JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 28, 581-589 (1969)

Uniqueness and Comparison of Harmonic Functions
under Nonlinear Boundary Conditions

J. M. CusHiNG

Department of Mathematics, College of Liberal Arts, The University of Arizona, Tucson,
Arizona 85721

Submitted by Richard Bellman

1. THe PrOBLEM

Consider the boundary problem

Au =1ty + 4, =0 in S, %1:; = h(s) fi(u,v) on &S (L.1)
where S is a region in the x, ¥ plane whose boundary 0S is a simple, closed
curve along which s denotes arc length. Here n denotes the outwardly
directed normal to S and v is any harmonic conjugate to # in S. For sim-
plicity the functions k(s) and f(x, v), given in advance, are assumed to be
analytic in their arguments, although this assumption could be significantly
weakened in the sequel (e.g. h(s) € C°, f; € C would suffice); moreover, it is
assumed that a solution to (1.1) exists.

Martin [3, 7, 8, 9, 10], Levin [6], Dunninger [2, 3, 4], and Cushing [1]
have studied various aspects of the uniqueness of solutions to (1.1) and
Dunninger [2, 3] has developed theorems which compare solutions of (1.1)
to solutions of a second problem

ou

Au =0 in S, 5’;

= h(s) fo(u, v) on &S. (1.2)
Accompanied by certain hypotheses on the functions f; and f, these results
are usually formulated so as to assert that the existence of a non-constant
solution w, = u#; + duy to (1.1) satisfying certain conditions implies the non-
existence of a non-constant solution w, = u, + i, to (1.2) satisfying certain
conditions; quite often these conditions include an assumption concerning
the range M, C R of the transformation

U = u’l(x’ y)v Uy == u2(x’ y)1 Uy = u3(x, y)v
Uy = u4(x’ y)’ (x: y) €S.
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582 CUSHING

In this paper we will obtain such comparison theorems for (I1.1) and (1.2)
(which become uniqueness theorems for (1.1) if f; = f,) under the assumption
that the manifold A, is restricted to a sufficiently small neighborhood of a
given point 7 = (ry, 75,13, ry) € R%, i.e., that the solutions =, , w, differ
from given constants by a sufficiently small constant e >> 0. Under this
assumption, our theorems imply many of the uniqueness theorems of Martin
and Dunninger without the restriction, which is quite often made in the
literature, that f; and f, are of a highly specialized nature.

Finally, we remark that the application of some of our results to a unique-
ness question of Levi-Civita [6] for the problem (1.1) with f, = ¢ 3% sin u,
h(s) = const. > 0 which arises in the mathematical theory of steady, periodic
water waves will be the subject of another paper.

2. THE INTEGRAL IDENTITY

We begin with an identity developed by Martin and Dunninger

forla e o e

where

Q = aps® + 2bp,py + cps® + aps? + 2bpspy + cpy® 4 2d(paps — prpa) (2.2)
is a quadratic form in the variables p; = éu;/ox (i = 1, 2, 3, 4) the coefficients
of which are

a = ¢27u1 ’ 2 = (4)27)“2 - (¢1T)“1

= — 9”17112 ’ 2d = — (‘l’z"')m - (¢17)u3 . (23)

Here w, = u; + iug, w, = 4, + du, are any two analytic functions on S and
b1 =ity , ug), bp =o(uy, ua), 7 =7(uy, 4y, uy,u;) may be taken as
arbitrary functions of their arguments so long as care is taken to insure the
existence of the integrals in (2.1). The identity (2.1) is an easy application
of Gauss’ Theorem and the Cauchy-Riemann equations for w,, w, (see
Dunninger [2]).

3. DeFINITE Forms Q AND CoMPARISON THEOREMS

To bring out the relationship between this identity (2.1) and comparison
theorems for problems (1.1) and (1.2) we set ¢, = fi(#,, u;) and
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by = foltty , uy). If wy = u; + tuy, w, = u, + tu, are solutions to (1.1), (1.2)
respectively then (2.1) reduces to

" 0dS =0 (3.1)
vs

where Q is the quadratic form (2.2) whose coefficients (2.3) depend upon the
as yet unspecified function 7 = 7(u, , 4, , u;, u,). Let D denote the set of
points in four dimensional Euclidean space R* at which Q is positive definite;
D clearly depends on the choice of 7.

Lemma 3.1. If wy = uy + duy is a nonconstant solution to (1.1), then no
solution wy, = u, + tu, to (1.2) can exist for which the integrals in (2.1) exist
and M, C D + D* where D* is a manifold in R* defined by u, = (u,) for some
continuously differentiable function if.

Proor. Let R ={(x,y)eS: 4, C D} and R* ={(x,y)e S : M,C D*}
and assume w, , w, are solutions for which M, C D + D* This means
S = R + R*.If R* contains an open neighborhood N of a point (x, , ¥,) € S,
then u; = y(u;) on N and consequently #; = kuy; + 1 where £, 1 = constants
since two harmonic functions related functionally must be linearly related.
But in addition u, , u, are conjugates and hence, by an easy application of
the Cauchy-Riemann equations, they must be constants on N and thus in S,
contrary to assumption. We conclude that any point in R* is a limit point of R
and by continuity (since Q > 0 on R) that Q > 0 on S. Identity (2.1) then
implies O = 0 on S which in turn implies the contradiction that p; = 0 on
R (and, hence, on S = R + R¥*).

In general the problem is to determine 7 so as to make the set D as large
as possible; however, we wish to choose 7 in such a way that D -+ D*, for
some suitable manifold D*, contains at least as e-neighborhood

4
N(F, €) = (ul,uz,u3,u4)eR4:0<Z (u; — 1) <e
i=1

of a given 7 e R4

Remark. If one or both of the functions f;, f, do not depend on o,
then Lemma 3.1 may be reformulated in an obvious manner. For example, in
the important case that both f, , £, are independent of o, then the lemma may
be stated in terms of the manifold

]‘ll = ul(x’ y)’ Uy = “2(x: y)’ (x’ y) es

where now D C R? and 7 € R2.
It is well known that the quadratic form O will be positive definite if and
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only if all the descending principal minors of its associated symmetric matrix
are all positive. These turn out to be

a, ac — b2, a(ac — b — d?), (ac — b* — d?p?

where a, b, ¢, d are given in (2.3) and consequently Q will be positive definite
if and only if the inequalities

a >0, Ad=05 +d%2 —ac <0

hold. These are partial differential inequalities for the unknown function
which can be rewritten as

a=fm >0 (3.2)
AdA=0U2L 12 4+ W<0 (3.3)
where
2U=fimy +fore + (' — /i) 7 2V =firy + fora +(fir + 1)
W=AHhH —F)m. (3.4

Here we have written

T, =orjou; (1= 1,2,3,4)

and
g 3_f1 . ifl s 2
K= h=ab K=gt, fi=g
Suppose now that 7 € R* is given and that + has the form
- & m N
T= 3 pﬁﬁ (= 1) (uy — 1) (g — 7g)™ (g —7a)*  (3.5)

kl.m,n=0

where ay,, are as yet unspecified constants. We will ultimately choose all but
a finite number of the oy, to be zero so that we will have no problem of
convergence for the series (3.5). If into the expressions (3.2)-(3.4) we insert
this power series for  and also the series

k+m
k; Of k('::l" ) (1 — "1)k (ug — 13)™, fikM)("l ) 73) = %'%;3‘“’,:—3)

© f(ln)(r ,7 ) ( ) alwf (1’ y T )
f= z; _2#4— (g — 13)" (g — 13)", e r 1)) = 311:' 32;14"4
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we obtain power series expansions for the quantities @ and 4 in terms of the
variables u; — #;, i = 1, 2, 3, 4. Letting a zero superscript denote evaluation
at the point 7 we find from (3.4) that

20 = fronom + Fosomo + (J2' — F) o000 »
2V = fiotgi00 + foraom + (Fi* = Fo) 000
W = A — 1) cvononcrono
where f; = fi(ry , 73), fo = falra , 75), etc. If we set
oo = S fo( o — ), o000 = 2 » o= —fl A+ —F)
Qgo10 — _fl “f1(f2l —f1')2,
%001 = %imn = 0 for E+ldm-tn=2
then
U=V=0 ad d=—-[ifilfi =<0, d=f2>0

provided f, , f,, and f’ — fi’ do not vanish. Consequently, there exists an
e > 0 such that

Ad=4+ <0, a=d+->0

(where the dots denote, as always in the sequel, terms of higher order in
u; —r;) provided 35, (4; — r,)? <e; ie., N(7, €) C D for € > 0 sufficiently
small. Lemma 3.1 now yields

TueorREM 3.1. Suppose fi(ry, r3) 7 0, fa(ra, 74 # 0, and fi'(ry, 1) £
fo'(ry, 7s) for a given ¥ € Rt Then for any ¢ > 0 sufficiently small there
cannot exist two solutions, w, (= const.) to (1.1) and w, to (1.2), which
satisfy M, C N(7, €).

In order to study the case f,(r, , 7;) = 0 we assume 7 = f; T where

T= Tl u) = Y Dy —r)i e~ ),  Bu=conss.  (36)

One then readily finds from (3.4) that
2V =flfTe + £'T), 2V =hlLT + Qi + 1) T]
W=HA — LA T?

and, consequently, 4 = f,24* where

44* = [foBro + fo Bool® + [faBor + QF + 12) Bool* + 4 (fy — f) B
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If we assume f, 5= 0, f;’ 5= 0 and choose
/300 :]ngell» /810 = ‘fq1’f-1':
Bor = ”ngl(z.fl' JFfmz')» B =0, k4122

in the expansion (3.6), we find

4 :flz[fll(fll “fal) (i) + ] <0, a = (fﬁzfqll)2 - >0
provided

1
fqzl >f1l and Z (; — 1) <e.
im1

Here we have assumed that f;’ > 0; the case fi’ < 01is handled by replacing
— f1 and — &(s) for f; and A(s) in (1.1) and (1.2). Q is accordingly positive
definite at those points in S where f, 7 0. Since f;’ 7% 0 we may solve
filwy , uz) =0 for u; = yf(us) provided (u; — ry)® + (43 — 75)* < ¢, where
¢, is sufficiently small. Thus, N(7, ¢)C D 4 D* for 0 < e < min(e, ¢,)
where D* is the manifold #, = i(u;).

THeoreM 3.2.  Suppose

filris ) =0, folra, 1) £ 0, fol(re, 1) > fi'(r1,75) >0
holds for a given 7 € RY. Then the conclusion of Theorem 3.1 holds.

The possibility of f; = f, = 0 is clearly ruled out in Theorems 3.1 and 3.2
and, since the hypotheses of our theorems depend upon the function 7, one
might ask if it is possible in this case to choose 7 such that D -+ D* contains a
neighborhood N(7, €). Unfortunately in the case that fi(u;,75), fo(us, 74)
change sign across u, == r, , u, = r, respectively such a = does not exist as is
shown by the following generalization of a lemma due to Martin [10].

LemMa 3.2. If for a given 7 € R* the functions fi(u , 13), fo(ts , 74) change
sign at u; = r, , Uy = 1, respectively, then necessarily a vanishes on the manifold
u, = r, and ¢ on the manifold u, = ry; moreover, unless v = 0 on some neigh-
borhood of ¥, then a > O elsewhere in N(F, €), for any ¢ > 0 sufficiently small,
implies A > O somewhere in N(F, ¢) for any function T continuously differentiable
in the variables u; , 1 = 1,2, 3, 4.

Proor. It is understood that all expressions in the following proof are
evaluated at u; = 7, , #; = r, and that all statements are valid in a sufficiently
small neighborhood of w, =7, , u, =r,.

That a, ¢ vanish as stated follows immediately from their definitions (2.3).
Assume now that a >0, 4 <0 in some N(7, ), ¢ >0, and u, %71,
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u, 7 r, . Since f , f, change sign at u; = r,, u, = r, respectively the con-
ditions @ > 0, ¢ > 0 (implied by @ > 0, 4 < 0) require that =, , 7, change
sign across and, hence, vanish onu, = 7, , #; = r, respectively. Consequently,
7=k = const. on #; = r; and u, = r, . We distinguish two cases.

(i) Suppose f; , f, are both strictly increasing (decreasing) across u; =ry,
u, = 1, respectively. Then f; f, > 0 in the quadrant Q) :u; > 7, uy > 7,
and, hence, 4 = b% + d? — ac < 0 implies — ac = f; frymp <0 o0r 775, <O
on Q; . Unless = = &, this is impossible since r =k on u; =7, , 4y =7,.
However, if - = & then

A=k —AP+(H +£)]1=>0
and as a result 4 = 0; but then 2 = 0, for f,’ = f;’ only if f; = f, = const.
contrary to assumption.

(i) Suppose f; is strictly increasing while f, is decreasing across u;, = r,,
u, = r, respectively; then f;’ >0, f,’ < 0. In Q;, f; > 0 and, moreover,
a = fyry > 0implies -; << 0. Consequently, onQ; we have fi(f," — fo') 71 <0
and, hence, = >> 0 since 4 < 0 implies W < 0. A similar argument shows that
in the quadrant Q, : 4, > ry, 4, > 7, we have 7 <0, 7; > 0.

But 7, <0, 7 > 0 on Q, implies £ > 0 while 7y > 0, 7 < 0 on Q, implies
k < 0. This contradiction concludes the proof.

This lemma explains the difficulty encountered throughout the literature
when using these methods in a neighborhood of points 7 where

flry,r3) =folra,74) =0.

Occasionally, however, this difficulty has been overcome (e.g. in some of the
results of Martin, Dunninger and Cushing in [1, 2, 10]) by additional
assumptions on the solutions w,, w,, viz. that A = fi(u , ug)[fo(us , uy)
remains smooth in S -+ 88S. Motivated by such results we choose 7 of the form

h
=AT, A=<
’ fe
where T has the form (3.6). This yields
U =0T, 2V=ALT.+2T], W=XA(H —/)T?

and 4 = A24* where

4* = Bgo[f1.2 +f1'(f1' ”‘fqzl)]-
Letting By = 1/fy’> Biy = 0 for 41 > 1 in (3.6) (i.e., = = A/f}’) we have
A

=7

)2[f£2+f1’(f1’—f°-z’)+---]<0, a=1+4+->0 (3.9
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provided

AR =) <0 (3.10)
(which implies f," == 0) and Z;l (u; — r;)? << ¢ . Although = as a function
of independent variables u; , i = 1, 2, 3, 4, is not defined at u, = r,, 4, = r,
if fo(rs ,7,) = 0, we may assume 7 is C? as a function of x, y in S 4+ &S in
order to insure the validity of identity (2.1). Doing this, we see from (3.10)
that Q is positive definite in S except at those points where f(#; , #3) = 0.
Since f,’ 5= 0, we may solve Ji(uy , us) = 0 for u; = i(u;) provided

(g — 1) 4 (uy — 1) < & for & >0
sufficiently small and conclude that
N(7, )& D+ D* for 0 < e <{min(e , &)

where D* is the manitold u; = {(u,).

THEOREM 3.3. Suppose fi(ry,73) = folrz ,#;) =0 and (3.10) holds for
a given 7 € R, Then the conclusion of Theorem 3.1 holds for those solutions
w, , Wy such that

A= ]lee C(S + 8S).

The case f;, = f,(u), f, = fo(#) in which the harmonic conjugate v does not
appear in (1.1), (1.2) is important. The following is a corollary of Theorems
3.1-3.3.

CoroLLARY 3.1.  Suppose f; = fi(u), fo = fo(u) in (1.1), (1.2) respectively.
(a) If for a given constant 7 € R? either
() flr) F0, fir) 0, fi'(r) Ffo(re) or
(i) filn) =0, falr)) =0, fo'(rs) > fi'(r1) >0
then for any e > O sufficiently small there cannot exist two solutions, u, (# const.)
to (1.1) and u, to (1.2), for which M, C N(7, ¢).

(b)Y Iff(ry) =f(ry) =0, f; (rs) > fi'(r1) > O then the conclusion of part (a)
holds among those solutions such that

Uy —r,
Uy — Ty

e C'(S + 8S).

We need only note that since f,'(r,) 7= 0 the expansion

aoh_men i) £
fooo ug— 1y fil(ry) +
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implies A € C'(S + @8) if and only if (4, — r)/(uy — 75) € C'(S + 8S) at
least for ¢ sufficiently small.

The smoothness requirement A € C’ in Theorem 3.1 cannot in general

be dropped. Considering the linear problems A(s) == 1, f; = u, f; = nu on
the unit disk x + y2 < | where n > | is a positive integer, we find solutions
u; = 8 sin 8, u, = &r" sin nf where r, 6 are polar coordinates and § is an
arbitrary constant. Clearly M, C N(0, ¢) for any € > 0 provided |§| is
sufficiently small. Note, however, that A = sin 8/r*1 sin n0 ¢ C’ on the unit
disk.

10.
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