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ABSTRACT. A general class of matrix difference equation
models for the dynamics of discrete ‘class structured popula-
tions in discrete time which possess a certain general type of
nonlinearity introduced by Leslie for age-structured popula-
tions is considered. Arbitrary structuring is allowed in that
transitions between any two classes are permitted. It is shown
that normalized class distributions for such nonlinear models
globally approach a “stable class distribution” and thus pos-
sess a strong ergodic property exactly like that of the classical

- linear theory of demography. However, unlike in the linear
theory according to which the total population size grows or
dies exponentially, the dynamics of total population size in
these nonlinear models are shown to be governed by a non-
linear, nonautonomous scalar difference equation. This dif-
ference equation is asymptotically autonomous, and theorems
which relate the dynamics of total popula.tlon size to those of
this limiting equation are proved. Examples in which the re-
sults are applied to some nonlinear age-structure models found
in the literature are given.

KEY WORDS: Ergodicity, nonlinear matrix models, struc-
tured population dynamics, stable class distribution.

1. Introduction. Ever since their introduction in the seminal
work of Lewis [1942] and Leslie [1945], matrix difference equation
models have been extensively used to describe the dynamics of age-
structured populations. The linear theory is a beautiful application
of the mathematical theory of nonnegative matrices and the famous
Perron-Frobenius theorem. This theory, under certain technical as-
sumptions, predicts the exponential growth of total population size
while the normalized age distribution asymptotically tends to a “stable
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age distribution” which is determined by the positive unit eigenvec-
tor of the projection matrix corresponding to the maximal, positive
eigenvalue (e.g., see Impagliazzo [1980]).

Motivated by the usual observation that exponential growth is unten-
able for large time scales, Leslie considered modifications of the linear
matrix models in a later paper (Leslie [1948]). He discussed several
nonlinear matrix models for “limited population growth”,.or what is
now referred to as density dependent growth, using the simple logistic
model as a prototype. Nonlinear Leslie-type matrix models have been
widely used in a variety of contexts since Leslie’s 1948 paper. Some
examples include Desharnais & Cohen [1986], Fisher & Goh [1984],
Guckenheimer et al. [1976], Hassell & Comins [1976], Horwood and
Shepherd [1981], Levin and Goodyear [1980], North [1985], Pennycuick
[1969], Pennycuick et al. [1968], Travis et al. [1980].

The goal here is to develop and extend the theory of one type of
nonlinearity which Leslie introduced in his 1948 paper. Amongst other
things a rigorous proof of an observation made by Leslie concerning the
asymptotic approach to “stable age distributions” for such nonlinear
models will be obtained as a corollary.

Another development in the utilization of matrix models has been
their use in modeling the dynamics of populations structured by dy-
namical variables other than chronological age. There is currently a
great deal of interest in the modeling of populations whose dynamics
can be understood only by taking into account internal structuring of
the population by means of physiological states on which vital birth and
death rates depend (Metz and Diekmann [1986]). Such states include
size, weight, developmental stages, presence of important metabolical
chemicals, various measures of physiological age, etc. There is a grow-
ing literature on both continuous and discrete models of these types for
both single populations and multispecies interactions among structured
populations.

Discrete matrix models for general class structured populations can
be constructed in a manner analogous to the Leslie matrix models
for age-structured populations, but they result in projection matrices
which, unlike “Leslie matrices”, may have nonzero entries off the
first subdiagonal (see Lefkovitch [1965]). Such entries account for
the possibility that in one unit of time an individual may move to
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a class other than the next class in the ordering. For example, “Usher
matrices”, which have been extensively used to model forest dynamics
using tree diameter classes (Ek [1974], Usher [1966], Usher [1969]), have
nonzero entries on both the first subdiagonal and the main diagonal of
the projection matrix in order to account for the possibility that an
individual remains in the same diameter class, rather than advances
to the next diameter class, in one unit of time. Other examples are
provided by the matrix models used to study plant dynamics based
upon stages of growth and reproduction in which nonzero entries
above the main diagonal appear because individuals are allowed to

“regress” to earlier stages; see Caswell [1986] and Silvertown [1982].
Other references include Barclay [1986], Buongiorno & Michie [1980],
Sarukhdn & Harper [1973], Sarukhdn & Gadil [1974], van Slckle [1977],
Werner & Caswell [1977].

In this paper a general class of matrix models will be considered which
possess ‘a special type of nonlinearity introduced by Leslie, but which,
unlike the Leslie models for age-structured populations, allow possible
transitions between any two classes.

Suppose that the individuals of a population are categorized by means
of n classes and that the numbers in each class are contained in an n-
vector p. (In this paper all lower case Greek letters are vectors, except
€,6 and A which are scalars. Lower case Roman letters are scalars.)
In discrete time dynamical models the density (or class distribution)
vector p = p(i+ 1) at a given time ¢+ 1 is related to the density vector
p(i) at time ¢ for all ¢ € Jy = {0,1,2,3,...}.

Let p; be the probability that an individual in class k survives one
unit of time. Let p;; be the probability that an individual in class k at
time ¢ will be in class j at time ¢ + 1 given that it survives one unit of
time. Then the expected fraction of individuals in class k£ that transfer
to class j during one unit of time is ¢;; = prpjx € [0,1]. Let T denote
the n x n transition matrix T = (¢;;) > 0.

To account for births let b;x be the expected number of j-class
offspring per k-class individual during one unit of time. If s; is
the probability that a j-class offspring born during any time interval
survives to the end of that time interval, then f;j; = s;bji gives the
expected number of j-class newborns per k-class individual at time
1+ 1 due to births during the time interval from ¢ to i+ 1. Let F be
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the n x n fertility matrix F' = (fjz) > 0.

Finally, let A = F 4+ T > 0. If A remains constant in time (and in
particular if it is independent of population densities), then the density
vector at time ¢+ 1 is given by the linear, autonomous matrix equation

p(i+1) = Ap(i).

If the n classes are age classes one time unit in length and ordered
from youngest to oldest, then A is a Leslie matrix, i.e., the first row
consists only of the age specific fertilities f5, and the remaining n — 1
rows confain only the nonzero transition fractions t;;_1. If ¢;; is also

- allowed to be nonzero, then A becomes an Usher matrix.

In density dependent growth dynamics the transition probabilities,
the death rates and the fertilities at time 4, and hence the projection
matrix A, depend in some manner on the density vector p(i). This of
course leads to a nonlinear matrix equation for p(z).

The type of nonlinear models considered here is based on two as-
sumptions: that only the survival probabilities depend on p and that
these probabilities are all affected in the same way by changes in p.
Thus all survival probabilities p; and s; are multiplied by a fraction
h = h(p(i)) > 0 with the result that p(i) is now determined by the
nonlinear matrix equation

™ p(i+ 1) = h(p(3)) Ap(3).

"~ A typical assumption is that the dependence of the factor h on the
density vector is through a dependence on a weighted population size

(L.1) w(i) =wop(i), w20, w#0,
ie,, h = k(w). When all weights in the weight vector w are one, w(t)

becomes the total population size p(t).

If we assume that A is the projection matrlx in the absence of density
effects, then h(0) = 1.

Let |p| denote the absolute value of a scalar and let ||p|| denote
the norm of an n-vector obtained by summing the absolute values
of its components. Since only nonnegative p(i) are of interest here,

(&) = |lp(@)Il-
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The paper is organized as follows. In §2 the main result of the paper
is given (Theorem 1), which states that the nonlinear matrix equation
(N) has the same strong ergodic property as the related hnear matrix
equation

(L) ¢(i +1) = Ag(i)

and that the asymptotic dynamics of the total population size are
determined by a certain nonlinear, nonautonomous scalar difference
equation, namely (2.2). In §3 the fact that this difference equation
is asymptotically autonomous is exploited in order to prove some
results concerning the asymptotic dynamics of total population size.
Applications to model equations appearing in the literature are given
in §4. §5 briefly discusses some simple extensions of the results.
The results in §3 are obtained by means of some general theorems
concerning the relationship between the asymptotic dynamlcs of a
nonautonomous difference equation and the asymptotic dynamics of
its limiting autonomous equation which are proved in the appendix.

2. An ergodic theorem. Under the hypothesis
(H1) A is nonnegative, irreducible and primitive

the matrix ‘A has a maximal eigenvalue A which is positive, simple
and has a strictly positive unit eigenvector n > 0, ||9|| = 1. The
strong ergodic theorem of demography (Impagliazzo [1980]) states that
if ¢(0) > 0, ¢(0) 5 0, then the solution of (L) satisfies

#()/||o(@)|| — n as i — +o0..

Thus the normalized density (or class distribution) vector given by
#(2)/||¢(3)|| asymptotically - “stabilizes” to the eigenvector 7. The
following theorem asserts that the same is true for solutions of the
nonlinear equation (N). Let R™ denote n-dimensional Euclidean space
and let R = R,

- THEOREM 1. Assume that assumption (H1) holds and suppose that
h : R* — (0,1], h(0) = 1. Let p(i) be a solution of (N) with
p(0) 20, [[p(0)|| > 0. Then ‘

(2.1) v(@) = p()/llp(i)|| = n asi— +oo
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and the total population size p(i) = ||p(3)|| satisfies the scalar difference
equation

(2.2) p(i +1) = [|Av(d)||h[v(2)p(2)lp()
p(0) =lp(0)|| > 0.

PROOF. Since p(0) > 0 and A is nonnegative, it is clear that
p(¢) > O for all i. Moreover, by Gantmacher [1960; Remark 3, p.63],
it follows that p(z) 7 0 or ||p(¢)]] > 0 for all i > 1. Thus v(4) is well
defined by (2.1) and the division of both sides of (N) by ||p(i + 1)||

shows that v(¢) satisfies the following equations:

v(i+1) = Av(i)/||Av(@)||, |lv(@)|l=1, foralli>0
v(0) = p(0)/11e(0)]]-

It is not difficult to see that this problem has as its unique solution
v(i) = ¢(3)/||¢(?)|] where ¢ is the unique solution of (L) satisfying
#(0) = p(0). (Divide both sides of (L) by ||¢(¢ + 1)||.) Thus, by the
strong ergodic theorem for (L) under H1, (2.1) follows. -

Finally,

pli+1) = [lp(i + Dl| = hlo(®)] 14p(@)]| = Alv(0)p(d)] [1Av(&)]1p(2)
which verifies (2.2).

An analogous result for continuous time models, but restricted to
(continuous) age-structured populations, was discovered by Simmes
[1978] (and independently by Busenberg & Iannelli [1985]). These
authors seem unaware of the connection between their continuous age-
structure models and the discrete models considered by Leslie [1948].

The scalar difference equation (2.2) which determines the dynamics
of the total population size p(i) is nonautonomous. The limit (2.1)
implies, however, that this nonlinear equation has the autonomous
“limiting equation” (LaSalle [1976])

(2.3) q(i +1) = Mlng(5)lq(i)-

One suspects then that the asymptotic dynamics of the total population
size p(t) can be determined from the asymptotic dynamics of this scalar
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limiting equation. Toi a certain extent this is true as the results in §3
show. |

Scalar difference equations such .as (2.3) have been greatly studied
in recent years, and|it is by now certainly well known that they
can possess a wide range of possible asymptotic dynamics, including
simple equilibration, limit cycles of various periods and exotic strange
attractors and chaos.; The simple case of a stable, globally attracting
positive equilibrium i the analog of logistic or “limited” growth sought -
by Leslie. However, even simple equations (2.3), i.e., equations with
simple expressions for the density term h, can lead to more exotic and
complicated dynamids Nonetheless, it is interesting to note that by
Theorem 1 the normalized class distribution /(i) always “stabilizes”
the sense of (2.1) regardless of the dynamics of the total populatlon
size p(4).

Some results concetning the asymptotic dynamics of (2.2) will be
given in §3 as an application of the results in the Appendix. O

3. The dynamics of the total population size. We have seen
in Theorem 1 that under hypothesis (H1) positive solutions of the
nonlinear matrix equatlon (N) satisfy the ergodic property (2.1) just
as do solutions of the linear equation (L). Moreover, Theorem 1 says
that the dynamics of the total population size p(i) are governed by the
scalar difference equation (2.2). The question is, how does p(i) behave
as 1 — 0o? ‘

Since (2.2) is asymptotic to the limiting equation (2.3), some an-
swers to this question can be obtained by using Theorems 4-6 in the
Appendix. A solution of a difference equation like (2.2) or (2.3) is
a sequence p : J+ — R which satisfies the equation for all i € J,.
The range of p(4) is its trajectory. A bounded solution is one whose
range lies in a bounded subset of R. A solution p(i) approaches or
tends to a sequence q(i) if p(i) — ¢(¢) — 0 as ¢ — +o00. An equi-
librium of the autonomous equation is a comstant solution ¢(i) =
qo, forall i € J = {0,+1,+2,43,...} for some go € R. More gen-
erally, a cycle, or more specifically, a k-cycle is a periodic solution, i.e.,
q(i + k) = q(z), for all i € J and some (minimal) integer £ > 1.
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Theorems 4 and 5, under the assumption that
(H2) h: R™ — (0,1], h(0)=1, is continuously differentiable

yield the following theorem.

THEOREM 2. Suppose (H1) and (H2) hold. In addition, suppose that
the limiting scalar difference equation (2.3) has, in any compact subset
of R, at most a finite number of cycles, all of which are hyperbolic.
Finally, suppose that every bounded solution of (2.3), which is not itself
a cycle, tends asymptotically to a cycle.

If the total population size p(i) = ||p(i)|| obtained from a positive
solution p(i) of (N) is bounded, then it must tend to a cycle of the
limiting equation (2.3). Furthermore, if the equilibrium O of (2.3) is
unstable, then p(i) will not tend to 0 as i — +oo. '

If h =1 in (2.3) this result reduces to the classical result for the
linear equation (L) that the total population size grows (or dies out)
geometrically if the maximal eigenvalue of the projection matrix A
satisfies A > 1 (or < 1).

An example given in the Appendix shows that the limit cycle in
Theorem 2 need not be a stable cycle of the limiting equation (2.3).

Moreover, it is not true in general that if p(z) is initially close to
a stable cycle of (2.3), then p(i) tends to this cycle, since initial
dependencies on time ¢ in the governing equation (2.2) can cause large
deviations. The following theorem gives conditions under which the
total population will tend to a stable cycle of (2.3). A proof is given in
the Appendix.

THEOREM 3. Suppose that q(i) is a stable cycle of the limiting
equation (2.3). Under the assumptions of Theorem 2 there exists § > 0
such that |p(0) — q(0)| < & and ||v(0) — 5|| < & imply p(i) — q(i) — 0 as
1 — 00. .

Note that in this theorem it is necessary for both the total population
size and the normalized class distribution to be sufficiently close initially
to the stable cycle and the “stable” class distribution respectively in
order to guarantee that the total population size approaches that stable
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cycle. It is in general not sufficient to start only the total population
size close to a stable cycle in order to guarantee an asymptotic approach
to that cycle. Or put another way, even a small disturbance of the total
population size from a stable state in a structured population may be
destabilizing if the disturbance at the same time severely affects the
class distribution vector.

A common assumption is that the dependence of h on density p is
through a dependency on a weighted total population size w as given
by (1.1). If h = k(w), k: R — (0,1], k(0) = 1, then the limiting
equation (2.3) becomes

(3.1) q(i + 1) = Ak[n o wq(i)]q(3),

or, if density dependence is determined by total population size (as in
Leslie [1948]),

(3.2) q(i +1) = Mk[g(9)]q(?).

Scalar autonomous difference equations of the form (2.3) and its
special cases (3.1)-(3.2) have been intensively studied in recent years
and a great deal is known about their asymptotic dynamics. It is widely
appreciated that the dynamics of simple scalar difference equations, and
in particular ones of the form (3.1) or (3.2), can be extremely varied,
ranging from simple approach equilibrium to exotic strange attractors
and chaos.

Thus one expects, in general, a wide range of dynamical behavior for
the total population size of populations governed by (N). We have not
established, however, a connection between the dynamics of the limiting
equation (2.3) and those of the governing equations (2.2) except under
the assumption in Theorem 2 which in effect rules out exotic behavior
and allows only equilibrium or limit cycle behavior.

A popular way to study the dynamics of such equations is to use the
concepts and tools of bifurcation theory in order to understand how the
dynamics depend on parameters in the equations. In the case (2.3), A
is a natural parameter to use. As we have seen in the linear case, the
dynamics of total population size depend crucially upon A and change
qualitatively at the critical value A = 1. The same can be shown, in a
certain sense, for the nonlinear case.
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The following facts can be established for the autonomous limiting
equation (2.3) using bifurcation theory techniques (see, e.g., Cushing
[1988a], Guckenheimer et al. [1976]). For A < 1 the trivial solution 0 is
stable and for A > 1 the trivial solution 0 is unstable. There exists an
unbounded continuum for solution “pairs” (], ) which bifurcates from
(1,0) and consists (except for (1,0)) of positive equilibria ¢. Near (1,0)
these positive equilibria are stable if the bifurcation is “to the right
or supercritical” (i.e., A > 1 for (), ¢) near (1,0)) and unstable if it is
“to the left or subcritical”. For the equation (2.3) stable supercritical
bifurcation occurs if 7o A,h(0) < 0, or &¥'(0) < 0 in the special case
(3.1), and unstable subcritical bifurcation occurs in the event of the
opposite inequality.

The most commonly occurring case is the supercritical stable case
in which increases in density result in decreases in the survivability.
The scenario in this case usually goes as follows (Guckenheimer et al.
[1976]). Only 0 is stable for A < 1 while a positive equilibrium (usually
unique) exists for those A > 1 which are stable at least for X close to 1
but which may lose stability with increased values of A through a Hopf
bifurcation to a stable 2-cycle. The 2-cycles may then lose stability
with further increases of A through a bifurcation to a stable 4-cycle and
so forth on through a cascade of period doubling stable bifurcations.
Within this regime the hypotheses in Theorem 2 generally hold and the
asymptotic dynamics of the total population size p(i) are determined
by these limit equation dynamics by means of the results in §3. For
larger values of A the dynamics can become chaotic and the hypotheses
in Theorem 2 can fail to hold, although one suspects that the dynamics
of (2.2) are nonetheless related to those of the limiting equation (2.3),
i.e., are probably also chaotic. See example 5(b) below.

The subcritical bifurcation case is intimately related to the so-called
Allee effect in which low level density 1ncreases result in enhanced
survivability (Cushing [1988b]).

Regardless of the dynamics of total population size as it is determined
by (2.2) (whether solutions asymptotically equilibrate or approach limit
cycles, whether there are multiple attracting asymptotic states or even
whether there are exotic dynamics such as “chaos”), Theorem 1 shows
that the normalized class distribution ergodically approaches a “stable
class distribution” in a manner identical to that of the linear density
independent case (L).
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4. Examples. Two examples from the literature will illustrate the
results above. The first example is from Leslie’s 1948 paper. Amongst
other things it rigorously proves (and generalizes) an observation of
Leslie concerning the logistic-like growth of the total population size
and the ergodic property of the class distribution vector. The second
example illustrates the possibility of more exotic asymptotic dynamics
for total population size.

(a) Leslie [1948] considers an age-structured population under the
assumption that the survival probabilities of all age classes are reduced
by the same fraction dependent upon the total population size. In his
case A is a “Leslie” matrix. It is assumed here more generally that
the population is not necessarily structured by age, but only that the
projection matrix A satisfies H1. It is assumed, however, that as in
Leslie [1948] the density term h is given by the expression

1

(41 k(o) = k(llpll) where k(p) = 77—

, a > 0.

(In order to meet the technical domain requirements on h above, we
redefine k for p < 0 in such a way that & is continuously differentiable
for all p € R.)

For this case the equation (2.2) governing the dynamics of the total
population size p(z) is

(4.2) p(i+1) = ||Av(3)]] Iﬁ,‘%mgj

whose limiting equation (3.2), by the ergodic property (2.1) satisfied
by v(i), is

oy a(d)

where A > 0 is the maximal eigenvalue of A.

It is easy to see that all solutions of (4.2) are bounded. Furthermore,
it is a simple matter to analyze the asymptotic dynamics of (4.3). For
0 < A <1 all solutions with ¢(0) > 0 tend to 0 as ¢ — +oco0. For A > 1
all solutions with ¢(0) > 0 tend to the unique equilibrium (A —1)/a.
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Noting that no solution of (4.3) with p(0) > 0 can vanish in finite
time, we conclude from Theorems 1 and 2 that if A satisfies H1 and if
the density term h is given by (4.1), then any solution of the nonlinear
matriz equation (N) with p(0) > 0 satisfies the ergodic property (2.1)
and the corresponding total population size p(i) tends to zero if the
mazimal eigenvalue A of A is less than one and tends to the equilibrium
value (A — 1)/a if the mazimal eigenvalue is greater than one.

‘Numerical examples can be found in Leslie’s 1948 paper.

As a further generalization of Leslie’s example, we note that the
same result holds if the density term h is assumed to be a function
of weighted population size w given by (1.1). The limiting equation
(4.3) is modified according to (3.1) and all that changes above is the
value of the equilibrium to (A — 1)/an o w.

(b) If, in the above example, we replace & in (4.1) by
(44) h = k(p) = exp(—ap), a >0,

we obtain an example studied by Desharnais & Cohen [1986]. These
authors, however, consider only the age-structured case). The resulting
nonautonomous difference equation for total population size has a
bounded right hand side and hence all solutions are bounded. The
limiting equation for this case is

(4.5) q(i+1) = de™ 1@ g(5).

For A < 1 all solutions of (4.5) with ¢(0) > 0 tend to 0 as ¢ — +oc0. For
1 < X < €? all solutions with g(0) > 0 tend to the unique equilibrium
value goo = a~'InX. At A = e? there occurs a Hopf bifurcation to
a stable 2-cycle. Further increases in A result in a cascade of period
doubling bifurcations until a critical value is reached (approximately
%6924 ~ 14.767..) after which chaotic dynamics result. See May and
Oster [1976] for a complete description of the dynamics of (4.5).

Applying Theorems 1, 2 and 3 we conclude that if A satisfies H1 and
if the density term h is given by (4.4), then any solution of the nonlinear
matriz equation (N) with p(0) > 0 satisfies the ergodic property (2.1).
The corresponding total population size p(i) tends to zero if the mazimal
eigenvalue A of A is less than one. If 1 < \ < €2, then p(i) tends to the
equilibrium value o~ In\. For A > e? prior to the onset of chaos p(1)
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tends to a positive k-cycle for some k > 1 and any solution p(i) initially
near a stable k-cycle whose initial class distribution is sufficiently close
to the stable distribution 1 tends to that stable k-cycle.

The dynamics of the total population size when A lies in a chaotic
region of the limiting equation (4.5) remains an open question, although
one suspects that it is also chaotic. This is borne out by the numerical
examples below.

Tables 1-4 give the results of selected numerically calculated solutions
of equation (N) for nonlinearity (4.4) with o = 1 with various 3 x 3
matrices of the form A = F' 4 T with

0 fiz fis 0 0 0
46) F=|0 0 0|, T=|pa 0 0
0 0 O 0 pp O

This corresponds to a population with three age classes, the first of
which consists of nonreproducing juveniles.

The four cases represented in these tables all corroborate the funda-
mental conclusion above in that, despite the diverse dynamics exhibited
by total population size, the normalized age distribution stabilizes to
the normalized eigenvalue of A.

The inherent growth rate X increases from Table 1 to Table 4 in such a
way as to produce respectively extinction, equilibration, an asymptotic
2-cycle, and apparent chaos in total population size.
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TABLE 1. The normalized age distribution vector v(i) and the
total population size p(i) are given (rounded to three significant
digits) for a solution of (N) with matrix A = F 4 T given by (4.6)
with nonzero entries f12 = 2.25, fiz =1, pg; =0.25, psg = 0.75
and with nonlinearity (4.4) with & = 1. The initial distribution
is p(0) = (1,1,1). Rounded to six significant digits, the dominant
eigenvalue of this Leslie matrix is A = 0.880583 and the correspond-
ing normalized eigenvector is col(0.655435, 0.186080, 0.158486). (In
actuality agreement between these figures and those in the table was
obtained to six significant digits.) In this case the total population

J. CUSHING

size tends to 0 as ¢ — 4-o0.

Components of the Total
Time {  Normalized Age Distribution  population p(i)
0 3.33 E-01 3.33 E-01 3.33 E-01 3.00 E 00
1 7.65 E-01 5.88 E-02 1.76 E-01 2.12 E-01
2 5.68 E-01 3.51 E-01 8.11 E-02 9.32 E-02
3 6.83 E-01 1.11 E-01 2.06 E-01 1.08 E-01
4 6.42 E-01 2.40 E-01 1.17 E-01 6.91 E-02
5 6.59 E-01 1.61 E-01 1.80 E-01 6.44 E-02
95 6.55 E-01 1.86 E-01 1.58 E-01 4.33 E-07
96 6.55 E-01 1.86 E-01 1.58 E-01 3.81 E-07
97 6.55 E-01 1.86 E-01 1.58 E-01 3.36 E-07
98 6.55 E-01 1.86 E-01 1.58 E-01 2.96 E-07
99 6.55 E-01 1.86 E-01 1.58 E-01 2.60 E-07
100 6.55 E-01 1.86 E-01 1.58 E-01 2.29 E-07
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TABLE 2. The normalized age distribution vector v(¢) and the
total population size p(z) are given for a solution of (N) with matrix
A = F + T given by (4.6) with nonzero entries fi2 = 6, fiz =
2.67, p21 = 0.25, psz = 0.75 and with nonlinearity (4.4) with
o = 1. The initial distribution is p(0) = (1,1,1). Rounded to
six significant digits, the dominant eigenvalue of this Leslie matrix
is A = 1.36603 and the corresponding normalized eigenvector is
col(0.779123, 0.142590, 0.782871E — 01). (In actuality agreement
between these figures and those in the table was obtained to six
significant digits.) In this case the total population size tends to an
equilibrium value as i — +oo.

Components of the Total
Time i  Normalized Age Distribution  population p(7)
0 3.33 E-01 3.33 E-01 3.33 E-01 3.00 E 00 -
8.97 E-01 2.57 E-02 7.76 E-01 4.81 E-01
5.98 E-01 3.70 E-01 3.20 E-02 1.80 E-01
8.44 E-01 5.47 E-02 1.02 E-01 4.11 E-01
7.04 E-01 2.48 E-01 4.82 E-02 2.31 E-01
8.17 E-01 8.90 E-02 9.40 E-02 3.64 E-01

Ot W N

95 7.79 E-01 1.43 E-01 7.83 E-02 3.11 E-01
96 7.79 E-01 143 E-01 7.83 E-02 3.11 E-01
97 7.79 E-01 143 E-01 7.83 E-02 3.11 E-01
98 7.79 E-01 1.43 E-01 7.83 E-02 3.11 E-01
99 7.79 E-01 143 E-01 7.83 E-02 3.11 E-01
100 7.79 E-01 143 E-01 7.83 E-02 3.11 E-01
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TABLE 3. The normalized age distribution vector »(i) and
the total population size p(i) are given for a solution of (N)
with matrix A = F 4 T given by (4.6) with nonzero entries
fiz = 300, fiz = 1331/3, pa1 = 0.25, p32 = 0.75 and
with nonlinearity (4.4) with & = 1. The initial distribution is
p(0) = (1.0,0.2,0.0). Rounded to six significant digits, the domi-
nant eigenvalue of this Leslie matrix is A = 8.82234 and the eigen-
vector is col(0.970171, 0.274919E-02, 0.233712E-03). (In actuality
agreement between these figures and those in the table was obtained
to six significant digits.) In this case the total population size tends
to a 2-cycle as ¢ — +o00. -

Components of the Total

Time ¢ Normalized Age Distribution  population p(3)

0 8.33 E-01 1.67 E-01 0.00 E 00 1.20 E 00
0.93 E-01 4.14 E-03 2.48 E-03 1.82 E-01
8.62 E-01 1.36 E-01 1.70 E-03 4.17 E-07
9.92 E-01 5.20 E-03 2.47 E-03 1.73 E-05
8.82 E-01 1.16 E-01 1.82 E-03 3.70 E-05
9.91 E-01 6.25 E-03 2.46 E-03 1.30 E-03

G A WD =

195 9.70 E-01 2.75 E-02 2.34 E-03 3.22 E 00
196  9.70 E-01 2.75 E-02 2.34 E-03 1.13 E 00
197  9.70 E-01 2.75 E-02 2.34 E-03 3.22 E 00
198  9.70 E-01 2.75 E-02 2.34 E-03 1.13 E 00
199 970 E-01 2.75 E-02 2.34 E-03 3.22 E 00
200 9.70 E-01 2.75 E-02 2.34 E-03 1.13 E 00
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TABLE 4. The normalized age distribution vector »(i) and
the total population size p(:) are given for a solution of (N)
with matrix A = F + T given by (4.6) with nonzero entries
fiz = 1200, fis = 53314, pa1- = 0.25, paz = 0.75 and
with nonlinearity (4.4) with @ = 1. The initial distribution is
p(0) = (1.01,0.01,0.01). Rounded to six significant digits, the dom-
inant eigenvalue of this Leslie matrix is A = 17.4848 and the eigen-
vector is col(0.985308, 0.140880E-02, 0.604297E-04). (In actuality
agreement between these figures and those in the table was obtained
to six significant digits.). In this case the total population size has
no apparent asymptotic regularity as ¢ — +o0.

Components of the Total
Time i Normalized Age Distribution population p(3)

0 9.81 E-01 9.71 E-03 9.71 E-03 1.03 E 00
1 9.85 E-01 1.44 E-02 4.26 E-04 2.08 E-01
2 9.85 E-01 1.39 E-02 6.08 E-04 2.29 E-00
3 9.85 E-01 1.43 E-02 6.04 E-04 2.91 E 00
4 9.85 E-01 1.39 E-02 6.05 E-04 2.79 E 00
5 9.85 E-01. 1.43 E-02 6.04 E-04 2.97 E 00
6 9.85 E-01 1.39 E-02 6.05 E-04 2.70 E 00
7 9.85 E-01 1.43 E-02 6.04 E-04 3.14 E 00 |
8 9.85 E-01 1.39 E-02 6.05 E-04 2.41 E 00
9 9.85 E-01 1.42 E-02 6.04 E-04 3.75 E 00
10

9.85 E-01 1.39 E-02 6.05 E-04 1.55 E 00

190 9.85 E-01 1.41 E-02 6.04 E-04 3.24 E 00
191  9.85 E-01 1.41 E-02 6.04 E-04 2.22 E 00
192  9.85 E-01 1.41E-02 6.04 E-04 4.22 E 00
193  9.85 E-01 1.41E-02 6.04 E-04 1.08 E 00
194 9.85 E-01 1.41E-02 6.04 E-04 6.43 E 00
195 9.85 E-01 1.41 E-02 6.04 E-04 1.81 E 00
196  9.85 E-01 1.41 E-02 6.04 BE-04 2.65 E 00
197  9.85 E-01 1.41 E-02 6.04 E-04 3.26 E 00
198  9.85 E-01 1.41E-02 6.04 E-04 2.19 E 00
199 9.85 E-01 1.41E-02 6.04 E-04 4.28 E 00
200 9.85 E-01 1.41 E-02 6.04 E-04 1.04 E 00
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5. Some generalizations. For simplicity only the autonomous
matrix equation (N) for a single structured population was considered
above. Several extensions and generalizations of the results above are
rather obviously obtainable in a straightforward manner.

For example, the density term h was assumed dependent on time i
only through a dependency on the density p(i). However, Theorem 1 is
still valid and the theorems of the Appendix still apply to the limiting
equation if A depends explicitly on ¢, say h = h(4, p(¢)), in such a way
that lim;_,e h(i,z) = g(z).

The asymptotic equivalence results of §3 can be based upon abstract
results of LaSalle [1976] which can also handle nonautonomous limiting
equations, i.e., ¢ = g(¢,z), although the details are more complicated
due to such things as the nature of convergence. This is not pursued
here, except to say that if h is asymptotically periodic, i.e., g = g(i, )
is k-periodic in its first variable, then results similar to those above
can be obtained by application of the methods in the Appendix to the
k-fold composition of the equation (N). This case would be of interest,
for example, in treating cases with seasonal periodicites in mortality.

Finally, we point out that systems of interacting species each of whose
dynamics are modelled by matrix equations of the form (N), but whose
density terms A (which may be different for each species) depend on the
densities of other species, can be shown to satisfy an ergodic theorem
like Theorem 1. Each species has a “stable distribution”, and the
dynamics of all total population sizes will be governed now by a system
of difference equations which are asymptotically autonomous.

6. Summary. It has been seen that, for a certain type of nonlin-
earity introduced by Leslie for discrete time, discrete class structured
population growth models, the classical linear ergodic theory remains
valid. That is to say, the normalized class distribution asymptotically
approaches the so-called “stable class distribution”. This stable class
distribution is the same as that for the density independent, linear case
(i-e., it is the positive unit eigenvector of the projection matrix).

Unlike in the classical linear theory, however, .the total population
size does not in general grow or decrease geometrically but instead
has asymptotic dynamics determined by a nonlinear, nonautonomous
scalar difference equation which has an autonomous limiting equation.
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Thus, while the normalized class distribution “stabilizes”, the total
population may behave in a number of different ways; for example,
it may equilibrate or it may approach a limiting k-cycle for some k.
Although the case is not studied here, the total population size may
even have exotic dynamics in that there may be strange attractors
or chaos. Regardless of the dynamics of the total population size,
however, the normalized class distribution is ergodic for this special
class of nonlinear models.

APPENDIX

In this Appendix some theorems concerning the relationship between
a scalar difference equation and its asymptotic limiting equation are
given. Many of these results can be proved by reference to general
results of LaSalle [1976]. However, for completeness and in order to
relieve an interested reader from having to delve into and cope with the
abstract setting in LaSalle’s book, elementary, self-contained proofs are
given.

Consider the nonautonomous difference equation
(DE) o(i+1) = f(4, z(7))

where f: J;. x R — R is continuously differentiable in ¢ € R for each i.
A solution of (DE) is a sequence z : Jy — R which satisfies (DE) for all
i € J;. The range of z() is its trajectory. A bounded solution of (DE)
is one whose trajectory lies in a bounded subset of R. A solution z(%)
approaches or tends to a sequence y(i) if z(1)—y(i) — 0 as i — +oo.
The set of limit points © of a solution z(z) of (DE) is called the limit
set of the solution. If z(%) is bounded then Q is compact. It is not
difficult to show that = approaches its limit set in the sense that the
distance between  and (i) tends to zero as i — +oo.

Under the assumption
f(i,z) — g(z)uniformly on compact subsets of R
(H3) as 1 — +oo where the function

g: R — R is once continuously differentiable

the equation (DE) is associated with the limiting equation

(LE) Cy(i+1) = g(y(d)).
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An equilibrium solution of this autonomous equation (LE) is a solution
y(i) = yo, forallie J={0,£1,42,+£3,...}, where yp € R is a fixed
point of g, i.e., yo = g(yo). More generally, a cycle, or more specifically,
a k-cycle of (LE) is a periodic solution, i.e., y(i+k) = y(i) for alli e J
and some (minimal) integer k > 1. A solution y(4) is a k-cycle if and
only if y(0) = yo is a fixed point of the k-fold composition g* of g with
itself (and no smaller order composition of g), i.e., yo = ¢*(10). A
k-cycle is hyperbolic if the derivative of g* at its fixed point is not +1
or —1. A k-cycle is stable if the derivative of g* at its fixed point is less
than one in absolute value. Otherwise a hyperbolic k-cycle is unstable.
A set is said to contain a cycle if it contains the trajectory of the cycle.
Assume that ‘

(H4) in any compact subset of R the limiting equation (LE) has
at most a finite number of cycles, all of which are hyperbolic,
and every bounded solution of (LE) which is not a cycle tends
asymptotically to a cycle.

This assumption means that the asymptotic dynamics of the limiting
equation (LE) are “well behaved”in the sense that there are no homo-
clinic orbits, strange attractors, etc.

We begin with some preliminary lemmas. The first lemma is a special
case of an “invariance”theorem of LaSalle [1976, Theorem 5.5, 48].

LEMMA 1. Suppose that z(i) is a bounded solution of (DE) and Q is
its limit set. If yo € (2, then the solution y(i) of the limiting equation
(LE), for which y(0) = yo, satisfies y(i) € Q for alli € J,.

PROOF. If yy € , then there exists a subsequence z(i;) — yo. By
writing f(15, 2(i5)) — 9(vo)= f (15, 2(i;)) — 9((4;)) + 9(2(i;)) — 9(v0) and
using H3, one easily sees that 2(i; +1)= f(¢;, 2(i;)) — g(yo)= y(1) and
hence that y(1) € Q. An induction shows that y(i) € Q for all ¢ € J,.
[w}

LEMMA 2. Suppose that (i) is a bounded solution of (DE) and that
Q is its limit set. If Q contains a stable cycle of (LE) then Q consists
solely of this cycle.
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PROOF. For simplicity, assume that ) contains a stable equilibrium
e of (LE). For k-cycles with k > 2 the following proof can be applied to
the k-fold self composition g* of g instead of g itself for the case k > 2.

Since () is bounded, its trajectory, as.well as its compact limit set
2, can be enclosed in the interior of a compact interval C’ C R. Let
N(e,6) denote the interval

N(e,6)={ye R: |y—e|l <6}
Since |dg (e)/dz| < 1 there exists a § > 0 and a real 8 € (0,1) such
that N(e,6) C C and y € N(e, §) implies |dg (y)/dz| < 8 < 1.

Let € > 0 be arbitrary but € < 6. Define ¢’ = ¢(1—-3)? > 0. By H3 and
the fact that e € , there exists an integer m such that z(m) € N(e, 6)
and '

|f(i,z) —g(z)| <€ foralli>mandforallz € C.

Suppose that z(i) € N(e,§) for some i > m. An application of the
mean value theorem to g and the fact that ¢ < ¢ (1-8)"! = ¢(1-0) <
6(1 — B) shows that

|2(i +1) — €| <1£(,2(2)) = g((@))] + lg(=(2) — g(e)|
<€ +p86<6(1-p)+B6<86.

and hence that z(i + 1) € N(e,d). It follows by induction that

z(1) € N(e,6) for alli > m. From this fact and a stralghtforward
induction

ol +5) = e < (14 -+ B11) 4§18 < (1 — ) 4 75
< e(1-f)+ 46 < e+ 45

for all 7 > 1. This inequality and 8 < 1 imply, in the limit as j — 400,

that 0 < limsup;_, o, [(¢) —e| < e. But € > 0 was arbitrary and hence
it follows that 0 = limsup,_, ., [(i) — €| = lim;—, 1 |2(¢) — €]. O

The following theorem establishes a connection between the limit sets
of bounded solutions of (DE) and those of the limiting equation (LE).

THEOREM 4. Assume (H3) and (H4). Then every bounded solution
of (DE) approaches a k-cycle of the limiting equation (LE).
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PROOF. Let z(¢) be a bounded solution of (DE) and let {2 be its limit
set. Both  and its trajectory can be enclosed in a compact interval
C C R. By Lemma 1 the trajectory of the solution y(i) of (LE) passing
through any given point in 2 remains in Q for all ¢ € J. Thus y(7) is
bounded and by H4 it is either a hyperbolic k-cycle or it asymptotically
approaches a hyperbolic k-cycle of (LE).

Consider the latter case. Suppose k =1 and y(i) is not a hyperbolic
equilibrium, but does approach a hyperbolic equilibrium e of (LE).
(Apply the following argument to g* if k > 2.) Then e must be stable.
For suppose that e is unstable so that there exist constants € > 0 and
B > 1 for which |dg (y)/dz| > B for ally € N(e,¢). Let m € Jy be
such that y(m) # e and 4 > m implies y(i) € N(e,€). The mean value
theorem yields for j > 1 that

ly(m +j) —el =lg(y(m+j—1)) —g(e)| > Bly(m +j— 1) —¢|

and by induction that |y(m + j) — €| > B%|y(m) — e|. This clearly
contradicts y(i) € N(e,¢) for all 4 > m.

Thus if 2 contains a non-cyclic trajectory of (LE), then it contains a
stable hyperbolic cycle of (LE). Since z(i) approaches its limit set 2,
Lemma 2 implies the desired result.

To finish the proof we are left with the possibility that © contains
only unstable cycles of (LE). The proof will be complete when it is
argued that, in this case, ) contains exactly one unstable cycle. By
H4, €2 must be finite.

Once again assume that £k = 1 and that  contains an unstable
equilibrium e (otherwise replace g by g*). Suppose for the purposes
of contradiction that Q2 does contain points other than e. Let y €
be the closest point to e and let d = |y — e] > 0. By H2 there exists
a 6 € (0,d/4) and an integer m € J, such that |f(i,z) — g(z)| <
d/4, |g(z) —g(e)| < d/4foralli > m and x € N(e,6). There exist
infinitely many z(i) in N(e, §) and infinitely many z(i) in N(y,6). It
follows that a subsequence can be chosen so that z(i;) € N(e,§) and
z(i; + 1) € N(e,8). Now

|z(ij + 1) — €| < |f(35,2(45)) — g(x(3;))]
+1g(2(i;)) — gle)| < d/2
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so that z(i; + 1) € N(e,d/2), which in turn implies that z(i; + 1) €
N(y,d/4). The bounded sequence z(¢; + 1) must have a limit point y*
which must satisfy y* € N(e,d/2), but y* € N(e, §) and y* € N(y,d/4).
Since y* € € we have a contradiction to the assumption that y was the
- closest point in 2 to e. O

One might suspect that a limit cycle of (LE) approached by a bounded
solution of (DE) must be stable. That this need not be the case is
demonstrated by the following example.

EXAMPLE. Choose any function g for which H4 is satisfied and for
which g(0) = 0, dg(0)/dz > 1, so that 0 is an unstable equilibrium
(1-cycle). Then

f(zw) {(:v) :;(1)

satisfies H3. All solutions of (DE) approach the unstable equilibrium
y = 0 of (LE); in fact z(i) = 0 for all ¢ > 1.

There is one case of direct importance to the total population size
equation (2.2) for which more can be said about the convergence to an
unstable equilibrium of (LE). Assume

(H5) f(i,z) is continuously differentiable in z and 8f(i,z)/0z —
dg/dz uniformly on compact subsets of R as i — +oco and
f(i,0)=0forall¢ € J,.

THEOREM 5. Assume (H3), (H4) and (H5) hold. Suppose that 0 is an
unstable equilibrium of (LE). If Q is the limit set of a bounded solution
z(z) of (DE) and 0 € Q, then there ezists an integer m € Jy such that
z(i) = 0 for all s > m.

PROOF. By assumption |¢g’(0)| > 1, and therefore by H5 there exists
a positive integer m and real numbers § > 0, § > 1 .such that
|fz(3,z)] > B > 1lforalli > m and z € N(0,6). By Theorem 4,
consists solely of the equilibrium 0, and thus z(i) — 0 as ¢ — +o0.
Choose m larger if necessary so that also |z(i)| < & for all i > m.

For purposes of contradiction suppose that there exists an inte-
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ger ¢ > m for which z(¢) # 0. By the mean value theorem
|z(i+1)| = 1f(,z(%))| > Bl=()| and an easy induction yields |z(i+7)| >
Bz (?)| for all j € J; which, because 8 > 1 and z(i) # 0, yields
the contradiction that z(¢) — +o0o. Thus it must be the case that
z(i) =0for alli >m. O

In the example above any stable cycle that (LE) happens to pos-
sess attracts no solution of (DE). This illustrates how, over any finite
time interval, the dynamics of (DE) can be dominated by the nonau-
tonomous dependence on ¢ and have asymptotic dynamics quite dif-
ferent from the limiting equation (LE). Thus, clearly any solution of
(DE) which starts initially near a stable cycle of (LE) in general need
not asymptotically approach that cycle. The next theorem gives some
conditions under which a stable equilibrium of (LE) will attract nearby
solutions of (DE). A similar theorem is valid for k-cycles of (LE), k > 2.
In the definitions of ¢(¢) and m and in the proof below f and g just
need to be replaced by their k-fold self composites.

Suppose that 9o € R is a fixed point of g. Define
m = max|f(i, yo) ~ g(yo)|

c(e) = max lf:n(zax)l
1 + .
z€N(yg,€)
By (H3), m is finite. The next theorem demands more, namely that
f(i,z) be tlose to g for all i € J in the sense that m is sufficiently small.

THEOREM 6. Assume (H3) and (H4) hold. Suppose that yo € R is
an equilibrium of (LE) for which there exists an € > 0 such that

(A1) c(e) <1 and m < (1 —c(e))e.

Then yo must be a stable equilibrium of (LE). Moreover, if z(i) is any
solution of (DE) for which z(0) € N(yo,€), then (i) — yo as i — -+oo.

PROOF. If z(i) € N(yo,€) then, by the mean value theorem and the
assumptions on m and c(e),

|(i + 1) = yol = £ (4, 2(4)) — g(wo)|

< |£G,z(3) = £, yo)| + | £ G, y0) = 9(wo)|
< c(e)e(s) —yol +m < cle)e+m < e
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so that z(i + 1) € N(yo,€). By induction z(¢) € N(yo,¢) for all i € J
and hence 2 C N(yo,€). By Theorem 4, Q is a k-cycle of (LE). Suppose
that k = 1 (the case k > 2 being handled by a similar argument applied
to composites of f and g), i.e., suppose {2 is an equilibrium e. Then
z(i) — e. From the mean value theorem

(@ + 1) — yol < |f(3,2(2)) = £(&,90)| + | £ (%, v0) — g(wo)|
< c|z(4) — vo| + £ (4, 0) — g(vo)|

which, by (H3), implies as ¢ — +oo that |e — yo|< c(€)|e — yo|. Since
c(e) < 1 it follows that e = yp. O

%

PROOF OF THEOREM 3. Equations (2.2) and (2.3) have the form
(DE) and (LE) with f and g defined by

fG,2) = [[Av(@)||h(v(Dz)z, g(z) = Ah(nz).

By Theorem 1, () — 7 and hence ||Av(z)|| — A. These facts together
with the assumptions in Theorem 2 imply that the hypotheses (H3),
(H4), and (H5) hold. Theorem 3 will follow from an application of
Theorem 6 as soon as (A.1) is verified. '

Suppose first that ¢(¢) = ¢o is a stable equilibrium of the limiting
equation (2.3). Then |dg(go)/dz| < 1 and it follows from (H5) that, for
all sufficiently small € > 0, c(e) < 1. It only remains to be shown that,
for any such ¢, the inequality on m in (A.1) can be satisfied by choosing
|[¥(0) — n|| sufficiently small. But this follows from the definition of f
and g above and the Lemma 3 below. O ‘

As pointed out just prior to the statement of Theorem 6, an analo-
gous theorem is valid for k-cycles, k > 2, with f and g replaced by their
k-fold self composites in the definitions of c(e¢) and m. A similar proof
for higher order k-cycles can then be given and the proof of Theorem 3 is
complete.

LEMMA 3. Given §; > 0 there exists a 83 > 0 such that [lv(0) —n|| <
82 implies ||v(2) —n|| < 61 for all i.

PROOF. It was shown in the proof of Theorem 1 that v(i)= ¢(i)/
ll6(3)]], #(0) = p(0). Let R} be the space of vectors in R™ which are
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perpendicular to the positive, unit eigenvector . The initial vector
p(0) can be written p(0)= an+ £ where 0 < a € R and £ € R7. Define
the continuous function v : R} — R by

an+x

w00 = | Tl ~

R

Since u(0) = 0, there exists a 6’ > 0 such that ||x|| < 6 implies
u(x) < 61. Now [[v(0) — || = u(¢) and [|v(i) — 7]]= u(AE'/N) (since
¢(i) = A'¢(0)). By HI there exists a 6” > 0 such that ||¢]| < §”
implies ||A*¢/)|| < 6’ for all i € J (see (5.109) in Impagliazzo [1980]).
Furthermore, it is easy to see that ||£|| is small if and only if ||v(0) — 7|
is small, i.e., there exists a §; > 0 such that ||v(0) — n|| < &; implies
el < 8. o |
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