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Introduction

Integrodifferential equations appear quite early in the mathematical devel-

opment of theoretical population dynamics in the pioneering work of such

mathematicians as V. Volterra and V. A. Kostitzin. In their attempts to

model the growth of populations by means of differential equations these

early investigators were quick to point out that the current growth rate of a

population is unlikely to depend only on the current population size or, put

another way, that growth rates are unlikely to respond instantaneously (or

even "quickly") to changes in population sizes or densities. This led

Volterra in particular to include functionals of (Volterra) integral type in

what have become the classical differential models of population dynamics and

mathematical ecology (equations such as the logistic equation, the famous

predator-prey system of Volterra and the well-known Volterra-Latka competi-

tion model). Much of this early work involving integrodifferentia1 equations

in population dynamics can be found in the recent collection of papers edited

by Scudo and Ziegler (1978). Despite this early interest in and recognition

of the importance of temporal response delays, the formulation, analysis and

use of differential models which attempt to incorporate delays in them has

lagged considerably behind that of nondelay models which ignore response

delays. Nonetheless the inevitable presence and the often significant impor-

tance of response delays is Widely recognized by population biologists as can

be seen by the frequency of reference t o such delays in textbooks (e.g. see
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Ricklefs (1974) and Pianka (1978» to say nothing of the IIIOre technical aDd

specialized literature.

In recent years there has been an increasing mathematical interest in the

study of biological models which incorporate response delays in them. This is

especially true of single species growth models in which delays have been suc

cessfuiiy used to model certain phenomena, for exa.ple the faUure of SOlIe

species to follow the classical logistic curve (typically insect species, but

also some species of ..11 lIIlUIIIlllls and birds, see e.g. Slobod1t1n (1961), May

(1974,1976), Maynard Smith (1975), May et. ale (1974». This is also true,

although to a lesser extent, for some multi-species interactions (Kay (1973),

Caswell (1972». This more recent interest in single species lKJdels with

delays, starting with the work of Wright (1955), Kakutalrl. and Markus (1962)

and Jones (1962) *on the lag logistic equation , has st1mulated a great deal

of mathematical research on such questions as the stability of equilibria and

the existence of nontrivial periodic solutions of first order differential

equations with time lags and, to a lesser extent, of equations with the bio-

logically more reasonable case of more general delay response fUilctionals.

There has been corresponding less work of this nature done on systems with

response delays. even though it is rare that a species (especially in nature)

is isolated from interactions with other species and response delays obviously

IllUst playa role in the dynamics of these interacting species as well.

One aspect of the study of delays in population growth models which in my

opinion has been on the whole very inadequately treated is that of the care-

ful derivation of the delay model with regard to the biological or physical

mechani81ll causing the delay and to how exactly this affects the growth rate.

While some mechan181ll8 which cause response delays are rather obvious even to a

*I will use the term "lag" for instantaneous time delays while reserving the
word "delay" for the more general case of a distributed delay.
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casual observer, others are very subtle and complex. Perhaps gestation and

maturation periods (or taken together, the "generation time") are the first to

come to mind as causes of response delays in the growth rate to any change in

population densities in that they result in a delayed response in the birth

rate. Such delay mechanisms are often mentioned for example in context with

the lag logistic equation (e.g. May (1976» which. however. is an illustration

of my point here since. as I will show below. the lag or delay logistic equa

tion is altogether inappropriate as a model involving delays caused by gesta

tion and/or maturation periods.

There are of course a great many other causes of delayed responses in popu

lation growth rates. In fact, the delay logistic equation was first proposed

by Volterra (see Scudo and Ziegler (1978.pages 47-49» to account for delays

in the response of a population's death rate to changes in density as might be

caused by an accumulation of pollutants (itself a functional of density) over

past times. Volterra was in fact interested in a specific species of bacteria

whose own metabolism results in the accumulation of toxic substances. Other

causes of response delays which have been mentioned in the literature in

clude differential resource consumption with respect to age structure. hunger

threshold levels. migration and diffusion of populations, markedly differing

birth rates in interaction species and delays in behavioral responses to a

changing environment (including changes in density of prey or predators or

competing species). And there are others.

Thus. if it is hoped to study and understand the effects of a response delay

caused by a particular mechanism or a particular type of mechanism, then one

must, given the complexity of b~ological interactions and the diversity of

delay causing mechanisms. use some care in deriving the model and see to it

that the delay in the model is affecting the appropriate vital parameters in

an appropriate ~anner. Obviously this modeling procedure may not be so simple

as to "stick a time delay" into a familiar nondelay model.
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To quote Ricklefs (l974.p.488): "A population can be reduced much more

rapidly by death than it can be built up by reproduction" and as a result

"time lags might be expected to occur primarily in stabilizing processes in

volving reproduction rather than death. because death is an immediate response

to envirODlllental change". Thus it seelllS particularly appropriate to concen

trate attention on gestation and maturation periods as primary causes of

response delays (although there certainly can be others which are significan~.

This will. however. result in models which are not of the type obtained from

so-called Kolomogorov-type differential equations (p'/p -f(P» with delays

placed in the per capita growth rate response functional f such as are most

often considered (such as the delay logistic and the other models considered

in Cushing (1977a) •

My purpose in these lectures is to derive some integrodifferential models

for both single species and interacting species growth which allow for the

inclusion of response delays in birth and death rates. including those caused

by gestation and maturation periods. and to study in a little detail a few

special cases of primary importance in mathematical ecology. namely single

species growth, competition between two species and predator-prey inter

actions. Special. but not exclusive. attention will be paid to gestation and

maturation periods and for this reason the models will be derived from a

general dynamical model of age structured populations.

Since a central theme here i. the role played by response delays, I will

frequently be guided in the analysis by the desire to see what effects such

delays have on the resulting dynamics, particularly if these effects are

unusual. In this respect the "significance" of the response delay is. of

course. a major concern and depends on what aspect of the dynamics one is

interested in. Moreover. this question not only involves the "length" of the

delay (in a time seale relative to other vitsl parameters) but also such

things as the magnitude of the delayed effects when they are at last felt,
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which vital parameters are affected by the delayed response, the "spread of

the delay period" and the exact manner in which the delayed terms affect the

growth rate.

Chapter 1: ~ MODELS FOR POPULATION GROWTH

I would like to take as a starting point a dynamical model for age.struc

tured populations which is based on the so-called von Foerster equation (1.1)

below. By taking into account the age structure of a population this model

avoids the unrealistic assumption of a fixed constant age distribution within

the population, an assumption which is inherently made in "lumped parameter"

models for total population numbers based on ordinary differential equations

(such as those of KOlomogorov type mentioned above). This assumption is for

example particularly unsuitable for species in which there are important fluc

tuations in birth or death rates, fluctuations forced either by the physical

environment or interactions with other species or caused by natural life

cycles within the species. In such a model we can explicitly account for and

study the effects of, in particular, maturation and gestation delays.

In this approach it is assumed that the population can be described by a

(differentiable) density (of females) function n(t,a) > 0 of chronological

age a and time t which are assumed measured on the same scale. Thus, if

one assumes that the only way in which individuals can leave the population is

by death (i.e. there is no emigration) then an/at + an/aa represents the

change in an age cohort as a function of time. If then the death or removal

rate is assumed proportional to density, one arrives at the von Foerster

equation

(1.1) an/at + an/aa + dn 0, a>O, -<t< ......

where d > 0 is the (per unit density per unit time) death or removal~.

This death rate would reasonably be assumed to be a function of time, of age
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and, in a density regulated population, of the density n , Equation (1.1)

accounts for the removal of individuals from the population. One must now

account for the addition of individuals to the population which is assumed

here to be only by births (of females) to members of the popluation (i.e.

there is no immigration). Since by definition a newborn individual has age

a - 0, this is done by means of the birth equation

(1.2) n(t,O) - 1: m(a)n(t,a) da

u(t,O)

where m > 0 is the age specific maternity function (per unit density) which,

although it is not explicitly stated in (1.2), might also be assumed to de

pend on time and, in a density regulated population, on the density n as

well. Equation (1.2) assumes that reproduction is instantaneous in the

sense that the number of (female) individuals born at time t to individuals

of ages a to a + da is proportional to the density n at time t. If, in

order to take into account a possible gestation period between conception and

birth, one considers m to be a fertility or fecundity function which is

defined so that m(t,a)n(t,a)da is the number of fertilized eggs (which ulti

mately result in births) produced at time t by females of ages a to a +

da then equation (1,2) is replaced by the equation

f:'gCt - S ) r: m(s,a)o(s,a) dads, -- < t < +-(1.3)

where g(s) ~ 0, J~g(s)ds - 1, is a gestation probability density function

describing the probability that an egg fertilized at some time (and which

ultimately results in a live birth of a female) will produce an addition to

the population at s units of time later.

In the formulation of the model above initial conditions of the form n(O,a)

- nO(a), a ~ 0, have been ignored. Instead it is assumed that such initial

conditions contribut£ transient effects as t + +- , that the population has

h~@n dvnamlcallv evolvinR for a lOUR (in fact, an infinite amount of) time ,
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and that it is the long term asymptotic behavior as t + +- of the population

density which is of interest. With the "initial state placed at t - -0> " in

this manner the above equations are, as indicated, to be solved for -0> < t

< +- instead of for t > O. If, on the other had, an initial value problem

is considered, it turns out that the models ultimately to be considered here

will change only in that - will be replaced by 0 in certain integrals and

a forcing function will appear in the equations which tends to zero as t + +

(and in fact will have compact support if the function m, d, g and nO do),

Thus the models studied here are the "limiting equations" of those derivable

from the initial value problems. The benefit of ignoring the initial condi

tions from the outset is the avoidance of a great amount of technical detail

and cumbersome formulas.

The linear autonomous version of problem (1 .1)-(1.2) when d and m, as

shown, do not depend on t or n leads by an integration along character

istics (for the associated initial value problem) to the linear renewal equa

tion for the birth rate function B(t) :- n(t,O) . The linear renewal equation

has of course a long and rich history in population dynamics and other sub

jects. In recognition of the nonlinearities inherent in density regulated

population dynamics there is a growing interest in nonlinear versions of this

model (e.g. see Rotenberg (1975), Curtin and MacCamy (1974), Oster (1978),

Hoppenstaedt (1975».

The replacement of (1 .2) by (1.3) allows the additional possibility of a

gestation period. The only work I know of on such a model is that of Swick

(1976,1977) who considers existence, uniqueness and boundedness questions for

the case of a gestation lag (where g(9) is the Dirac delta function 6T(s»

much along the lines of Curtin and MacCamy's (1974) work on (1 .1)-{1.2).

My goal here however is not to study any of these models per se but to der

ive from them integrodifferential models for the total population size
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(1.4) P(t):- J: n(t,a) da •

If one is interested in modeling the dynamics of several interacting species

then one has model equations as above for each species' density and these are

coupled by the assumption that the vital parameters d and m depend on the

densities of the other species. These models can be shown (as we'll see

below) to yield, under the assumption that vital parameters are independent of

age, to yield general ordinary differential (or functional) equation models

for the total population size P, including the familiar classical equations

of population dynamics. But even 1n this case the above model has the advan

tage that the age structure of the population can be recovered. Moreover, by

discretizing independent variables one can obtain familiar difference equation

models (such as the frequently used Leslie matrix models). Thus, the von

Foerster age structure model constitutes a nice unifying set of modeling

equations in population dynamics.

From now on it is assumed that the death rate d - d(t) ~ 0 is a function

of time, either explicitly or implicitly through a dependence on population

size pet), and that the fertility function m ~ m(t,a) ~ 0 is a function of

age and time (again possibly implicitly through a dependence on pet»~. In

doing this, without being specific with the notation, the possible dependence

of d and m on pet) is permitted to be that of a functional of population

sizes over possibly past times. Note that the death rate d is assumed not

to depend on age a. This admittedly unreasonable assumption (which is often

made in specific models, e.g. see Oster (1978), Oster and Takahashi (1974» is

made here purely for mathematical reasons and many of the manipulations to

follow are not valid without it. Nonetheless, age dependence is permitted in

the fecundity function m, which of course allows one to study the effects of

maturation periods. This assumption might be considered appropriate for a



species in which there is greater variation in fecundity with age than in the

death rate with age.

Let B(t):- n(t.O) denote the birth rate at time t. From (1.1) one gets

(1.5) n(t.a) - B(t-a) exp(- I: d(t-a+a) do) • a > O. -m < t < +-

,whi ch together with (1.4) and the birth equation (1.3) yields

(1.6) B(t) - Pl(t) + d(t)P(t)

(1.7) B(t) - f~g(t-S) I: m(s,a)B(s-a)exp(- I:d(S-a+a) do) dads

As it will ultimately be assumed that both d and m depend on total popula-

tion size, equations (1.6) and (1 .7) constitute a system of two coupled

equations for P and B. rhe system (1.6)-(1.7) is equivalent to the un-

coupled system consisting of (1.6) and the equation

Pl(t) + d(t)P(t) -

J~g(t-S) I:m(s,a){pl(s-a) + d(s-a)P(s-a)} eXp(-J:d(S-a+a) do) dads

which , after an integration by parts, reduces to

Pl(t) + d(t)P(t) -

(1.8)

f~g(t-s){m(s,o)p(S)+ J: ma(s,a)p(s-a)exp(-f:d(s-a+a) do) da}ds

In doing the integration by parts it was assumed that the expression

m(t,a)P(~-a)exp(-f~d(t-a+a)do) vanishes at a-+- for all -m < t < +- •

which would be the case for example if met,+-) = 0 (a reasonable bio-

logical assumption is in fact that m(t,a) = 0 for all t whenever a ~aO

for some age aO) or if lim exp(-fOad(s-a+a)do) - 0 and pet)
a~

is

bounded (e.g. when d = constant).

Equation (1.8) is an integrod1fferential equation for the total population
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pet), a bounded solution of which defines a birth rate function B(t) by

means of (1.6) which then in turn defines the population age dependent den

sity n(t,a) by means of (1 .5). If d and m are also functionals of

total population size pes) for s ~ t, which one might denote by d a

d(t,Pt), m· m(t,a,Pt), then (1.8) becomes the rather complicated non

linear integrodifferential equation

(1.9)

P'(t) + d(t,Pt)P(t)

ft g( t - s ) {m(s , Otp )P(s)_ s + r-m (Sta,P )p(s-a)eXp(-Jad(s-a+o,JO a s 0

P +0) do) da}ds •a-a

This equation can be used to derive specific models which incorporate delays

due to gestation periods aa described by the probability distribution function

g(s), to maturation periods as described by m as a function of age a and/

or to delay responses in the death or fecundity functions d and m as they

are functions of Pt'

As a special case, if gestation and maturation periods are ignored by assum-

ing that g(s) is the Dirac delta function at T· 0 (or alternatively by

deriving from (1.2) in place of (1.3» and by assuming that m ~ m(t,Pt)

is independent of age a, then (1.9) reduces to the equation

(1.10)

a very general functional differential equation of Kolomogorov type. In part

icular, the choices m = constant> 0, d· 6 + ~P(t)+ Yf~k(S)P(t-s)ds, 6 > 0,

k(s) ~ 0 leads to a delay logistic equation considered by Volterra and by

Kostitizin (see Scudo and Ziegler (l978,p.47-56».

Or, as another case, if the only delay of interest is caused by a gestation

period so that m - m(t,P) is independent of age a and if d and m re-

spond instantaneously to total population changes, (1.9) becomes
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(1.11) P'(t) + d(t,P(t»P(t) • f:'g(t-s)m(s,p(s»P(S) ds •

Another special case I will consider is the case when d is a constant,

when there is no gestation period and when m· m(t,a,P(t» with m(t,O,P)

- O. This results in the integrodifferential equation

(1.12) P' (e) + dP(t) - [m (t,a,P(t»P(t-a) exp(-da) dao a

In the following chapters I will consider some questions concerning the

stability or instability of equilibrium population sizes, unforced oscilla-

tions in a constant environment and forced oscillations in a periodically

varying environment for single species in isolation and for some special two

species interactions. In the case of interacting species, one has a system of

equations (1.9) for each individual species which are coupled by tae assump-

tion that each species' death and fecundity functions depend on the total

population sizes of other species as well as its own.

The more fundamental mathematical questions of existence and uniqueness of

solutions of (1.9) will not be treated here. It is not difficult to prove

standard type theorems (involving Lipschitz conditions) when the solution is

prescribed p(t)· poet) for t ~ 0 •

Another fundamental question as far as models in population dynamics is

concerned is that of the positivity of solutions. When poet) > 0 implies

pet) > 0 for t > 0 for the general equation (1.9) is an open problem.

In general this positivity property fails to be true since ma may change

sign. For the special case (1.11) of a gestation delay we have

THEOREM 1. Suppose there exist constants 0 ~ cl < c2 ~...... such that for

all t > 0

(1.13)
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Suppose get) > 0 for t > O. If pet) is!. solution of (1.11) for which

pet) > 0 when t ~ 0 , then pet) > 0 for ~ long!.!.!!.~ for t > O.

Proof.

< 0 and

Let t* > 0 be the first point at which P(t.)· O. Then PI(t.)

t*(1.11) implies f-.m(s,P(s»g(t*-s)P(s)ds. 0 (and pI(t*)· 0)

which in turn implies 0 ~ pet) ~ c1 for all -- < t ~ t*. Thus from (1.11)

on the interval 0 < t < t* follows PI(t) + d(t,P(t»P(t) • O. This implies

together with P(t*)· 0 that pet) = 0 for 0 ~ t ~ t* which is a contra

diction to t* being the first zero of pet). This contradiction implies no

first zero t* exists. §§

Note that the condition (1.13) permits the fecundity to drop to zero for

small and/or large population sizes.

An obvious positivity theorem can be stated analogously for systems of equa-

tions (2.11) for several species.

Chapter 2: STABILITY AND~ SPECIES MODELS

Suppose that the death rate d· dePt) and the fecundity function m·

m(a,Pt) do not depend explicitly on time t . Then (1.9) has an equilibrium

solution pet) = Po if and only if either PO· 0 or Po solves

(2.1)

The number R is called the~ reproductive~ (~equilibrium) and can be

interpreted as the expected number of (female) offspring per female during her

lifespan (under the assumption that the population is held at the equilibrium

level PO)' Equation (2.1), which means that the population is at exact re

placement, is an equation to be solved for Po > O.

If any functional dependence of d or m is of Vol terra integral form

J: K(s)P(t-s) ds [ IK(s)1 ds < +z
o
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and if x(t):- pet) - Po then an n x n system of equations of the general

form (1.9) will reduce, after ignoring all "higher order" terms in x, to an

*integrodifferential system of the form

(2.2) x'(t) + Cx(t) + I: B(s)x(t-s) ds - 0

for some constant n x n matrix C and an n x n matrix kernel B(t).

Associated with this equation is the characteristic equation

D(z):- det(zI + C + B*(z» - 0

where B*(z) is the Laplace transform of B(t). If

(2.3)

then all solutions of

D(z) ~ 0 for all Re z > 0

(2.4) x'(t) + Cx(t) + f: B(t-s)x(s) ds - f(t)

tend to zero as t ~ ~ for any bounded continuous f(t) which tends to zero

as t + ~ (Miller (1972». For equation (2.2) this means that all solu-

tions which are bounded for t ~ 0 tend to zero as t + ~ since f(t)

I;B(s)x(t-s)ds + O. If a functional in x is added to equation (2.4) which

is higher order in x (i.e. is o(lxlo) where Ixlo:- sUPt > o!x(t)l uni

formly in t ~ 0) then the resulting equation is locally asymptotically

stable in the sense that if Iflo is small then all solutions for which

Ix(O)1 is small are themselves small for all t > 0 and tend to zero as

t + ~ (Cushing (1975». For systems of equations (1.9) this means that if

x(t) • P(t) - Po is small for. t ~ 0 then x(t) is small for t > 0 and

pet) + Po as t + ~. In this sense the equilibrium Po will be called

*In order to keep the technical details to a minimum the explicit descrip-
tion of the domains and smoothness of the various functions (such as d and
m) will not be stated. It is assumed that there is enough smoothness to car
ry out the linearization above. For simplicity all kernels are continuous.



locally asymptotically stable. (The consideration of initial conditions de-

fined for all t ~ 0 can be avoided by posing an initial value problem for

the von Foerster equation (1.1) as mentioned in Chapter 1 in which case

integrodifferential systems of the form (2.4) for t > 0 will be obtained

straight away.) The equilibrium Po is unstable if D(z)" 0 has a root

satisfying Re z > O.

Under the assumption that B*(z) is analytic for Re z ~ 0 and that D(z)

has no roots with Re z .. 0 the number of roots \I(R) of D(z) inside a

semi-eirc:1e Izi ~ R. Re z ~ 0 is given by the argument principle v(R)·

(1/2Wi)/
Y(R)D'(Z)/D(z)dz

where Y(R) is the boundary of the semi-circle.

Consider now the case of a single equation (1. 9) in which case we write

C - c, B(t)· bet) and bl:- I~ !b(s)lds. Then

D' (a)
D(z)

1
z
~
D(z)

c + b*(z)
zD(z)

and on the curve Yl (R): lzl - R, Re z ~ 0 for R > lei + bl

II c + b*(z) d I <
[e] + bl

R - lcl - bl
'If

yl(R) zD(z) z -

II ~ I R f w/2
lb*' (Rei e) I de

Y (R) D(z) dz ~ R - lel - bl1 e--w/2

since \b*(z)I ~ bl for Re z ~ O. From Theorem B.l of Appendix B follows

lim f D'(z) d
R+t- Y' (R)'""j)('Z) z 

1

lim f ! dz .. wi.
R+t- yl(R) z

Thus the number of roots v of D(z) in the right half plane Re z > 0

1
equals v - l~++-V(R) - 2+ l~+t-(argD(-iR) - argD(iR»/2n.

If D(O) - c + r~ b(s)ds < 0 then D(z)" 0 obviously has a positive real

root z· x > 0 since D(x) + +m as x + +m. In this case (2.2) is un-

stable. Suppose then that D(O) > 0 and that we choose the principle argu

ment argD(O) .. O. Then since D(i') .. D(z) it follows that argD(-iR).
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and v .. 2" - T argD(+i"') where argD(+i"');- li~++- argD(iR).
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Consequently argD(+im ) .. (1 - 2v)w/2 for some nonnegative integer v ~ o.

But D(iR) - iR + e + b"'(iR) and hence li=a+l- 1m D(iR) • ~ since

b"'(iR) ;- C(R) - is(R) where

C(R):" ~b(S)COSRSdS S(R):- ~b(S)sinRSdS

is bounded as a function of R. This means v· 2m must be even.

THEOREM 2. (1) If 0(0) - e + J~ b(s)ds < 0 then the equUibriUlll Po !?!..

equation (1.9) is unstable.

(ii) Suppose that D(O) > 0, that b2:- J~ slb(s)lds < ~ and that D(z):-

1\'
z+c+b*(z) has ~ purely .1;maginary~. Then argD(+i"'). 2" - 2m1\' for

some integer m ~ 0 and the equilibriUlll Po of eguation (1.9) is locally

asymptotically stable if m - 0 and unstable 1£ m ~ 1.

This very general stability criterion (which is a generalization of Theorem

3;3, page 31 in Cushing (1977a) in which c - 0) can be used to prove virtual-

1y all stability theorems found in the literature. For example, if 0(0) > 0

then Po is locally asymptotically stable under anyone of the following

circUlllstances:

(a) c + C(R) > 0 for all R > 0

(b) b(+-) - b '(+-) - 0 and c + J~ b"(s) (l-cos Rs)ds > 0 for all R> 0

(c) whenever e + C(R) - 0 then R ~ S(R)

(d) R ~ S(R) for all R > 0

(e) b(s) ~ 0, o < J~ sb(s) ds < 1.

Since D(iR) - c + C(R) + i(R - S(R» it is easily seen that (a) or (c)

imply that D(iR) does not "wind around" z. 0 for R > 0 and hence that

argD(+i"') - ~/2. Condition (b) follows from (a) after two integrations by

parts and yields a theorem of Walther (1975) when e - 0, b"(s) ~ o. Condi-

tion (d) obviously follows from (c). Condition (e) follows frOlll (d)
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since it implies that 1m D(iR) • R - S(R) is an increasing function of R.

Condition (e) implies a theorem of Stech (1978).

To illustrate these results consider the delay logistic equation

(2.5) PI(t) • P(t)(r - pP(t) - yf: k(s)P(t-s) ds)

where r > O. u ~ O. y > 0 and k(s) ~ O. !~ k(s)ds • 1. This equation has

equilibria PO· 0 and PO· r/ (p + y) > 0 provided p + Y ,. O. Clearly

Po • 0 is unstable since the linearization is pl. P. Assuming that

(;sk(s)ds < +- we mey apply Theorem 1 to the characteristic equation D(z)

• z + pPO + yPOk*(z) • O. More specifically (a). (b) and (e) above imply

that the delay losistie (2.5) .!!!!.!. locally asymptotically stable equili

brium PO. r/(p + ', ) if any~ of the following conditions hold:

(i) y < p (ii) k(+oo) • k'(+OO) • o. k"(s) ~ 0 (iii) /·Osk(s)ds <~ •
- yr

The first stability condition (i) (Miller (1966» means that the magnitude

of those density effects on the death rate which are delayed is less than

those which act instantaneously. Condition (iii) is entirely different; it

means that the "length" of the delay as measured by the first moment of the

delay kernel keel is smell regardless of the relative magnitudes of y and

p. Condition (ii) is yet different in that it implies stability purely on

the basis of the "shape" of the delay kernel (in this case k(s) is concave)

independently of the vital paramet~rs r. p and y. Condition (ii) is

probably the least interesting since it implies k is montonica11y decreasing

and hence such a kernel represents a ease of "lingering effects" or "fading

memory" rather that a "genuine" delay. (Such a stability condition has re-

cent1y been used in a predator-prey system by Leung (1979).)

These three stability conditions illustrate how the effects of delays can be

studied or measured in a variety of ways.

Condition (i) actually implies the global attractlbility of the positive
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equilibrium (with respect to positive solutions, Miller (1966». The ideas of

Miller (1966) have been considerable generalized in a recent paper of Artstein

and Karakostas (1979) where conditions in the spirit of (i) are shown to

imply the global attractibility of a positive equilibrium of a general func-

tional equation. Global stability is also considered by Worz-Busekros (1978)

using Liapunov functions for equations involving special kernels k(s), namely

kernels which are linear combinations of polynomials times decaying exponen-

tials. These very interesting global results, however, do not seem to apply

or at least have not been applied to non-Kolomogorov type models such as (1.9).

The equation (1.9) derived in Chapter 1 is obviously quite complicated in

a general setting. I want therefore only to consider the special cases (1.11)

and (1.12) in order to g~in some insight into the effects of gestation and

maturation periods separately. Before doing this, however, it is possible to

make a couple of simple observations about (1.9). First of all, Po - 0 is

always an equilibrium. Secondly, if (1.9) is linearized at PO· 0 under

the assumption that d - d(P t), m - m(a,Pt) are independent of time, one ob

tains the linear equation

·f~x'(t) + dox(t)_ (mO(O)g(t-s) + k(t-s»x(s) ds

where k(t) - !~g(t-s)mo(s)exp(-dOs)ds and where dO· d(O) ~ 0, mo(a) •

m(a,O) > O. The characteristic equation is then (z + dO)(l - g*(z)m~(z+dO»

• 0 whose roots are z - -dO and those of g*(z)m~(z+dO)· 1. Since for

Re z > 0 we have Ig*(z)1 ~ 1, Im3 (Z+do)I ~!~ mO(s)exp(-dOs)ds :- RO where

R
O

can be interpreted as the net reproductive rate when the population is

near zero. Thus there are no roots satisfying Re z > 0 if RO < 1 and

dO> 0 which leads us to the reasonable and general conclusion that if the

net reproductive rate drops below replacement for small population sizes then

small populations will ~ extinct (PO = 0 is locally asymptotically stabl e).
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As a first special case I would like to consider the effects of a maturation

period, but in the absence of a (significant) gestation period or any other

response delay. Consider then the equation (1.12) and assume there exists a

positive equilibrium Po > 0 (i.e. Po solves (2.1». The death rate is

assumed constant: d· constant > O. The fecundity function m. m(a,P) > 0

is assumed independent of time t and is assumed to satisfy the following:

These mean in essence that newborns have zero fecundity and that any increase

in total population, at least near equilibrium, cannot result in increased

fecundity for any age group. The linearization at Po leads to

whose characteristic equation reduces to (after a division by z + d)

(2.7.)

where m8(z) is the Laplace transform of .O(a). m(a,PO)' If z is a root

of (2.7) with Re z ~ 0 then from (2.6) the left hand side of (2.7) is

strictly greater than one in absolute value. But by (2.1) it follows that

I I .. -da-8 (z+d) ~ '0 m(a'PO)e da· 1 for

that (2.7) has no roots satisfying

Re z > O.

Re z > O.

This contradiction implies

THEOREM 3. Under the assumptions (2.6) M the fecundity function m any

positive equilibrium of (1.12) is locally asymptotically~.

Since the conditions (2.6) are quite general and also very reasonable bio-

logically ~ conclude that maturation periods per ~~~ likely ~~

instabilities.

A typical example is (see Hoppensteadt (1975»

(2 .8) m - b6(a){1-P}+ ' 6(0) • 0, 6(a) ~ 0, /~6(a)da - I, 6(~) exists, b>O



101

where {x}+ • x if x > 0 and zero if x < O. Without loss in generalit y I

have assumed that t he total population is measured in units such that t he

fecundity (of all age classes) drops to zero when the population size reaches

unity. The constant b will be referred to as the modulus of fecundity. For

this example. PO. (RO-l)/RO where RO c b8*(d) a bJ~8(a)exp(-da)da is the

net reproductive rate and thus Po > 0 if and only if R
O

> 1 (a condition

which we saw above to be necessary for the instability of the zero equilibrium

state). By Theorem 3 this positive equilibrium is locally asymptotically

stable when it exists. namely when RO > 1.

Suppose that in the example (2 .8) the fecundity age distribution function

8(a) is given by one of the functions

(2.9) 8 (a)
n (

_Tn) n+l 1 n
J Ii! a

-na/T
e n·l.2.3 •••••

where T >0 is the ~ of maximum fecundity . The integer n measures the

"length" of the period of~ reproduction. An increase in n shortens

this period of active reproductivity while a decrease in n lengthens it.

In this case 8*(d) c

net reproductive rate

8*(d) = nn+l(dT+n)-n-l and the (low population level}
n

becomes R
O

a RO(n.dT.b) a bnn+1(dT+n)-n-1. Solving

(2.1) for the equilibrium Po one finds that PO· PO(n.dT.b) • (RO-l) IRa·

Note that Po increases (decreases) as RO increases (decreases) and is

positive if and only if RO > 1. It is interesting to study for this example

the dependence of Po on n. dT and b. This can be done by means of

Theorem B.2 of Appendix B. Suppose we pose the problem of trying to obtain

a maximum positive equilibrium PO' From Theorem B.2 it is seen that in this

example the equilibrium Po is ·positive if

(2.10) b e-dT > 1 and n > N > 1

for a certain first integer N. Furthermore
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(i) for fixed dT < 2 and b satisfying (2.10) the equilibrium PO.

PO(n,dT,b) monotonically increases to p•• (be-dT_l)/be-dT < 1 with n > Nj

(ii) for fixed dT > 2 and b satisfying (2.10) the equilibrium Po

increases to a maximum for some nO ~ N after which it decreases to

increasing nj

P with•

(iii) for fixed n and dT, Po increases with b;

(iv) for fixed b and n, Po increases with decreasing dT.

The last two statemnts (iii) and (iv) lead to the rather intiutively obvi-

ous conclusion that in~ !2. maximize the population equilibrium the modu-

Ius of fecundity b should be increased and the death~ d should be de-

creased. The first two statements (i) and (ii) lead to the following

theoretical conclusions : if ~ species matures sexually at an early~ (rela

tive !£ its expect. '! lifespan, ! ..!.. T .!!. small relative to lId) then it ~

always increase its equilibrium size ~ narrowing its~ reproductive

period (!..!.. ~ increasing n) , If however it reaches sexual maturlEY. late

then there is ~ optimal length to its reproductive period which produces ~

maximal equilibrium population size. The case (ii) would seem to be an

exceptional case however. This is because e-da is the probability of survi

ving to at least age a and hence expected survival is to age lId. The

condition dT > 2 means that the age of maximum reproductivity T is twice

the expected life span lId.

Whereas a maturation period delay does not cause instabilities in the models

above, a gestation period can cause instabilities, as will be seen in the

next chapter.

Chapter J: ~ SPECIES OSCILLATIONS IN ! CONSTANT ENVIRONMENT

Consider the model (1.11) with a ~estation period delay when d· d(P) ~ 0

and m. m(P) ~ 0 are independent of age a and time t. This equation has

a positive equilibrium Po if and only if m(PO)· d(P O) ~ 0 has a solution

Po > 0 (see (2.1) in vhich R· m(PO)/d(PO» . A linearization of (1.11)

about Po yields the equation
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where dO· d(P O)' dO • d'(PO) and mO - m'(PO)' whose characteristic equa

tion ia

(3.1)

The scability criteria of Chapter 2 can be applied to this equation with c·

dO + Poda and b(s)· -(dO + POma)g(s). That Po > 0 can be unstable, un

like the case of the maturation delay model (1.12) considered in Chapter 2,

can be easily illustrated by an example.

Suppose that d· constant > 0 and m· bel - P}+, b • constant > O. Then

Po • (b - d)!b > 0 if and only if b > d. Since dO· 0, .0 • -b we find

D(z) • z + d - (2d - b)g*(z)

The stability criteria of Chapter 2 (following Theorem 2) can be applied to

this equation. For example, from (a), (b) and (e) respectively 'we find

that Po in this example is asymptotically stable if d < b < 3d or if

g(+c) • g'(+c) • 0, g"(s) > 0 and b > 2d or if b > 2d and f~sg(s)ds <

11 (b-2d) respectively.

To see that Po can be unstable in this example, consider the special case

-2 -sITwhen the gestation period probability density function is g(s) - T se ,

T > O. Then g*(z). (zT + 1)-2 and it is easy to show by investigating the

roots of D(z) that Po is asymptotically stable if b < bO and is un~

stable if b > bO where bO is given by

(3.2) b • 2Td2 + 6d + 2o T

Note that this critical value bO of the modulus of fecundity b is large

for both small and large gestation delays T (unlike the case of the famous

delay logistic equation where bO + 0 as T + +c see May (1974, p.98» .

Note also that bO attains a minimum of lOd at T· lId, in other words the

smallest critical value of the modulus of fecundity occurs when the gestation
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period in length is equal to the expected lifespan of an individual. This

suggests that instabilities due to gestation delays .!!!.~ likely in species

which die illllllediately after reproduction.

Loss of equilibrium stability suggests the possibility of nontrivial sus

tained oscillations. Sustained oscillations in a constant environment,

whether caused by a gestation period or whether caused by some other mechan

ism, are of great interest to population biologists. Although all population

data invariably possess fluctuations, the regularity of the fluctuations of

certain populations have intrigued ecologists for many years. Regular

"cycles" have been reported, just to mention a few cases, in populations of

the Snowshoe Hare, Canadian Lynx, many species of voles and lemmings, the Pra

irie Chicken, the Ruffed Grouse, Muskrat and many other (particularly Arctic)

small mammals and b ~rds as well as certain insect species including the Sheep

Blowfly, water fleas of the genus Daphnia and several strains of beetles. Any

regularity in population fluctuations can of course be due to a great many

causes, some of the more obvious being regular daily or seasonal oscillation

in abiotic environmental factors such as temperature, weather conditions,

availability of food and water or other resources, etc. An intriguing aspect

of many observed cycles, however, is that they often track no apparent envi

ronmental periodicity. For example, small herbivores such as voles and lem

mings often have approximately three to four year cycles while larger herbi

vores such as the hare, lynx and grouse often have approximately ten year

cycles (Ricklefs (1974». Oscillations can also be attributed to interactions

with other species even in an otherwise constant environment such as is sug

gested by the famous Volterra predator-prey model. Laboratory experiments

with insects (e.g. see Slobodkin (1961), Nicholson (1954» have shown, on the

other hand, that it is also poosible for a single isolated species to have

sustained population oscillations in a constant environment. This possibility

for inherent oscillations is of interest to population biologists as one
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possible explanation of certain observed cycles.

For mathematicians who are interested in the study of models arising from

population dynamics the question of the existence of periodic solutions and

the nature of these solutions is of course an interesting and challenging one.

The topics of the existence and bifurcation of periodic solutions, their per-

iods and amplitudes, beats, resonance, synchronization and many others are

familiar topics in other applied fields. Most of these topics are virtually

unexplored with respect to models in population dynamics.

Consider now the question of the onset of oscillations accompanying the loss

of stability in a single species model in a constant environment. I want to

treat this question as one of a bifurcation phenomenon for the autonomous

integrodifferential equati~~ (1.9) by means of the following very general

theorem (Cushing (1979b».

THEOREM 4. Suppose that the linear equation

(3.3) o

has exactly two independent p-periodic solutions Yi(t) for isolated values

of the constant a i and for integrators hies) of finite total variation.

Suppose that the operator S(x,A l,A2) satisfies hypothesis H3 of Appendix ~

o 1with Y· C (p) and X" C (p), the Banach spaces of continuous and continu-

ously differentiable p-periodic functions under the usual supremum~ and _

that S(x,A l,A2) .. 0( 1 Ixllo+llx' llo) near x· 0 uniformly ~ bounded

Al,A 2 sets. Then the equation

has p-periodic solutions of the form x(t)· &(y(t) + z(t,&», Ai· Ai(E:) for

small 1£1 with z(t,O) ;: 0, \(0). 0, z ~ orthogonal ~ Yi and~ y

~~ given nontrivial linear combination of the Y1 •
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Proof. Let L and T be operators defined by the left and right sides of

(3 .4) respectively. Let X· Cl(p) be the Banach space of continuously dif

ferentiable p-periodic functions under the norm I Ixl 10 + Ilx'l 10 and let

Y - CO(p} be the Banach space of continuous p-periodic function under the

supremum norm I Ixl 10 - sUP_p~t~lx(t}1 • The linear operator L: X ~ Y is

Fredholm (Cushing (1977b)) and Hl of Appendix A holds. Take h - ° in equa-

tion (A.l) and note that T is independent of & in Theorem A of Appendix

A (see the REMARK in Appendix A). A Fourier analysis shows that (3.3) has

exactly m - 2 independent p-periodic solutions for isolated a
i

if and only

if the following condition are met:

[

e i t her Cl(l}C2(n} ~ Cl(n)C2(l)(3.6)
for all integers n ~ 2

where w - 2w/p

where Ci(n}:- I; cos ows dhi(s), Si(n}:- I~ sin ows dhi(s}. These two

independent solutions are Yl - sin wt and Y2 - cos wt. The null space of

the adjoint equation

1 p.
is also spanned by sin wt, cos wt. Thus d - det(p 1010 Yi(t-s)dhj(s)yi(t}

dt) which turns out to equal d - -(~ + ki)Ll/4 ~ ° if y(t)· klYl + k2Y2'
2 2kl + k2 ~ O. Thus, the final hypothesis H4 holds and Theorem Ai applies. 55

REMARKS (1) Although this general bifurcation theorm appears different

from the familiar Hopf-type bifurcation theorems because it involves two bi-

furcation parameters ~1 instead of just one, it 1s actually more general

than Hopf bifurcation in that one-parameter Hopf-type bifurcation theorems are

derivable fro~Theorem 4 if (as is usually done in the proof of Hopf bifurca-
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tion theorems anyway) the unknown period is introduced into the equation as a

second bifurcation parameter by means of a rescaling of the variable t. This

will involve, however, greater technical details and hypotheses (e .g. on hi)

and require a further nondegeneracy condition. For further discussion of the

relationship between Theorem 4 and Hopf bifurcation see Cushing (1978a,1979b).

Note that the nondegeneracy condition d ~ 0 is always fulfilled in the

above application of Theorem A •

Hopf-type bifurcation theorem can be found in papers by Kazarinoff and Wan

(1978), Stech (1979) and Simpson (1979).

(2) In the applications to be considered here the integrators will either

have the form dh(s) • k(s)ds or h(s)· uO(s), the unit step function at

a • O. The generality of Theorem 4 allows also for instantaneous time lags

(h(s) • ~(s» and multi-lags. For examples see Cushing (l978a,1979b).

(3) From Theorem A of Appendix A, x and A have the smoothness in €

possessed by S. This allows one to substitute € expansions for x and A

into the integrodifferential equations in order to calculate lower order

approximations to solutions by means of the usual procedure of eliminating

secular terms .

(4) The question of the (orbital) stability of the bifurcating periodic

solutions is not addressed in Theorem 4. Stability theorems analogous to

(and actually generalizations of) the classical Hopf bifurcation theorems for

differential systems have been proved for integrodifferential systems (see

Stech (1979), Simpson (1979) and their references). These theorems assert

that the bifurcating periodic solution is stable if a certain (in principle

calculatable) number 6 is negative and unstable if 6 > O. The number 6

depends on the nonlinearities as well as the ingredients of the linearized

system (the critical values ai' the nontrivial solutions of the linearization

and those of its adjoint) and although formulas and/or procedures have been

given i n the literature for the calculation of 6 they are unfortunately
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notoriously lengthy , very tedious and ra~ely practical or useful in anything

but the simplest of exa~ples. One can, of cours~, get an idea of t he stabill-

ty of the periodic solutions from numerical integrations. §§

Suppose that Theorem 4 above is applied to the gestation delay model (1.11)

with the linear fecundity function as in the above example, namely to

(3.8) pl(t) + dP(t) ~ J~g(t-S)b{l - P(s)}+P(s) ds

where d > 0, b > O. This model has equilibrium PO· (b-d)/b. Let x· P-PO

and P1 - d, P2 - b-2d, Pi - a i + ~i' Then (for x small) (3.8) becomes

(3.9) x' + a1x + a2J~g(t-S)X(S)dS - -~lx - ~2J~g(t-S)X(S)dS

-(a2 + 2al + ~2 + 2Al)I~g(t-S)X2(S)dS •

an equation of the form (3.4) to which Theorem 4 applies. Thus, model (3.8)

will have a bifurcating branch of nontrivial p-periodic solutions for values of

b - bO + 81(&) and d - dO + 82(&) provided the linearized equa tion has

exactly two nontrivial p-periodic solutions. This will occur provided (3.5)-

(3.7) hold for some p> 0 where in this case C1 (n) e 1, Sl(n) ·0 for all

n, that is provided the following condition are met: C2(1) ~ 1, 5
2

(1) ~ 0 and

where C2(n) : - J~ g(~)cos nws ds and S2(n):- J~ g(s)sin nws ds. In order to

have bO > dO > 0 it is also necessary that

(3.12)

(Note: Ic2(n) 1 and IS2(n)1 ~ J~ g(s)ds = 1.)

Thus (3.8) has a branch of p-perlodic solutions bifurcating from the equl-



109

librium PO· PO(E,p) • (b-d)/b for b ~ bO(p) + Bl(E,p), d • dO(p) + B2(E,p)

for a period p > 0 provided that (3.10) and (3.12) hold for this p.

Here the dependence on p is explicitly indicated. Since (3.10) and (3.12)

are inequalities they in general will hold for an interval of periods p

so that the branches found here form a two parameter family of periodic

solutions.

A ifi 1 id i h g(s) • T- 2se- s / T, T 0 Is a spec c examp e , cons er aga n t e case > • n

2 2 2 2 2this case C2(n) . (l-(nwT) )/(l+(nwT» , S2(n) • 2nwT/(1+(nwT» so that

(3.12) holds if and only if wT > 1 or in other words for periods satisfying

p < 2wT •

That the second inequality in (3.10) holds is easily checked. Bifurcation

thus occurs for band d at the critical values given by

(3.13) b •o
4 2(wT) + 4(wT) - 1

2T

2
(lilT) - 1

2T w • 2f1/p.

This bifurcation~ C, which in nonparametric: form (i.e. when w is

eliminated) is just the parabola (3.2) found from the stability analysis, is

plotted in FIGURE 1.

b

C

II

b - d

I

liT

~ ~H -FIGURE .!.: For equation (3.8) with g(s) .. T se , PO" 0 is asymptotically
stable in region I and unstable in 11,111. PO" (b-d)/b is positive in 11,111,
is asymptotically stable in II and is unstable in III. The steep curves above
and emanating from the parabolic bifurcation curve C are the curves along
which bifurcation occurs in spaces of fixed period.



110

A substitution of series expansions in c

2 3
x - P - Po - ty + £ Z + e w +•••

into equation (3.9) yields. by equating coefficients of corresponding powers

of t. a hierarchy of linear problems for y.z.w•••• whose orthogonality

conditions for the nonhomogeneities determine the constants Y
i

• 8i •••• • It

is easy to show by this procedure that in this example both Yi - 0 (so that

the bifurcation is "one-sided"). These quantities are functions of p. For

example when p. 2wT and y. cos t one finds that

x • E:COS t
2 1 1 1

+ e (- '2 + 12 cos 2t + 12 sin 2t) + .•.

81 - 7/15OT and 82 - 76/75T so that in the original variables

P(t) • 2 157 1 1
1 + tCOS t + £ (- 300 + 12 cos 2t + 12 sin 2t) + ••.

b •

Note that the average p-1!~ P(t)dt - 1 ~ (157/300)c2+••. of the oscillation

2is less than that of the equilibrium PO. 1 - (7/300)£ +••• • It can be

shown in this example that these bifurcating periodic solutions are orbitally

stable.

Note that if only one of the parameters is varied. say b is varied while

d is held fixed. then bifurcation occurs at C for a critical value bO

given by (3,13) or (3.2) with a period which now varies and increases with

b (see FIGURE 1) starting at a critical period p obtained by solving for

p in the second equation of (3.13). This is typical Hopf-type bifurcation

with a typical bifurcation diagram as shown in FIGURE 2.

A similar analysis for delay models of Ko1omorgorov type (1.10) (i.e.

neglecting age structure and gestation periods) i3 given by Cushing (1977a).

Some examples involving two delays are worked out also by Cushing (1979b).
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Ilpet) II
1

~---i-::,,--,:o--'r-----t-----------b

FIGURE 2: The bifurcation diagram for equation (3.8) with d heid fixed and
b varied. The dark line represents stable equilibria and stable periodic
solutions.

It is interesting to compare the bifurcation phenomenon above for a gestation

delay model (3.8) with that of a similar model with response delays in the

death rate (and/or maturity function) 8S in the classic delay logistic. Con-

sider the delay logistic e~uation (2.5) with P measured in units so that

y .. 1. The characteristic equation of the linearization at Po - r(l + ~)-l

-2 -sITis z + ~Po + POk*(z) - 0 which, when k(s)" T se ,reduces (for z ~

lIT) to the cubic equation

whose roots are easily shown by the Hurwitz criteria to all lie in the left

half complex plane

for all r > 0 provided p > 1/8

for a < r < r or r > r+ provided a < p < 1/8

where r+"

nary roots

1/2 2
(1+p)(1-4~ ±(1-8p) )/4Tp. For r - r+ there are purely imagi-

z .. ±!.wa for lila" T-l(1+2~r±(1~)-1)172. For r_ < r < r+ the

equilibrium is unstable. Thus one has a bifurcation occuring at r" rand



112

at (whose branches presumably join). The bifurcation picture

analogous to that given in FIGURE 1 for this delay logistic equation when 0 <

~ < 1/8 is shown in FIGURE 3.

as u + O.

Note that r+ + of-. r_ .. 2/T and 1111' + 1

By way of comparison between the gestation delay model (3.8) and the

delay logistic (2.5) note that for large inherent death rates d bifurca-

tion occurs earlier (for 8m&ller modulus of fecundity b) in the delay 10g1s-

tic while the opposite is the case for small d. For small d bifurcation

not only occurs for smaller b in the gestation delay model but it results in

oscillations with a longer period.

The existence of nontrivial periodic solutions of integrodifferential equa-

tions of the type we have been considering (as well as of other delay models)

has frequently been used in a qualitative way to explain sustained oscilla-

tions observed in some animal species. Going further than this. some (e.g.

see May (1976). Maynard Smith (1975» have obtained remarkably close fits to

certain oscillatory data using delay models, although this is often done with

simple models (such as the lag logistic equation) which do not, in spite of

the good fit to data, offer much specific explanation of the biological mech-

b

2/T

--~===::;;:...------------~------+d

FIGURE 3: The bifurcation diagram for the delay logistic (2.5) with O<lJ<1/8
showing-the bifurcation curves Cl.C2' The bifurcation curve C* of the gesta
tion delay model (3.8) is also drawn from FIGURE 1 for comparison purposes.
PO·O is stable in I. PO>O is stable in II,IV and unstable in III. Also Y • 1.
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anisms involved. Since gestation and maturation delays as well as other age

dependent phenomena have been specifically cited as agents causing oscilla

t ions in certain insect populations (Nicholson (1951), Slobodkin (1961), May

nard Smith (1975» it would be of interest to do similar data fitting using

some of the models considered here. This kind of quantitative use of delay

models has only begun in population dynamics.

Chapter 4: SINGLE SPECIES OSCILLATIONS IN ! PERIODIC ENVIRONMENT

Although it is possible, as we have seen in the previous Chapter 3, for an

isolated species to exhibit inherent oscillations in density, it is undoubted

ly true that an at least equally, if not in many cases a more important, cause

of such oscillations in nature is the presence of some sort of environmental

periodicity. Such environmental fluctuations express themselves in models of

the type being considered here by the explicit appearance of time t in the

parameters of the equation. If the model parameters depend periodically on t

then there arises first of all the interesting mathematical questiou of the

existence of a periodic solution••••a solution which presumab1~ plays the role

played by the equilibrium in the autonomous equations and which, if stable

(another interesting mathematical question), plays the role of a "periodically

varying carrying capacity", Beyond this, a host of other questions arise

which are virtually unexplored in a population dynamical setting. For example,

given the possibility of inherent oscillations in conjunction with environmen

tal forcing periodicites there arise questions concerning reasonance effects,

beats, sub- and ultraharmonics and the question of which period will the pop

lation predominately track and with what amplitude and average. Which vital

parameter oscillations play the most significant role in the resulting dyna

mics and in what way? Are there bifurcations of further periodicities at cri

tical parameter values? What effect does different phases in vital parameter

oscillations have?
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Many of these questions are studied (mainly numerically) in an interesting

paper of Nisbet and Gurney (1976) for the special case of the lag logistic eq-

uation with sinusoidal oscillations in the inherent growth rate and the carry-

ing capacity. Some quite general theorems concerning the existence and stabili-

ty of positive periodic solutions have been obtained for functional equations

of r~lomogorov type (1.10) by means of bifurcation theory by Cushing (1977a.

1978b).by means of limiting equation techniques by Artstein and Karakostas

(1979) and by means of multi-time scale perturbation techniques by Simpson

(1979) •

In this chapter I will confine myself to the mathematical problem of the ex-

istence of periodic solutions of integrodifferential equations in which the

parameters exhibit small amplitude periodic oscillations and to a very brief

study of some of their properties. This will be done by another application of

Theorem A in Appendix A where £ vill be the amplitude of these oscillations.

Suppose that the death rate d and fecundity m in the general model (1.9)

are subjected to a p-periodic oscillation in time of amplitude £ in such a

way that when £. 0 equation (1 .9) has a positive equilibrium Po > 0 (sat

isfying (2.1». If one sets x. P - Po in (1.9) there results in general

an equation of the form to which Theorem A can be applied. Rather than at-

tempt to do thb in any general way I will consider as an example a gestation

delay model.

Suppose that in equation (3.8) the constants d and b are replaced by

d + £~cos(wet+~) and b + £cos wet respectively where a ~ O. we > 0 and ~

are constants:

Thus the inherent death and birth rates are subjected to p • 2w/w
e e

periodic

oscillations about constant values with amplitudes proportional to £ and a

phase dtfferacs of •• Yhen e:. 0 we have the equilibrium PO· (b-d)/b
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so that we assume b > d. If :: - P - Po then

(4.2) x'(t) + dx(t) + (b-2d)f:'g(t-S)X(S)dS - T(X,E) + &h(t)

h(t):- PO(db-lcos III t - (lcosCu! t~»e e

f
t 2

T(x,d:- -b _ g(t-s)x (s)ds + d-x(t)(lCOS(lllet~)

I 2+ cos wet _g(t-s)«l-2PO)X(S) - x (s»ds)

an equation to which Theorem A(ii) in Appendix A immediately applies (on the

Banach spaces of p -periodic functions used in the proof of Theorem 4) provi
e

ded that the linear homogeneoua equation

(4.3) x'(t) + dx.(t) + (~-2d)I~g(t-8)X(S) da • 0

has no nontrivial Pe-periodic solutions in which case

(4.4) y'(t) + dy(t) + (b-2d)f:'g(t-S)y(S) ds • h(t)

has a unique p -periodic solution (Cushing (1977b».e

THEOREM 5. If the average inherent birth and death~ band d, b > d ,

~ such that (4.3) has ~ nontrivial Pe-periodic solutions, then (4 .1) has

for each small 1&1 !!. Pe-periodic solution of the form pet) - Po + Ey(t) +

E:Z(t,E) where y is the unique Pe-periodic solution ~ (4.4).

Higher order terms can be found in the usual manner by substitution of the

E-expansion for Pinto (4.1), equating coefficients of like powers of E

and solving the resulting hierarchy of linear nonhomogeneous equations. This

can be of use if some specific property of P is sought. Several examples of

this will now be considered.

~ First, consider the question of the average av(P) of pet) over one

period. It is easy to see from (4.4) that av(y) - 0 since av(h) - O.

More specifically, the solution of (4.4) has the form y • AC08111 t + Bslnlll te e
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for constants A and B. Thus av(P) - Po + £av(z) or if z - dw + oed)
2 3

then av(P) - Po + e av(w) + 0(£ ). Here w is the unique P
e
-periodic solu-

tion of the linear nonholllOgeneouB equation obtained from the 0(£2) terms in

(4.2), namely

(4.5) w'(t) + dw(t) + (b-2d)J:'g(t-S)W(S) d$ a bet)

b(t):- -bf:'g(t-S)y2(S)dS + cO~etf:'g(t-S)(l-2PO)Y(S)dS - y(t)acos(ooet~)

an integration of which over one period p yields av(w)· (bood) -lav(ii). The
e

average av(h) 1s found by computing A and B, a straightforward but rather

tedious job in general.

Suppose we consider the special case a - 0 in (4.1) when the death rate

is constant in time. Then it turns out that

(4.6)

and that

A - .! (d - aC(l»n

B:- Po(l - PO) > 0, g:

~:- bel - 2PO) - 2d-b

B • ~ <We + 6S(1»

(d - aC(1»2+ (00 + 158(1»2 > 0
e

(4,7)

where C(l), S(1) are the Fourier cosine and sine integrals of g(s) as in

the previous Chapter 3. The question of whether av(P) is greater than or

less than the unperturbed (constant environment) equilibrium Po is deter

mined by the sign of av(ii) in that sign(av(P) - PO) - sign aV(h) for

S1II&ll I£ I. The answer to this simple question remains unclear, even after

the simplifications made so far, because the formulas (4.6)-(4.7) remain

rather complicated. That there is no single answer can be shown, however, by

some further special cases.

.ill. Suppose ern + 1 and S(l) .. 0 III - 2'1llp + O•& ~
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b > d there exists ~ Po > 0 such that Pe > Po implies that av(P) < Po

for small lei. This is because that since n + (d_b)2 as w + 0 it is
e

straightforward from (4.6) -(4.7) to show that 2av(h) + -d(b-d)/b3•

We conclude that for environmental fluctuations of large periods density

oscillations occur with average less than the constant environment equilibrium.

(ii) Since C(l) + 0 and 5(1) + 0 w + +m (by the Riemann-Lebesgue
e

lemma; see Hewitt and Stromberg (196l.p.48l». given b > d there exists ~

Po > 0 such that 0 < Pe < Po implies that av(P) < Po for small lei.
This is because it turns out that 2av(h)" (B/f2)2b-lr where r .. r(w ) ..

e

_b2(d 2+
w
2) + 6(2b2+ niB) (dC(1)-6S(1»-62(b2+ niB) (C2(1)+

5
2(1» and hencee

r(w ) .. _b2w2 + O(wo) . 0 < 2. Thus av(h) < 0 for w large.
e e e e

We conclude that for environmental oscillations of very short period density

oscillations occur again with average less than the constant environment

equilibrium.

(iii) Finally we ask whether it is possible under suitable circumstances

that av(P) > PO' At least one case for which this occurs is the case of

small d. For

2 av(h) ..

if b and we are held fixed while d + 0

[

w 5(1) - b(S2(1)+c2(1»
d e

b(b2C2(1) + (w
e

-bS(1» 2)

it turns out that

Thus if we > 0 is such that 5(1) > 0 then

there exists ~ dO > 0 such that 0 < d < dO implies av(P) > Po for small

Ie/ • Note that the constraint on b implies b < w /S(l)
e

and recall that

w 15(1) is the critical bifurcation value of b corresponding to d .. 0 for
e

period p (see Theorem 4).
e

Thus b and d satisfying these conditions

yield, in a constant environment (e .. 0). an asymptotically stable equilibrium

Po' The requirement that 5(1) > 0 means that some delay must be present.

The gestation delay distribution given by -2 -siTg(s) .. T se satisfies all

the conditions of the three results (i-iii) above.
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Case (iii) is perhaps the DOst interesting for it says that under certain

circumstances.! gestation delay~ result in~ average population density

which is greater than the constant environment equilibrium. A similar analy

sis on the correponding nondelay model (g(s) - 0o(s}) shows that under the

same circumstances av(P) < Po for 1£1 small, so that it is the gestation

delay to this model which has caused a larger average population density.

(b) Consider nov the question of the amplitude of the oscillations in (4.l).

(4.6)

Again suppose a - O. To order Oed

tude H - (A2+ B2)1/2 which from

these oscillations about

1/2
equals H - SID

Po have ampli

Observe first

of all that 0. + 0 and hence H + +- as d + dO:- -weC(l)/S(l} and b +

bO:- ~e(1-2C(l»/S(1). But dO' bO are the critical values of d, b at

which the linear equation (4.3) has nontrivial Pe-periodic solutions (and at

which bifurcation occurs in a constant environment, see (3.ll}). This reson-

ance-like phenomenon implies then that large oscillations are likely to re-

suIt in (4.1) for average death and birth rates d, b nearer these critical

values.

1£L Finally consider the amplitude H (to order o(£)} as a function of

the gestation delay. Hore specifically, suppose g(s} - r-2se- s /T and conse-

der H· H(T) as a function of T > O. For simplicity assume that time is

measured in units for which the environmental period is p • 2~ (i.e. ~ -1).e e

In this case we find that

Then 0.(0+). (b-d)2+ land 2o.(+w) • d + 1 which imply that

Furthermore an investigation of r'· dr/dT shows that r' > 0 for T < TO

and r' < 0 for T > TO for some critical TO > O. Thus
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sign dQ/dT = sign(2d-b) for T < TO but sign dO/dT - -sign(2d-b) for

T > TO' Since H'. dM/dT SO'/203/2
it follows that

sign HI -
[

- sign(2d-b)

sign (2d-b)

for T < TO

for T > TO •

Consequently two different cases occur as illustrated in FIGURE 4. Note that

if b < 2d then the presence ~ ~ gestation delay decreases the amplitude of

the oscillations while if b > 2d such ~ delay increases the amplitude. §§

Time delays are generally considered to cause adverse effects: instabili-

ties, oscillations and so on. It is interesting to note two effects caused by

the gestation delay in the above examples which might be considered as "posi-

tlve". Namely, the I!eriodic oscillation in population density due to a perio-

die fluctuation in the inherent birth~ (as modeled by (4.1) with a - 0)

~ under certain circumstances have its average increased and its amplitude

decreased ~~ gestation delay (or by a lengthening of this delay).

Up to this point we have been considering the problem of environmentally

forced oscillations under the assumption that there is no inherent (constant

environment) oscillation such as was considered in Chapter 3. If band d

H
b < 2d

H
b > 2d

H(o+)

-j----'--------T

H(o+)

T

FIGURE 4: The amplitude M=M(T) (to order 0(&» of the periodic oscillations in
the solution of the gestation delay model (4 .1) with a-O, w =1 and g(s) •
T-2sexp(-s/T} as plotted against T. e
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are such that inherent (£ - 0 in (4.1» oscillations occur then there arise

the questions not only of the existence of a periodic solution of (4.1) but

the nature of its properties ••••questions such as that of its period and ampli-

tude, whether it more closely tracks the inherent or environmental periodici-

ties and how these depend on the nature of the delay.

Suppose for simplicity from~ 0,» that t;h!Lenvironrnental periodicity~

Pe • 2w ,~ we· 1. If (4.3) has for b· bO' d • dO two independent

periodic solutions Yl(t), YZ(t) of period p ~ 2m01F/nO
where rnO ~ nO are

positive integers, then we can write (as in Chapter 3) x - P - PO' ~l • d

and liZ - b - 2d and set IIi - a i + Ai (£) where a
l

• dO' a
Z

• b
O

- Zd
O so

that equation (4.1) (or (4.Z» red\1ces to the equation

(4.9) x' (e) + alx(t) + azf~g(t-S)X(S) ds - T(x,A,d + Eh(t)

-zh(t):- (a l+o 2)al (Zul+aZ) cos t

T(x,A,£):- -Alx(t) -A2I~(t-S)X(S)dS -(Zal+a2+2Al+Az)I::Ct-S)XZCS)dS

-£Cu2+Az)(Zal+a2+2Al+A2)-lcos tI::(t-S)X(S)dS

I

t Z I(~1~2)lJl - (al+aZ)ul
-£cos t g(t-s)x (s)ds +E Z 2

- (21l1+JJ 2) (Zal+oZ)

The critical constants bO' dO are given by C3.ll) where w • nO/mO and

where C
2(1),

52(1) are replaced respectively by

(4.10)

Theorem A of Appendix A applies to (4.9) with m - 2, but now on the Ba-

nach spaces of periodic functions of the common period pc· ZmOw of the Yi

and h (i.e. of the inherent and environmental periodicities). The nondegen-

eracy condition H4 holds because d is exactly as in Theorem 4. The reason

we have assumed ID
O

~ nO is to fulfill the hypothesis HZ of Appendix A.
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THEOREM 6. Equation (4.1) with a· 0 has periodic solutions of the~

~ period pc· 2mOlr (~.!. the inherent and environmental periodicities) for

small It 1 and b· bO+ al(t), d· dO+ a2(t), ai(O). 0 where bO' dO ~

given EY (3.11) with ~ • 1 and 52(1) , C2(1) replaced ~ SO' Co in (4 .10).

Note that if mO > 1 then these oscillations are subharmonic, i.e. of a

period longer than the forcing environmental period.

To ~he lowest order in t this 2mO
lr-periodic solution of (4.9) satisfies

(4.11)

whose general 2mOlr-periodic solution is

yet) y (t) • A cos t + B sin te e e

*for arbitrary A and B where Ye is the environmentally forced response

whose coefficients Ae , Be are determined by solving (4.11). The amplitude

M• (A2+ B2)1/ 2 of this forced response is M. V/Ol / 2 where
e e

c:- [g(S)COS s ds
e 0

-2 -sITSuppose we let g(s)· T se and treat the forced response amplitude

M • M(T) as a function of T > O. In order to see how M changes with T

consider H'(T). (2fI0_~)/2n3/2. In this case

~ Consider the case dO = 0 (i.e. T = mO/nO). Then bO = 2nO/mO' 0 =
62222224 224nO(nO-mO) /mO(nO+mO) > 0 and dO = nO/mO Consequently' = a and

*The ai and hence band d depend on the choice of A and B.
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'1" :: no/2mo > 0 which implies that M'(T) > 0 for dO:: o.

We conclude that for small death~ d and for inherent birth rates b---- ------
~ 2/T the amplitude of the forced environmental response increases with

increasing gestation delay. From this we w~~ld expect to find that under these

circumstances the oscillations will tend to track more and more the forced en-

vironmental periodicity with increasing gestation delay.

ill Suppose we consider the case when T is very large. A straightforward

computation shows that

expression is negative.

-1 ,
" • (bO-2dO)bO (dO/bO) and that for large

CODsequently. M'(T) < 0 for large T.

T this

We conclude that for large gestation delays the amplitude ~ the forced ~-

vironmental response decreases ~ the delay increases. Thus, under these cir-

cumstances we expect to find the oscillations tracking the natural period . §§

Although only a gestation delay model has been considered in this chapter

(and a special one (4.1) at that) it should be clear how the analysis here

using Theorem A of Appendix A would apply to other models. For example. the

age dependent. maturation delay model (1.12) can be subjected to a very sim-

ilar analysis (although in this case, as was seen in Chapter 2, there would be

no inherent sustained oscillation in a constant environment and hence no reso-

nances or subharmonics in the .forced periodic environmental case).

Chapter 5: PREDATOR-PREY INTERACTIONS AND RESPONSE DELAYS

Except in artificial situatioDs it is very unlikely that a species will exist

in isolation from interactions with other species. The other species with

which a given species interacts could of course be viewed simply as one part of

the environment of the given species whose model equations as in the previous

chapters would then reflect this part. as well as the abiotic part. of the en-

vironment. The subject of ecology, on the other hand. attempts to study the

dynamics of such interacting species as a coupled system.

Traditionally. ecological interactions have been classified on the basis of
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a small number of types of two species interactions. While it is true that a

given species is also unlikely to interact with only one other species, these

two species interaction models seem to have proved fruitful as a means, albeit

elementary and simplified, of organizing the thinking, analysis and discussion

of the otherwise frightfully complex real world of multi-species population

dynamics. The types of two species interactions which play the central role

in population dynamics are predator-prey interactions and competitive inter

actions. In this and the following chapter I will explore some topics con

cerning these two ecological interactions when response delays are present.

Response delays appeared early in the modeling of predator-prey interactions.

Volterra was quick to point out that whereas contact between predator and prey

might (at least for the species he had in mind) result in a more or less in

stantaneous decrease in the prey population, the resulting increase (if any)

in the predator population might be significantly delayed because, if for no

other reason, the reproduction of the predator would not occur instantaneously.

This led Volterra to modify his now famous predator-prey model so as to include

a Volterra integral term of the type we have been considering here. The re

sulting integrodifferential model as well as many other differential delay

predator-prey models of Kolomogorov type (and some not of this type) have been

analysed in the literature (for a reference list see Cushing (1977a». It

would be impossible here because of space limitation to summarize adequately

this work and therefore I will restrict my attention to some models which,

while admittedly special in nature, nonetheless illustrate many typical fea

tures of predator-pr ey models with response delays.

(8) Stability of equilibria. Predator-prey models typically have several

equilibria. The "positive" equilibria (in which both prey and predator equi

librium states are positive) are important in that their stability reflects the

poss ible coexistence of the speci es . In addition there is usually at least one

equilibrium state in which the pr eda t or state is zero and that of the prey i s
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positive. If stable such an equilibrium, which arises under the assumption

that the prey has an inherent carrying capacity in the absence of predators,

suggests the impossibility of coexistence. The situation which is typical in

many (if not most) predator-prey models is the following: the null equilibrium

(which represents the absence of both species) is unstable if the prey has a

positive inherent growth rate at low population levels or a net reproductive

rate greater than one. For small inherent prey carrying capacity there is no

stable positive equilibrium and the predator goes to extinction while the prey

population tends to this inherent carrying capacity. In this sense the prey

cannot "support" the predator. On the other hand, if this carrying capacity

exceeds a eertain threshold level, there exists a stable positive equilibrium

which then implies possible coexistence. As the prey carrying capacity is in

creased further, however, the stability of this positive equilibrium is "weak

ened" (in the sense that eigenvalues move to the right in the complex plane) or

even lost altogether. This has been referred to as the "paradox of enrichment"

(Rosenzweig (1971». If in fact this stability is lost then there arises the

question of the existence of a limit cycle, a phenomenon considered quite im

portant in predator-prey dynamics. These assertions are easily demonstrable in

the simpler classical models. Many have been proved for quite general models

(Cushing (1976a,1979a».

To illustrate these phenomena I will consider a specific predator-prey model

involving a maturation delay as derived from the age dependent theory of Chap

ter 1. This model is possibly of some interest in and of itself because, first

of all, as far as I know there is no predator-prey model in the literature

which deals specifically with maturation period delays and secondly the model

exhibits some unusual phenomena.

Let V denote the prey (or victim) population and P the predator. Assume

that each species has a constant death rate independent of age. The prey's

fecundity function will be taken to be mv• bv{I-c1V-c2P}+ and that of the
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predator to be mp• be(a}V, f~e(a}da. 1, in equation (1.12) . Here c i ~ 0,

bv and b are positive constants and Sea} t 0 is a nonnegative, continuous

ly differentiable Ll function of a > 0 for which S(G}· O. These adm1t-

tedly simplified assumptions mean that the age dependent fecundity of the pred-

ator for any age group increases linearly with total prey population size

(dropping to zero for all ages when no prey are present); that the prey fecun-

dity is age independent and decreases linearly with an increase of either total

prey or total predator population sizes (dropping to zero for large popula

tions, namely for cl V+c2P ~ l); and that in the absence of predators the dyna

mics of the prey is governed by the dngie species nandelay logistic equation.

FrOlll (l.IO) and (1.12) we arrive at the .,stem

(5.l)
V' • rV(l - v/v.. - aP)

P' + dP • b J; e' (a) V(t)P(t-a)e-da da

for a constant predator death rate d and where

prey inherent death rate) is assumed positive and

r • b - d (d being thev v v

K - rlcl > 0, a - c2/r > 0' .

The constants K, r are the prey inherent carrying capacity (in the absence of

predators) and growth rate (in the absence of predators and interspecies COUl-

petition) respectively. Since there is DO prey response delay this partieular

model would only be suitable if the predator response delay due to its matura-

tion period is considerably longer than any prey response delays. An illustra-

tion might be a vegetation-herbivore interaction in which the vegetation regen-

eration time is short compared to the maturation period of the herbivore.

The system (5.1) has three equilibria V· VO' P - Po

(1) v • P • 0o 0 (3) Vo • I/R • Po • (KR-l)/aKR

where R:- b~e(a)e-dada.

Linearization at the null equilibrium (l) shows that this equilibrium is

always unstable since r > O. (If r < 0 , (1) is asymptotically stable 60
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that both species go to extinction).

Linearization at the equilibrium (2) leads to a characteristic equation

(z+r) (zofd)(l-bK8*(zofd» • 0 which has roots Re z ~ 0 if and only if 1-

I I · -dabKa"(zofd) - 0 does. Since b81t(z+d) ~ b/08(a)e da - R for Re z > 0 we

see that there are no roots with Re z > 0 when

(5.2) K< l/R •

Thus (5.2) implies that equilibrium (2) is (locally) asymptotically stable.

Note that (5.2) also implies equilibrium (3) is not positive.

Suppose now that equilibrium (3) is positive, i.e. K > ir«. Linearization

at this equilibrium yields a characteristic equation

(5.3) D(z):- (z+r/RK)(zofd)(l-bS*(z+d)/R) + dr(l-l/KR) - O.

It is difficult in general to study the possibility of roots with Re z > 0 of

this equation. We will consider two cases: K close to l/R and K large.

1!L For K - llR, D(z) reduces to DO(Z):- (z+r)(zofd)(1-b8*(z+d)/R). Sup-

pose that there exist sequences Kn,zn such that

(5.4) K > llR, K + llR, Re z > 0. D(z) • 0 for all n .
n n n - n

From (5.3) and Theorem C.2 of Appendix C it follows that zn IllUst be bound-

ed so that (extr~cting a subsequence if necessary) for some

Re Zo ~ O. By continuity DO(zO) - 0 and Theorem c.r of Appendix C implies

Zo • O. Thus we have sequences satisfying (5.4) and z + O.
n

Next we argue that the existence of these sequences contradicts the implicit

function theorem. Treating D as a function of K as well as z we consider

the equation D(z,K) - 0 to be solved for complex z· z(K) near (z,K).

(O,l/R). Easy calculations show that D(O,l/R). 0, Dz(O,l/R) a (drb/R)J~S(a)

e-dada > 0 and DK(O,l/R). drR . The implicit function theorem implies that

there exists a unique solution branch . z • z (K) of equation (5.3) which
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satisfies z(l/R) - O. An implicit differentiation shows that z'(l/R)-

2" -da-1-R (b/OaS(a)e da) < 0 and hence for K > 1/~, but near l/R. it follows

that Re z(K) < O. This yields the desired contradiction.

THEOREM 7. !2!:. the predator-prey model (5.1) with predator maturation

period delay the null equilibrium is unstable and the equilibrium (2) is

(locally) asymptotically stable if K < l/R. The positive equilibrium (3)

is (locally) asymptotically stable if K > l/R is close to l/R (and.!!.

I~as(a)da < +-).

As an example, take the fecundity age distribution function Sea) - S (a) asn

given in (2.9). We have seen that stable coexistence occurs only if K ex-

Suppose that we view all parameters except T,n as fixed and

ceeds the threshold value Kcr:- l/R. For this example K(n).
cr

(dT+n)n+l/bnn+l.

study K(n) as
cr

a function of these fecundity age distribution parameters T.n. This can be

done by the results of Appendix B. Recall that T is the age of maximum fe-

cundity and n (inversely) measures the "length" of the active reproductive

age period. A decrease in the threshold value K(n) promotes the survival of
cr

the predator in the sense that the predator then survives for a smaller prey

carrying capacity K and its equilibrium population is increased. The con-

verse is true if the threshold increases. Consequently we arrive at the

following conclusions on the basis of this simple model:

~!!.~ "length" n of the~ reproductive age period, !. preda

...!Q!:. promotes .!t!!. survival .EI. decreasing its age T of maximum fecundity;

for !!. given~ T ~ 2/d £!.maximum fecundity, .!. predator promotes~

survival .ll narrowing its~ reproductive .!.8! period (increasing n);

£2r.l! given age T > 2/d of maximum fecundity, .!. predator promotes its

survival hI. having lm optimal "length" n for its active reproductive period;

K~:) .. edTIb .!.!!. n .. +.. and thus for .!. very narrowly defined age

period of~ reproductivity the threshold is apprOXimately edT/b.
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(ii) As K ... ~ , D(z) given by (5.3) reduces to D...(a) .. z(z+d) (1

bB*(z+d)/R) + dr. More precisely, D(z) approaches D...(z) uniformly on com-

pact subsets of the right half plane Re z > 0 as K'" +co> This means,

first of all, by Hurwitz's theorem that if D...(z)" 0 has a root Re z > 0

then so does D(z)" 0 for large K.

Secondly, suppose that D...(z) ~ 0 for Re z > O. Assume Kn,zn are sequ

ences for which Re z > 0, D(z ) .. 0 for K .. Ie and K ... +a>. Then by
n - n n n

(5.3) and Theorem C.2 of Appendix C. z is bounded so that (extracting a
n

subsequence if necessary) %n'" zO' Re %0 ~ O. By continuity D... (zO) .. O.

This contradiction to our assumption implies D(z) ~ 0, Re z > 0, for large K.

Note that D...(z)" 0 is the characteristic equation for the system

(5.5) v' .. rV(l - aV), P' + dP .. bJ:S' (a)V(t)P(t- )e-da da

linearized at the positive equilibrium ~ .. l/R, P~ .. l/a. This system is

obtained formally by letting K" +a> in (5.1). It models the ease when

there is no prey self-inhibition term, i.e. prey increases exponentially with-

out bound in the absence of predators.

We have shown the folloving: suppose D (z) of 0.. for Re z .. o. If D (z)...
.. 0 has a root Re z > 0 then equilibrium (3) of (5 .1) is ur.stable for

large K. On the other hand, if D.(z)" 0 has no root Re z > 0 then equi

librium (3) of (5.1) is (locally) asymptotically stable for large K.

!h!!. is, roughlY speaking, for large K the stability property of equilibriUIII

(3) of (5.1) is that of the positive equilibrium v;, p; of (5.5).

That the positive equilibrium of (5.5) can be either asymptotically stable

-2 -a/T
or unstable can be seen by the following example. Take Il(a)" T ae in

2 -2which case D...(z)" z(z+d)(1-(dT+1) (zT+dT+l) )+dr whose roots satisfying

Re z ~ 0 are the same as those of the quartic polynomial

.. o •
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All coefficients are positive. A straightforward calculation of the Hurwitz

2determinants Hi ' 1 ~ i ~ 4, shows that B1- T > 0, H2 > 0 and H4- dT(dT +

1)2H3 where H3- drT2(dT+l)p(T), p(T) - d2(3d+2r)T3-d
2T2-8dT-4. Note that

H
3

> 0 for large T, but H
3

< 0 for small T.

Thus the positive eguilibrium V~- llR, p~- 1/0 of (5.5) with Sea) 

T-2ae-a / T
is unstable for small T > 0 and (locally) asymptotically stable

for large T > O. This is a rather unusual conclusion in that whereas large

~elays are usually destabilizing agents large response delays in this example

promote stability. This conclusion suggests that under at least some circum-

stances a predator should have a substantial maturation period in order to pro-

mote its stable coexistence with the prey.

For the original model (5.3) -2 -a/T
with Sea) - T ae it follows that for

large T and large enough K > 0 eguilibrium (3) !!. (locally) asymptotic

ally~ while for.!!!!!!ll T and large enough K it is unstable.

In this example the positive equilibrium (3) loses its stability as the

prey carrying capacity K increases provided the "maturation period" T is

small. This suggest the bifurcation of a limit cycle at some critical value

of the prey carrying capacity K.

~ Oscillations. The subject of predator-prey oscillations is an important

one of central interest in ecology which, as such, has a considerably large

literature. Volterra's original interest in mathematical ecology was in fact

stimulated by reported oscillations in certain fish species in the Mediterran-

ean Sea and his famous predator-prey model. in which all solutions periodic.

has been used as a possible theoretical explanation of this pbenomenon. This

model, however. has been heavily· criticized mainly on the grounds of its margi-

nal (structural) stability. It is considered of more interest that predator-

prey models exhibit limit cycle behavior and one can find an abundance of such

models appearing in the literature. The sources of these oscillations can be

found in a great variety of causes arising from many mechanisms. If we divide
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oscilla~ions in~o ~he two broad categories of the environmentally forced and

the inherent, unforced oscillations then the latter has by far received the

most attention. Limit cycle behavior due simply to the nature of the interac

tion in a constant environment is of special interest in predator-prey theory

(as it is in other subjects) and can be demonstrated using biologically quite

simple models involving (nondelay) differential equations. Forced oscilla

tions, which can superimpose with these inherent oscillations to produce inter

esting oscillatory phenomena, can arise from many causes, some obvious (e.g.

daily, monthly and seasonal cycles in the natural environment) and some more

subtle (e.g. complicated nutrient cycles). Such models have been much less

studied.

Response delays fl ~ into this picture as another possible source of oscilla

tions. While such delays are repeatedly mentioned in standard ecology texts

as a primary source of oscillations it is only rather recently that predator

prey models with delays have been mathematically investigated for oscillatory

solutions. For the constant environment case this has usually been done by

bifurcation analyses which have been carried out using a variety of approaches

(Cushing (1977a,1976a), Kazarinoff and wan (1976), Simpson (1979». It is

clear from this work that response delays can cause sustained predator-prey

oscillations and can do so in a model which otherwise would not show such os

cillations. Essentially all of these investigations, while often general

enough to apply to other models, have dealt with Kolomogorov type models with

delays in fecundity or death rate responses to changes in densities of either

prey or predator.

Oscillations due to periodicities in environmental parameters have been stu

died by Cushing (1976b,l977c) for models without delays although, as pointed

out by Cushing (l976b), it is easy to extend the techniques and results to

models with delays.

Gestation and maturation period delays do not seem to have been studied
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explicitly in the literature. There is not enough space here however to under-

take an investigation of oscillations caused by such delays, so I will accord-

ingly confine myself to the specific maturation delay model (5.1). One way in

which the bifurcation of nontrivial solutions from a positive equilibrium can

be rigorously investigated is by means of Theorem A in Appendix A along the

lines of what is done for other models by Cushing (1977a,1979b). Such bifurca-

tion occurs of course only at those values of the parameters at which the lin-

earized system has nontrivial periodic solutions, in other words at which the

characteristic equation (5.3) has purely imaginary roots z - i~, ~ ; O. It

is only this linear problem which will be considered here.

Equation (5.3) has a solution z - !w, w ; 0 if and only if

(dr/RK-w2)(1-bC/R) - ~bS(d+r/RK)/R + dr(l - l/KR) - 0

bS(dr/RK-w2)/R + w(d+r/RK)(l-bC/R) • o

• ~awhere C - C(w):- 'Oe(a)e cos wada, • -daS • S(w):~ '08(a)e sin wada. This can

be seen by setting z· iw in (5.3), equating real and imaginary parts to

zero and rearranging terms. Letting ~ - r/K we can solve the second equation

for ~ and the first equation for r to obtain

~ - wR(wbS~(R-bC»/(dbS+W(R-bC», (t:- r/K)

(5.6)

Thus we have p. 2n/w periodic solutions of the linearization of (5.1) for

K,r given by (5.6). It is necessary that w > 0 be chosen so that ~ > 0,

r > O. Note that R > bC follows from the definitions of Rand C.

We expect from the stability analysis in (a) above for the special case

8(a) - T- 2aexp(-a/T) that oscillations occur when T is small and K is
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large. In this special case S. 2wT(dT+1)/«dT+l)2+(~T)2)2,C • «dT+l)2_

(wT)2)/«dT+l)2+(wT)2)2. Equations (5.6) define large positive critical va-

lues of K,r for .T and p. 2." /w small. To see this let T .. 0+, w ........

in such a way that W'l • e • constant> O. Then S" 2e/(1+e2)2 > 0, C ..

2 2 2
(l-e )/(1+6) and it is easy to see from (5.6) that ~. O(~) and r.

o(1JJ2) as IJJ......... Thus we expect bifurcation of nontrivial large frequency

oscillations in (5.1) from equilibrium (3) for large K and r. §§

tn conclusion, we have found that a typical situation for the predator-prey

model (5.3) with age dependent fecundity in the predator species would be

roughly speaking the following: for inherent~ carrying capacity K less

tha~ the critical threshold value Kcr:· l/R the predator goes to extinction

while the~ popu :'ation tends to K; for K > Kcr' but close to Kcr' there

is ~ stable positive equilibrium indicating predator-prey coexistence; and

under certain circumstances for K large the predator-pre." system exhibits

nontrivial periodic oscillations.

Chapter 6: TW SPECIES COMPETITION

The theory of two species competing for the same resources plays an extreme-

ly important role in present day ecology, both applied and theoretical. The

role played by response delays in competitive interactions bas not, however,

been investigated to the extent that it has been for predator-prey interac-

tions. In a short note (see Scudo and Ziegler (1978,p.48» Volterra centions

in passing the possibility of delays in what is now called the Lotka-Volterra

competition model. Such Kolomogorov type delay equations which IOOdel two com-

peting species were studied in a book by Cushing (1977a) where some general

conclusions are drawn. Competition models witb gestation or maturation delays

do not seem to have been studied in the literature.

The classical Lotka-Volterra competition model 1s
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In order to give direction to our thinking the well-known basic properties of

this system are summarized as follows: the null equilibrium Pi· 0 is un

stable; the equilibrium Pi • llci i, P
j

• 0 is (locally) asymptotically stable

if c;i > eli and unstable if c()i < c U; and a positive equilibriUlJl exists if

and only if both Cu >c J~ or both Cu <cJi (l ~i"j~ 2) , the first case

of which yields (local) asymptotic stability and the second of which yields in-

stability. These conclusions, as elementary as they are, constitute the first

step towards the formulation of the principles of competitive exclusion, ecolo-

bica! niche and limiting similarity in present day theoretical ecology. The

extent to which these conclusions remain true when the per capita growth rate

response (i.e. the parenthetical expression in (6.1» is replaced by a delay

functional of Volterra integral form is briefly investigated by Cushing (1977a)

a l ong wit h the possibility of su~tained oscillations. In this chapter I will

i nves t igat e , in more detail than was done in this earlier work, a delay ver-

sion of the classical system (6.1) to see not only to what extent the above

features of the nondelay system hold true, but also to point out some unusual

phenomena due to the delays. Also a new model of competition in age struc

tured populations with a corresponding maturation delay will be considered.

(a) Suppose that unlike the case modeled by (6.1) we assume that, in the

absence of the other species, each species grows according to a delay logistic

equation and consequently that in isolation each species may be stable or may

be unstable and oscillate according to the results of Chapters 2 and 3.

Assume that there is no other significant delay so that (6.1) is replaced by

where k
i

(s) ~ 0, I~ki(s)ds • 1. This system has the same equilibria Pi·

e
i

as the nondelay system (6.1), namely
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(2) e -i

where A - cllc22 - c12c2l• The null eguilibriUll1 (1) is obviously unstable.

Linearization of (6.2) at equilibrium (2) leads to the characteristic

equation Di(z):- (z-rj(cii-cji)/cii)hi(Z) - 0 where hi(z):- Z + rikI(z).

The function hi(z) is the characteristic function for the equilibrium l/ci i

of the delay logistic for the species Pi in isolation. We conclude that if

species Pi is stable in isolation (i.e. l/ci i is locally asymptotically sta

b~e) ~ equilibrium (2) of (6.2) is unstable when ci1 < Cu and (local

!z) asymptotically stable if c > cii. This conclusion is exactly that for

the nondelay model (6.1). II however species Pi is unstable in isolation

then equilibrium (2) of (6.2) !! unstable, since roots of hi(z), Re z ~ 0,

are roots of Di(Z).

Assume now that equilibrium (3) is positive. This equilibrium was studied

by Cushing (1977a,p.80) who showed first of all that if 6 < 0 then ~ posi

~ equilibrium (3) is unstable (!!. in the nondelay~ (6.1». However,

unlike the nondelay case (6.1), equilibrium (3) is not otherwise stable.

It was shown by Cushing (1977a) that.!! A > 0 !!!!!. ci j !!!. both small,~

the positive eqUilibrium (3) !! (locally) asymptotically~ provided

both species in isolation.!!!.; ~ the .!?!!!!!. hand equilibrium (3) is unstable

if .!t least~ species in isolation !! unstable.

The inequality c~i < ci i (> ci i) means that interspecies competition is

stronger (weaker) than int~a.pecies competition. The net result of the above

is then, just as in the nondelay ease, two competing species can coexist only

if interspecies competition is stronger than interspeciea competition (prOVided

for coexistence one requires an asymptotically st~ble equilibrium).

Unlike the nondelay ease (6.1) there is in (6.2) the possibility of sus-

tained oscillations. This can be investigated by means of Theorem A in Appen-

dix A as a bifurcation phenomenon from the (assumed existent) positive equili-
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brium (3). To do this we first center the problem on equilibrium (3) by

setting xi - Pi-ei after which system (6.2) can be written in the form of

o. 0
(A.l) with h - 0, m - 2 and Lx:- col(xi+rieiciifOki(s)xi(t-s)ds+rieicijxj)'

• o·T(x,A):- col (-eiciiAifOki (s)xi(t-s)ds-eicijAixj-(ri+Ai) (ciixifOki(s)xi(t-s)ds
o+cijxiXj) where A - col(A i). Suppose that the r i > 0 are chosen so that

Lx • 0 has exactly m - 2 independent p-periodic solutions Yl'Y2 given by

the real and imaginary parts of a exp(iwt), w - 2T/p, where a - col(ai). Let

the two independent p-periodic solutions of the adjoint system LaX - 0, where

O. 0
Lax:- col(xi-rieiciifOki(s)xi(t+s)ds-rjejcjixj) be given by the real and imsg-

inary parts of b exp(iwt), b - col(bi). It turns out that (see Cushing

(1979b» in 84 of Appendix A

(6.3) d •

f h h 1 i k +k k~+k22 .J. O.or t e omogeneous so ut on y. lYl 2Y2' _~ r By Theorem A of Ap-

pendix A we see that if d ~ 0 then (6.2) has nontrivial p-periodic solu

otions of~ form Pi· ei+t:y+&z(e) for r i - ri+Ai (e) !!. described in

Theorem A of Appendix !.

To be more specific suppose we consider the case of similar species:

11K, ci j • Band kl(s) = k2(s). Then (6.2) reduces to the system

(6.4) Pi - riPi(l - K-
l

J:ki(S)Pi(t-B)dS - BPj)

c..... •
.1.1

with e
i

- e • K!(l+KB) > O. As pointed out above this positive equilibrium is

unstable if 6· (1/K)2_S2 < 0 or KB > 1.

It is easy to show that the linearization of (6.4) at the positive equili-

brium has solution a exp(inwt) if and only if (Cushing (1977a,p.167»

(6.5)

2 2 2 2 2 2
(a) n ~1~2 - (e/K)S(n)n~l - (e/K)S(n)n~2 + e (B + (S (n)-C (n)/K )

(b) nC(n)(t l + t 2) / K • 2eS(n)C(n)/K2

C(n):- J: k(s)cos nws ds S(n):- f: k(s)sin ~s ds

- 0
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where t i .. CAl/r~. Since we want exactly 111" 2 independent solutions we need

to solve (6.5) for t i > 0 when n" 1 such that (6.5) fails to hold for

n> 2. ASSU1IIe eel) (t 0 in which case (6.Sb) reduces to ti'~2" 2eS(l)/K

which implies the necessary condition Sell > O. Solving this equation for t 2

and substituting the result into- (6.Sa) we obtain the quadratic

to be solved for real t l > O. A straightforward iuvestigation of the roots of

this quadratic shows that both roots t
i

> 0 if and only if

(6.6)

+ =Fin which case there are two symmetric solution pairs t l .. t-, t 2 .. t

(6.7)

Thus for

solutions

or i .. CAl/t i the 11Dearized 51st.. Lx" 0 has nontrivial p-periodic

o 0a exp(iwt) for. as it turns out, a" col(-erlB.~rl(e(l) -

is(l))/K) and the adjoint system has solutions b exp(iwt) for b ..

o 0col(-er2B,-iw+erl(C(l) + is(l))/K). A ~raightforvard calculation shows that

which is nonzero by (6.6) and (6.7).

We have left only to guarall:ee that Lx" 0 bas no 1II0re than II" 2 inde-

pendent p-periodic solutions, i.e. that (6.5) does not hold for n > 2 and

the t i chosen above. A simple way to do this is to require that (6.Sb)

fail for n ~ 2, i.e. that

(6.8) nC(n)S (1) -I C(n)S(n), n ~ 2.

THEOREM 8. If p" 2"/1Jl !!. ~ period for which S(I) > O. (6.6) and (6.8)

hold~~ delay competition model (6.4) .!!!!. nontrivial p-periodic solu-
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I will not carry out a stability analysis here but will only note that stable

bifurcation. as a general rule of thumb, usually occurs when there is a loss

of stability of the equilibrium or an exchange of stability from a stable equi-

librium to a limit cycle. It has already been pointed out above that the equi-

librium Pi - e is already unstable if KB .> 1. Suppose then that KS < 1 so

that the equilibrium is asymptotically stable for the nondelay case (6.1) . In

order to have the bifurcation described above under the constraint (6.6) it

is clearly necessary that C2(1) ~ 1 (C2(1) ~ I follows from the assumptions

on k(s».

As an illustration take k(s) _ T-2.e-8/T.

(nwT)2)2. Sen) - 2~T/(1+(nwT)2)2 so that

Then C(n) - (1-(nwT)2)/(1+

S(l) > 0 and C2(1) < 1 hold.

If nwT; 1 for n ~ 2 then (6.8) holds. The bifurcation curve C of cri-

tical values of r i for the values T - K - 1. 8 - 1/2 is drawn

in FIGURE 5. In this case condition (6.6) reduces to w < 1 and w4+ 4m2

-1 > 0 or in other words 2w < p < 12.93. In the absence of the other

3

2

./.5

AS 2

FIGURE 5: The bifurcation curve C of critical values of r in the competition
model (6.4) with K-I. 8-1/2 and k-sexp(-s) is symmetric with respect to r l,r2•
The positive equilibrium Pie2/3 is asymptotically stable in Region I and un
stable in II, III and IV. On the hyperbolic curves A and B (where C(l)-O) the
linearized problem has nontrivial 2w-periodic solutions. but the nondegeneracy
condition fails so it is not clear whether bifurcation occurs or not.
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species each species has a stable equilibrium (K • 1) if r i < 2, but bifurca

ting oscillations and an unstable equilibrium for r i > 2 (Cushing (1977a».

From this specific example we can draw some conclusions concerning competing

species with self-density response delays which, in the absence of such delays,

would be in stable coexistence: it is possible that (1) !. species which is ~-

stable and oscillatory in isolation~ have !. mlli. eguilibrium when placed

in interaction with !. eompetitor (i.e. (rl,r2) can be in region I of FIGURE 5

while r l or r 2 > 2); (2) ~ large enough inherent growth ~, the positive

equilibrium whieh is !.!!!!!!. in the absenee .2!. delays will be unstable in the

presence of delays and ~ species !!!!. exhibit limit cycle behavior; (3) for

each species t:he~ of instability~~~ smaller inherent growth

~ than would~ for ~~ both in isolation (part of the curve C in

FIGURE 5 lies inside the square 0 < r
i

< 2) but in this case the period of

oscillation is longer (12.93 > 2w); and (4) ~ species~ in isolation~

be unstable in competition (part of region II in FIGURE 5 lies in the square

o < r i < 2). In faet any species, stable or not (f:1x r i), when placed in com

petion with another with a large inherent growth rate (rj large) will be un

stable.

JeL We nov consider competition between two age structured populations as

.adeled by (1.12) under the asSUMption that the effect of the competition is

to decrease linearly the fecundity of each species. Thus. we eonsider

for ai(a) ~ 0, I~ai(a)da. I, di > O. ci i > 0, ci j > 0, 1 ~ i~j ~ 2. which

has three equilibria Pi· ei given by

1 1
(2) ei • (Ri-l)!Ric11. ej • 0 (3) e1 • (cjj(l- i~-Cij(l- i~)!~

where ~. cl lc22 - c12c2l and Ri• bi/~ai(a)exp(-dia)da. Linearization at

the null equilibrium (1) yields the characteristic equation
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D(z):- (z + d1)(z + d2)(1 - b1B!(%+d1»(1 - b2B~(z+d2» - 0

Inasmuch as IB!(z+di )I ~f~Bi(a)exp(-dia)da for Re z ~ 0 we see that if

both net reproductive rates Ri < 1 then D(z) ~ 0 for Re z ~ 0 and (1) is

asymptotically stable. Linearization at equilibrium (2) results in a char-

acteristic function D(z):- (z+dj )h j (z)hi (z) ., 1 ~ i"3 ~ 2, hj (z):- Z + diRi 

(bi/Ri)(z+di)B!(z+di), hi(z):- 1 - bi(l-cjiei)Bj(z+dj) and hence the roots of

D(z) are -dj < 0 and those of hi(z), hj(z). The equation hj(z) - 0 is

the characteristic equation of the linearized isolated species P. at its eq-
t

uilibrium P.· (R.-I)/R.c. and hence has no roots Re Z ~ 0 according to
1 I J I

the analysis in Chapter 2. Thus the stability of equilibrium (2) in the com-

petition model (6.9) is determined by the roots of hi(z) - O. Note that

this says that whether species j (locally) goes extinct (i.e (2) is stable)

depends on its own maturation delay Bj(a).

THEOREM 9. If~ Ri < 1 then the null equilibrium (1) is (locally) ~-

• -djaptotically stable (and both species ~ extinct). If f OIlBj (a)e da < +- and

Ri > I for i· I ~ 2 (j +i) then equilibrium (2) is (locally) asymptotical

.!!. stable if either of the following conditions hold: (a) cUR/(Ri-l) > cj i >

cURi (l-l/bi)/(Ri-l) £!. (b) cj i is greater than but close ~ Cu .

Note that (a) implies cj i > ci i since Ri < bi•

Proof. Condition (a) implies Ibi(l-cjiei>r< 1. For Re Z ~ 0, IBj(z+d j )I <

f~ Bj(a)da • 1. Thus hi(z) " 0 and hence D(z) " 0 for Re z ~ O.

Secondly consider (b). Treat hi - hi(z,cj i) as a function of z,cj i• Sup-

n n
pose there exist sequences such that Cji.~cii' cj i ~ii' Re zn ~ 0 for which

nhi(zn'cj i) • O. By theorem B.2 of Appendix B, zn must be bounded so that

without loss in generality zn ~ zo' Re Zo ~ O. By continuity hi(zO'ci i)· 0

which implies B*(ZO+dj) - B*(dj ) and hence Zo - O. But this contradicts the

implicit function theorem, which (because hi(O,ci i) - 0, 3hi(O,ci i)/3z 

J~aBj(a)exp(-dja)da/f~Bj(a)exp(-dja)da > O. 3hi(O,cii)/3Cji • bieiRj/bj > 0)
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implies

for

the existence of a unique branch of solutions

near ci i satisfying z'(ci i) < 0 and hence

Z - z(cj i), z(ci i) - 0

Re z(cj i) ~ 0 for

Cj i greater than but near cii' §S

Theorem 9 shows that equilibrium (2) has a similar threshold property to

that in models (6.1) and (6.2). One question which arises, however, is

cjiei < 0 which is equivalent to

cosn+l(1f/(n+l».

whether equilibrium (2) remains stable for cj i large. That it can, unlike

the case of (6.1) or (6.2), lose its stability for large cj i can be seen

in the following example. Suppose aj(a) - SiCa) is given by (2.9). Then

8!(z) - (n/(zT+n»n+l and RJ - bi(n/(diT+n»n+l so that Ri > 1 requires

bi > «d T+n)/n)n+l. In this case hi(z) - 0 if and only if bi(l-cj i ei)-
n+l«zT+djT+n)/n) • From Theorem C.3 of Appendix C we see that equilibrium (2)

in this example is asymptotically stable if and only if (djT+n)/n> Ibi(l

Cji)eill/(n+l) if l-cjiei> 0 or Ibi(l-Cji)eill/(n+l)cos~/(n+l) if 1-

o -1 n+lci i < cj i < cn:- ei +«djT+n)/n) /biei
o

~ for Cj i < Cu ~ cj i > c
n

the equilibrium (2) in

othis example is unstable and for Cu < cj i < cn it is (locally) asymptoti-

cally stable. When n· I, C~ - ~ and equilibrium (2) remains stable for all

Cj i > cii. But for more narrowly defined maturation periods n ~ 2 there is a

oloss of stability at cn as well as at ci i• The loss of stability at ci i is

not of Hopf type since as

imaginary axis at z - O.

stability is of Hopf type

Cj i passes through ci i a real root crosses the

oBut as cj i passes through cn ' n ~ 2, the loss of

as two purely imaginary conjugate roots cross into

the right half plane (at z - i(djT+n)tan~/(n+l». Note that as n + ~ , Ri +

o djTbiexP(-djT) (which must be assumed> 1) and cn + Cii(bi+exp(djT)/(bi-e ).

Finally we briefly consider equilibrium (3) which we assume is positive. The

characteristic equation is D(z) - 0 where

2
D(z):- (%+d l ) (z+d2) gl (z)g2(z ) + ! dieiRicii(z+di)gi(z) + dld2ele2RlR2A

i-I
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and D(O) < 0 if 6 < 0 we see that equilibrium (3) is unstable if 6 < O.

Note that in the above example with n ~ 2 all four nonnegative equilibria

are unstable under strong interspecies competition, i.e. for cj i large.

Suppose now that 6 > 0 and consider again the case of similar species:

ci i ~ a l > 0. cj i .. a 2 > 0. bi .. b > 0. d
i

.. d > 0 and Si(a):: Sea). Then

2 26 .. a l -Q2 > 0 implies a l > a2• It follows that R
i"

R > 0. gi(z) .. g(z) ..

2 2l-bS*(z+d)/R and ei" e. Then D(z)" «z+d)g(z)+deRal) -(deRa2) .. 0 im-

plies. since R .. bS*(d). that S*(z+d)/S*(d) .. (z+d+deR(a1!?2»/(z+d). Since

the abolute value of the right hand side is strictly greater than one for

Re z ~ 0 while the left hand side is less than or equal to one it folloWs

that D(z) ~ 0 for Re z ~ O.

THEOREM 10. Suppose that equilibrium (3) of the competition 1IIOde1 (6.9) is

positive. If 6 < 0 this equilibrium is unstable. !!. A > 0 in the~ of

similar species (hI" b2• cll • c22' c12 .. c21 • 81 (a) :: 82(a». then this !.9..:.

uilibrium (3) is (locally) asymptotically~.

APPENDIX !

Let X.Y denote real normed linear spaces and suppose L:X. Y is a bound-

ed linear operator with nu1lspace N(L) and range R(L). Consider

(A.l) Lx .. T(x,A,£) + eh, h .E R(L)

m(x,A) E X x R • m ~ 0, as a function of the real parameter

T is indepen-to meanFor conciseness we allow m" 0£ .. O.near

to be solved for

(; ERl

dent of A in which case (A.l) is to be solved for x as a function of £.

Assume that the following hypotheses hold:

Hl: R(L). N(L) are closed and admit (continuous) projections and

o ::. codim R(L) .. m < +<0

H2: y E X is such that Ly" h
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H3: T: D:- X x am x al • Y is an operator for which T(ex,~,e) - eT(x,A,e)

for all (x,A ,e) e: D where if: D • Y is q ~ 1 times continuously

Frechet differentiable in (x,~,e) with T(y,O,O) - 0, T (y,O,O) • ax
for y as in H2.

Let M be a closed subspace of X complementary to N(L) and let A: R(L)

.. M be a bounded right inverse of L. (Such M and A are guaranteed by

HI.) Let P: Y + R(L) be a (continuous) projection. Then I-P is a (co~ti-

nuous) projection of Y onto the m-dimensional subspace N(P) complementary

to R(L) and as a result 1£ m > 1 then for y as in H2, for z e: M, for

AERII and for e E:.Rl the element (I-P)T(y+z,A,e) has m ~l real compo

nents c. c(z,~,e): M x RII x Rl
+ RII with respect to a fixed basis of N(P).

Note that c has the SlIoothness prooerties of T and by H3 that c(O,O,O)

- cz(O,O,O) - O. If 11 ~l we need the further hypothesis

H4: d:- det cA(O,O,O) ~ 0 •

THEOREM!. (i) II 11 ~ 1 !.!!.!!!!!. Hl-B4 !!!*t. ~~~.!!! eO > 0

such that (A.l) has!. solution of !!!!.~ :It - e(y+z(E», A- ).(d ill e e:.

1:- {e e: R1 : lei ~ EO} where y is.!!. in 83, z: I" M and ).: I .. RII are

q > 1 times continuously Frechet differentiable operators with z(O)-A(O)-O.

(11) .!! • - 0 ~ Hl-H3 !!!*t. !!!!!. eguation (A.l) has!. solution

~ !h!..~ x· e(y+ z (E» !!. described.!!!. (i).

~. Substitute x. dy+z) for z € M and Ly. h into (A.1). The

resulting equation is equivalent to the two equations

(A.2)

(A.3)

z - APT(y+z,A,e) • 0

c(z,). ,E) • 0

for ( , ) ~M lC Rill lC Rl•z,,,,e ~ Clearly (z,A,e) • (0,0,0) solves both of these

equations. Equation (A.2) is uniquely solvable for z· z(A,c) near (A,E)

• (0,0) by means of the implicit function theorem. When III ~ 1 and this

solution is substituted into (A.3) the resulting equation in (A.E) is also
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uniquely solvable for A .. A(t) near t .. 0 by means of the implicit func-

tion theorem and by H4. §§

REMARK: This theorem permits h .. 0 and also permits T to be independent

of t. In this case the theorem yields as a corollary the multi-parameter bi-

ftircation theorems of Cushing (1979b,1979c) where 0 ~ y EN(L) and it is

assumed that N(L) ~ {O} so that H2 is fulfilled and the solutions are non-

trivial x ~ 0 (even though in this case x - 0 is a solution for all ~).

APPENDIX B

THEOREM B.l. If k(s) is continuously differentiable for s ~ 0, kl : 

f~lk(s)lds < +m~ k2:
a f~slk(s)lds < +m then 1~~_:~ilk*'(Rei6)ld6"O.

Proof. Given t > 0 let T > 0 be so small that 0 ~ I~slk(s)lds < t. For

z a Rei 9, -w/2 < e < w/2, Ik*'(z)!" II~e-zssk(s)dsl ~ t + e-RTCOS9I;slk(s) Ids

and hence lim sUPR~lk*'(Reie)1 ~ t which, since t > 0 is arbitrary, im

plies 1~~lk*'(Rei9)1"0, -w/2 < 9 < w/2. Since Ik*(Re i 6) I ~ k1 < +m

for all R > O. -n/2 ~ e ~n/2. the assertion of this theorem follows from

Lebesgue's dominated convergence theorem. §§

Theorem B.l makes hypothesis (4.34) in Theorem 4.12 of Cushing (1977a,p89)

unnecessary.

THEOREM B.2. The function

has the following properties:

x+l -x-I
f(x):~ bx (a+X) for x > 0, a > 0, b > 0

( - af(O+) .. 0, f +00) .. be and if a ~ 2 then

f' (x) > 0 while!!. a > 2 then f' (x) > 0 for 0 < x < xo and f' (x) < 0

for x > xo where X o < a/(a-2) is the unique number such that f' (x
O)

a O.

Proof. f(O+)· 0 is obvious and f(+OO)" be-a follows from a straightfor-

ward application of l'Hopital's rule to (x+l)ln(x/(a+x». A differentiation

shows that f'(x) .. -f(x)g(x) where g(x):- In((x+a)/x) -(x+l)/(x2+ax). It

is easy to show that g(O+)" ~ and g(+~)" O. Moreover, g'(x)" a(a+(2-

2 2a)A)/x (x+a). Thus a < 2 implies g(x) < 0 and hence f'(x) > 0 for all
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x ~ O. If a > 2 then g(x) increases for x < a/(a-2) and then decreases

(to zero) for x > a/(a-2) which implies that there exists a unique Xo less

than a/(a-2) such that g(x) < 0 for x < Xo and g(x) > 0 for x > xO' § §

APPENDIX s

Assume that Sea) ~ 0 is continuously differentiable for a > 0 and satis

fies I~ S(a)da < +-

THEOREM C.l. !!!! only~ of 1 - bS*(z+d)/R • 0 where b > 0 and R·

• -dab/O e S(a)da satisfying Re z ~ 0 is z - O.

Proof. Since R. bS*(d) this equation reduces to S*(z+d) - S*(d) for

Re z ~ O. the real part of which (setting z - x + iy) yields the equation

lD -da -xa
f O e S(a)(e cosya - l)da • O. This latter equation implies. for x ~ 0,

that x· y • O. II

THEOREM £d. Suppose Zn is! sequence ~ which Re zn ~ 0 and z .... +-.
n

Proof. If the set of xn• Re zn ~ 0 is unbounded then there is a subsequ

ence for which x • Re z + +-. The result follows from IS*(zn+d)I ~n n

I;S(a)exp(-xna)da and the dominated convergence theorem.

If xn is bounded then there exists a convergent subsequence. Let xn + xO'

y -Rez.
n n

From Hewitt and Stromberg

(1965.p.40l) follows S*(wn+d) + 0 as n + +-. If Yn is the circle with

center at wn+d of radius p. d/2 (so that Yn lies in the half plane Re z

~ d/2 on which S*(z) is bounded: Is*(z)1 ~M. Re z ~ d/2) then we get from

Cauchy's integral theorem that

For large enough n (so that I~-z -ell > p/2. ~ ~y) we have the estimate
n - n
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Is* (z +d) - e*(w +d) I < 2Mlw - z I!p • 2Mlx - xO l/p
n n - n n n

Thus a*(zn+d) + 0 as n + +-. §§

THEOREM £.d. The equation (z + a)k • b ~ a and b E!!! and for k .!.

positive integer!!!!.!.!:!!22!! with Re z < 0 if and only !f

Proof Clearly

a >
when b ~ 0

w!k when b < 0

for m. 0)

when

where o ~ m ~ k-l.

l!k I cos 2o!k
Re z • -a + Ibl

cos{2m+l)w!k when

The maxim'a of cos 2o!k i8 one (occuring

b ~ 0

b < 0

while that of c08(2m+1)w!k is cos w!k (occuring for m· 0). SS
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