then the conclusion of Theorem 2 holds

The proof of the last assertion in this theorem is exactly as that of
Theorem 2 except that (R) is used instead of (P*).

A theorem midway between Theorems 3 and 4 is possible in which (i) in
Theorem 3 is replaced by the assumption that » == 0 is the unique solution
of (P) corresponding to f =0 and that { Z;] R(t, 5)| ds is bounded in f on
finite intervals. The proof is almost exactly as that of Theorem 2 so the
details will not be given. The uniqueness assumption is used to guarantee
the continuity of # on finite intervals (namely, on [a, a*]) with respect to f
([9, Chapter I1.4]) and consequently allow us to perform the first step in
the proof. Simple estimates show that the bound on R (which replaces U
in the proof of Theorem 2) can be dispenced with in favor of the added,
weaker assumption that ff| R(2, 5)| ds be bounded in ¢ on finite intervals.
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