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Abstract. We prove a general theorem for nonlinear matrix models of the type used

in structured population dynamics that describes the bifurcation that occurs when the

extinction equilibrium destabilizes as a model parameter is varied. The existence of

a bifurcating continuum of positive equilibria is established and their local stability

is related to the direction of bifurcation. Our theorem generalizes existing theorems

found in the literature in two ways. First, it allows for a general appearance of the

bifurcation parameter (existing theorems require the parameter to appear linearly). This

significantly widens the applicability of the theorem to population models. Second, our

theorem describes circumstances in which a backward bifurcation can produce stable

positive equilibria (existing theorems allow for stability only when the bifurcation is

forward). The signs of two diagnostic quantities determine the stability of the bifurcating

equilibrium and the direction of bifurcation. We give examples that illustrate these

features.
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1 Introduction

Many mathematical models of population dynamics use measures of total population size as their

state variables and ignore differences among individuals within the population. However, in all

populations there is a diversity among individuals with regard to genetic, physiological, behavioral,

and life history stage characteristics, and in many population these differences can be highly vari-

able. Since reproduction, fitness adaptations, and evolutionary selection occur at the level of the

individual, the most accurate population models take individual differences into account. With

regard to the long term fate of a population, the problem is then to relate individual characteris-

tics to the dynamics of the population as a whole. The earliest modelling of so-called structured

populations utilized chronological age as the distinguishing characteristic of individuals. Models

treating age as a continuous or a discrete variable were both developed [9]. The well-known seminal

work of Lewis [28] and Leslie [26],[27] categorized individuals into a finite number of age classes and

utilized the demographic vector of age class numbers or densities as the state variable of the model.

Leslie advanced the demographic variable in discrete time by multiplication by a projection matrix

of fertilities and survival probabilities, matrices which have become known as Leslie matrices (see
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Section 6). It was noticed early on that this modeling methodology for the dynamics of structured

populations need not be restricted to age classes [25], [32] and it has been widely utilized into

innumerable contexts [2].

If all the vital rates incorporated into the projection matrix remain constant in time, then

mathematically the map defined by a matrix model is linear and autonomous. However, these

vital rates in general do not remain constant and are subject to changes that can be due to many

factors. Ignoring external environmental changes (regular or stochastic), vital rates and hence the

projection matrix can depend on the densities in the demographic vector as it changes in time,

which then makes the map nonlinear.

A basic question in population dynamics is the extinction or survival of a population. In

the absence of immigration or seeding into the population, this question concerns the stability of

the zero demographic vector (the extinction equilibrium). If the extinction equilibrium is (locally

asymptotically) stable, then the population is threatened with extinction. Mathematically, this

depends on the values of the coefficients (parameters) in the model. A change in a model parameter

that destabilizes the extinction equilibrium signals the possibility of population survival through

the creation of stable, positive equilibria by means of bifurcation theory.

Thus, a fundamental question concerning population models concerns the nature of the bifur-

cation that occurs upon the destabilization of the extinction equilibrium as a model parameter is

varied. In this paper we extend theorems dealing with this bifurcation that appear in the literature

[6], [9], [15], [18], [30] in a manner that allows and facilitates application to a wider range of popula-

tion models. Specifically, we allow a general appearance in the model equations of the manipulated

parameter — the bifurcation parameter, which we denote by  — in contrast to existing theorems,

which require that the parameter appear in a linear fashion. As a result, our theorem allows for

studies of the fundamental, extinction equilibrium destabilization bifurcation as a function of a

wider variety of model parameters and circumstances.

The mathematical formulation of the model equation we consider is as follows. Let  denote

-dimensional Euclidean space and 
+ the set of nonnegative (column) vectors  = col () ∈ ,

i.e. vectors with nonnegative components  ≥ 0. We use the norm

|| =P
=1 || 

The interior of 
+ is the set of positive vectors, i.e. vectors all of whose components   0 are

positive. We consider the difference equation

 (+ 1) =  (  ()) () (1)

for  = 0 1 2  where the projection matrix  ( ) satisfies the following assumptions.

A1:  ( ) = [ ( )] is a nonnegative, irreducible  ×  matrix for all ( ) ∈
 × Ω where  is an open interval in 1 and Ω is an open set in  containing


+ . Assume the real (non-negative) valued entries  ( ) are twice continuously

differentiable on  ×Ω.

Our focus in this paper is on the study the fixed points, i.e. equilibrium solutions, of equation (1) as

they depend on the real parameter  Equilibria are solutions  ∈  of the equilibrium equation

 =  ( ) (2)
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Clearly  = 0 is an equilibrium (the extinction equilibrium) for any value of . Our goal is to

find values of the parameter  ∈  for which there exist non-extinction equilibria, i.e. equilibria

 6= 0 whose entries are nonnegative. Non-extinction equilibria are solutions  ∈ 
+\ {0} of the

equilibrium equation (2)

The entries of the matrix  ( 0) are called the inherent or intrinsic model parameters in that

they describe vital parameters governing population growth in the absence of density effects. For

this reason, we call  ( 0) the inherent (or intrinsic) projection matrix.

2 Some Preliminaries

We begin by gathering together some basic facts about the algebraic equation

 = +  (3)

where   ∈  and  is an × real matrix. There exists a unique solution  = ( − )
−1



if and only if  − is non-singular. Suppose, however, that  − is singular and that its null space

has dimension 1. Let  and  be left and right eigenvectors of  associated with eigenvalue 1.

Equation (3) has a solution if and only if 
 = 0 in which case the general solution is  = +

where  ∈ 1 is an arbitrary scalar and  is any particular solution.2 Out of this general solution

we can extract a unique solution that satisfies 
 = 0 (by choosing  = −



). Let 

⊥

and ⊥ denote the spaces orthogonal to  and  , the spans of  and  respectively, i.e.

 ⊥ =
©
 ∈  : 

 = 0
ª

⊥ =
©
 ∈  : 

 = 0
ª


Then  = ⊕⊥ =  ⊕ ⊥. For each  ∈⊥ the equation  = +  has a unique solution

 ∈  ⊥. This correspondence defines a linear transformation of ⊥ into  ⊥. Let  be the matrix

associated with this transformation so that  is the unique solution of (3) lying in  ⊥. Then the
general solution of  = +  has the form  =  + where  ∈ 1 is arbitrary.

Consider the nonlinear algebraic equation

 = + () (4)

where  −  is singular and its null space is one dimensional. Suppose  ∈  is a solution. Since

 =  ⊕  ⊥ we can write  =  + ,  ∈ 1,  ∈  ⊥. It must be the case that () ∈ ⊥,
i.e. 

() = 0 and therefore that  = (). Thus,  and  ∈  ⊥ satisfy the pair of equations

0 = 
 ( + )

 =  ( + ) 
(5)

Conversely, if  ∈ 1 and  ∈  ⊥ satisfy these two equations then  = + satisfies the equation

(4). In this sense the nonlinear equation (4) for  is equivalent to the pair of equations (5) for 

and .

2 denotes vector transpose.
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3 A General Bifurcation Theorem

By Perron-Frobenius theory, 1 implies  ( ) has a geometrically simple, positive, dominant

eigenvalue  =  ( ).3 We also make the following assumption on the projection matrix in

equation (1).

A2: In addition to A1, assume there exists a 0 ∈  such that  (0 0) = 1 (i.e. the

inherent projection matrix has, when  = 0 a dominant eigenvalue of 1) and let 

and  denote associated positive right and left eigenvectors  and  in 
+ \ {0} :

 =  (0 0) 
 = 

 (0 0) 

Defining

 () :=  ( 0)   ( ) :=  ( )−  () (6)

we can re-write the equilibrium equation (2) as

 =  ()+  ( ) (7)

where by A1  is twice continuously differentiable in  and  and

 ( ) = 
³
||2

´
near  = 0 uniformly on bounded  intervals in . Clearly  = 0 is a solution of (7) for all  ∈ .

Our goal is to prove the existence of positive equilibria  ∈ 
+\ {0} for  near 0 as given in A2.

Theorem 1 Assume A1 and A2 hold and that




 (0 0)


 6= 0

Then in an open neighborhood of ( ) = (0 0) there exists a branch of equilibria of equation (1)

that has, for an 0  0, the parametric form

 = 0 + ()  =  + () (8)

where  ∈ 2
¡
(−0 0) 1

¢
,  ∈ 2

¡
(−0 0)   ⊥

¢
and (0) = (0) = (0) = 0.4

For   0 the equilibria (8) are positive equilibria. For  = 0 these equilibria collapse to  = 0

and in this sense the branch is said to bifurcate from the extinction equilibrium  = 0 at  = 0.

Proof. Let  = − 0 and write

 () =  (0 + ) =  (0) +
 (0)


 + ( 0)

where

 ( 0) = 
³
||2

´
3 In population dynamics the dominant eigenvalue of the projection matrix is called the population growth rate

and is traditionally denoted by .
4 (−0 0) denotes the interval ||  0
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near  = 0. Re-write equation (7) as

 =  (0)+

∙

 (0)


+ ( 0)+ (0 +  )

¸


To solve the equilibrium equation (2) for a nonzero pair ( )   6= 0, is to solve this equation, or
its equivalent pair of equations (see (5))

(a) 0 = 
 (  + )

(b) 0 =  − (  + ) 
(9)

for (  + ) ∈ 1 ×  ⊕  ⊥ where

 ( ) = 
 (0)


+ ( 0)+ (0 +  )

The goal is to solve this pair of equations for  ∈ 1 and  ∈  ⊥ as functions of .
Notice that equation (9b) is satisfied by  = 0 when ( ) = (0 0). Also notice that the Jacobian

of the right side with respect to , when evaluated at  = 0 and ( ) = (0 0), equals the identity

and hence is invertible. By the implicit function theorem, equation 9(b) has a (unique and twice

differentiable) solution

 = ( ) (0 0) = 0 (10)

for ( ) near (0 0).

Our final step is to substitute ( ) into equation (9a) and solve the resulting equation for  as

a function of  Before doing this we observe that  = 0 solves both equations (9a) and (9b) when

( ) = (0 0) and therefore  (0 ) = 0 for all  near 0 Consequently we can write

( ) = ( )

where ( ) is continuously differentiable near ( ) = (0 0). Moreover, that ( ) solves equation

(9b) for all ( ) near (0 0) implies, after a cancellation of , that ( ) satisfies

0 =  − 
 (0)


( + )− ( 0) ( + )− −1(0 +   + )

for  6= 0 and all  near 0. Placing  = 0 and  = 0 in this equation results in  = 0 and hence

 (0 0) = 0

The solution of (9) now reduces to solving equation (a) with ( ) = ( ), namely

0 = 
 (  + ( ))

for  =  (), which we do by another application of the implicit function theorem. After a

cancellation of  this equation is

0 = 


 (0)


 + 



 (0)


 + 

 ( 0) ( + )

+ −1
(0 +   + )
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Note that the last term is continuously differentiable in  at  = 0 because  ( ) = (||2). This
equation has solution  = 0 when  = 0 and the derivative of the right side with respect to  when

evaluated at  = 0 and  = 0, equals




 (0)


 = 



 (0 0)


 6= 0

Thus, the implicit function theorem allows us to solve (9a) for a (unique) continuously differentiable

solution  = (), (0) = 0

Using () = ( ()) we obtain a  solution pair  = 0 + (),  =  + () of (1) for

 near 0.

Note that since  is a positive vector, the equilibria in Theorem 1 are positive for   0

small. We say the bifurcation described in Theorem 1 is forward (respectively backward) if, in a

neighborhood of the bifurcation point ( ) = (0 0) the positive equilibria correspond to   0
(respectively   0). The direction of bifurcation is determined by the sign of  (0)  a formula

for which appears in the next lemma. Define the quantity

 = −
 [∇ (0 0)]. (11)

Lemma 1 Assume A1 and A2 hold and that




 (0 0)


 6= 0

Then the bifurcation (of positive equilibria) guaranteed by Theorem 1 is forward (respectively back-

ward) if  (0)   0 (respectively  (0)   0) where

 (0)


=





 (00)




 (12)

Proof. Our goal is to establish the formula (12). That (12) are solutions of the equilibrium equation

(7) for small  implies

 + () =  (0 + ()) ( + ()) + (0 + ()  + ())

for small . We calculate  (0)  by differentiating both sides twice with respect to  and

evaluating the result at  = 0.

This results in

2(0) =  (0)
2(0)

2
+

∙
2
 (0)



 (0)


 + ̂(0)

¸
(13)

where

̂(0) = col
¡

 (0 0)

¢
and

( ) =

∙
2 ( )



¸
is the Hessian of the  component of  ( ). From (13) follows




∙
2
 (0)



 (0)


 + ̂(0)

¸
 = 0
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and
 (0)


= −1

2


 ̂(0)



(0)




 (14)

A calculation using the definition (6) of  ( ) yields

 (0 0) =

∙
 (0 0)


+

 (0 0)



¸
and


 (0 0) =

X
=1



X
=1



 (0 0)


+

X
=1



X
=1



 (0 0)



Interchanging the order of summation in the first term and re-labeling the indices in the second

term by interchanging  with  we get


 (0 0) = 2

X
=1



X
=1



 (0 0)



and


 ̂(0) = col

¡

 (0 0)

¢
= 2

 col

⎛⎝ X
=1



X
=1



 (0 0)



⎞⎠
= 2

X
=1



X
=1



X
=1



 (0 0)



= 2

X
=1



X
=1



X
=1



 (0 0)



or


 ̂(0) = 2


 [∇ (0 0)] (15)

From this and (14) we get

 (0)


= −


 [∇ (0 0)]



(0)




and hence (12).

4 Equilibrium Stability

We say the transcritical bifurcation of positive equilibria described in Theorem 1 is a stable (re-

spectively unstable) bifurcation if, in a neighborhood of the bifurcation point ( ) = (0 0) the

positive equilibria are locally asymptotically stable (respectively unstable).
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Lemma 2 Assume A1 and A2 hold and that




 (0 0)


 6= 0

(a) If




 (0 0)


  0

then  = 0 loses stability as  increases through 0. If




 (0 0)


  0

then  = 0 loses stability as  decreases through 0.

(b) In addition assume that 0 is a strictly dominant eigenvalue of  (0 0) (i.e.  (0 0) is

primitive). Then the bifurcation (of positive equilibria) guaranteed by Theorem 1 is stable if   0

and unstable if   0.

Proof. To perform a linearized stability analysis on equation (1) we calculate the Jacobian of the

right hand side evaluated at the equilibrium of interest.

(a) The Jacobian evaluated at  = 0 is  ( 0)  which by A1 has a real, positive dominant

eigenvalue  ( 0). By A2 we have  (0 0) = 1. By the linearization principle [22],  = 0 is

unstable if  ( 0)  1 and (locally asymptotically) stable if  ( 0)  1. For  near 0 which is

the case can be determined by the sign of  (0 0) , provided it is nonzero. We can calculate

 (0 0)  by an implicit differentiation of

 ( 0) () =  ( 0) ()

where  () is an eigenvector such that  (0) =  in A2. From

 ( 0)


 () +  ( 0)

 ()


=

 ( 0)


 () +  ( 0)

 ()



evaluated at  = 0 we have

 (0 0)
 (0)


=

 (0)


+

∙
 (0 0)


 −  (0 0)




¸
from which follows




∙
 (0 0)


 −  (0 0)




¸
= 0

and

 (0 0)


=



 (00)









Since 
  0 we have


 (0 0)


= 

µ



 (0 0)




¶
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(b) To carry out a linearized stability analysis of the positive equilibria guaranteed by Theorem

1 we can make use of the -parametrization of  =  () and  =  () given by (8). The Jacobian

 ( ) =

"
 (0 0) ( ) +

X
=1


 (0 0) ( )



#
(16)

of  ( ) evaluated at these equilibria is a function of  as are its eigenvalues, including its

strictly dominant eigenvalue which we denote by ̄ (), ̄ (0) = 1. (The second matrix is row and

column indexed by  and  respectively.) The positive equilibria are (locally asymptotically) stable

if ̄ ()  1 for   0 sufficiently small and unstable if ̄ ()  1 for   0 sufficiently small. Which is

the case can be determined by the sign of ̄ (0)  provided it is nonzero. The Jacobian evaluated

at  =  () and  =  (), to order  is

 ( ()   ()) = 0 + 1+
¡
2
¢


Let

 () = 0 + 1+
¡
2
¢

be an eigenvector associated with ̄ () so that

 ( ()   ())  () = ̄ ()  ()  (17)

Note that 0 =  (0 0) and therefore  (0) = .

A differentiation of (17) with respect to  followed by an evaluation at  = 0, yields

 (0 0) 1 = 1 +

∙
̄ (0)


 − 1

¸
and hence




∙
̄ (0)


 − 1

¸
= 0

or
̄ (0)


=


1






From  (0) = 0 and  (0)  =  we obtain from (16)


1 = 







"
 (0 0) ( ()   ()) +

X
=1

 ()
 (0 0) ( ()   ())



#¯̄̄̄
¯
=0



= 


"
 (0 0)



 (0)


+∇ (0 0) +

X
=1



 (0 0)



#


= 


"
 (0 0)



 (0)


+

X
=1



 (0 0)


+

X
=1



 (0 0)



#


=
 (0)





 (0 0)


 + 

 col
¡

 (0 0)

¢
=

 (0)





 (0 0)


 + 

 ̂(0)
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Since  (0)  =  (0)  we get by (15) that


1 =

 (0)





 (0 0)


 − 2 (0)





 (0 0)




= − (0)





 (0 0)




from which, together with (12), we obtain

̄ (0)


= − 






From Lemmas 1 and 2 we see that the stability of the bifurcating positive equilibria is deter-

mined by the direction of bifurcation, in one of two mirrored situations depending on the sign of



 (00)


. This is summarized in the following theorem.

Theorem 2 Assume A1 and A2 hold and that




 (0 0)


 6= 0

Assume  (0 0) is primitive Then the stability or instability of the bifurcating positive equilibria

guaranteed by Theorem 1 is determined by the direction of bifurcation in one of two ways.

(a) If




 (0 0)


  0

then the equilibrium  = 0 loses stability as  increases through 0. Moreover, the bifurcation of

positive equilibria is forward and stable if   0 and backward and unstable if   0.

(b) If




 (0 0)


  0

then the equilibrium  = 0 loses stability as  decreases through 0. Moreover, the bifurcation is

backward and stable if   0 and forward and unstable if   0.

Remark 1 Note that in order to apply Theorem 2 one needs only to determine the signs of the two

quantities




 (0 0)


   = −

 [∇ (0 0)]. (18)

It is not required to compute these quantities to apply Theorem 2. Of course, one might want to

know how the properties of the bifurcation depend on other model parameters, in which case formulas

for these quantities in terms of model parameters would be needed.

Remark 2 The sign of  determines the direction of bifurcation and the stability of bifurcating pos-

itive equilibria. From the formula (11) we see that this diagnostic quantity is a linear combination,

with positive coefficients, of the partial derivatives  (0 0)  of the entries  ( ) in the

projection matrix  ( ) with respect to the components  of , evaluated at ( ) = (0 0). In
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population models, these partial derivatives measure the effects that changes in low level, class spe-

cific densities have on the vital rates modeled by  ( ). A negative partial derivative contributes

to the possible negativity of  and hence a forward, stable bifurcation. On the other hand, a positive

partial derivative (called a component Allee effect [4]) contributes to the possible positivity of  and

hence a backward, unstable bifurcation.

Notice that if all nonzero derivatives  (0 0)  are negative, then   0 In this case,

which can often be seen in applications by simple inspection, there is no need to calculate  in

order to see that it is positive and the bifurcation is stable. Similarly, if all nonzero derivatives

 (0 0)  are positive the bifurcation is unstable. Only if there is a mix of negative and

positive derivatives is it necessary to calculate  in order to determine its sign.

Remark 3 In a manner similar to the determination of the sign of  in Remark 2, one can often

determine the sign of the first quantity in (18) without actually calculating it, but by observing

the signs of the derivatives  (0 0) . If all nonzero derivatives are positive (negative), then

clearly the quantity is positive (negative).

Remark 4 Theorem 2 is no longer valid if the assumption that  (0 0) is primitive is dropped

(nor is Lemma 2(b)). When  (0 0) is imprimitive, it is well known that the direction of bifur-

cation does not alone determine the stability of the bifurcating positive equilibria. As pointed out

in [2] imprimitive inherent projection matrices rarely arise in population models, and therefore this

assumption is not restrictive. On the other hand, there are a few models with imprimitive inherent

projection matrices that arise under very specialized biological assumptions (such as Leslie models

under strict semelparity). Extensive studies of these specialized models have shown that forward

bifurcations are not necessarily stable. The reason is that imprimitivity, in general, creates the

simultaneous bifurcation of equilibria and other types of invariant sets (synchronous cycles, cycle

chains, and other complicated invariant sets on the boundary of the positive cone). The transcritical

bifurcations that occur in the imprimitive case are well understood in dimensions  = 2 [7], [17]

and  = 3 [14]. For higher dimensions little is known about the stability or instability these si-

multaneously bifurcating continua [16], except for imprimitive matrices of a highly specialized forms

[33], [34]. Some authors have mused about the imprimitive case that, as the dimension  increase,

the number and complexity of the combinatorial possibilities for the existence and stability of bifur-

cating invariant sets become so overwhelming that the existence of a general rule for determining

which are stable is unlikely. It remains a challenging, open problem to determine the properties of

the bifurcation that occurs when the extinction equilibrium destabilizes in the case of an imprimitive

projection matrix  (0 0).

5 The Net Reproduction Number

To apply the results in Section 3 one needs to find a value 0 of the bifurcation parameter  = 0
for which the dominant eigenvalue  ( 0) of the (nonnegative and irreducible) inherent projection

matrix  ( 0) is equal to 1. Since formulas for  ( 0) are not generally available, the calculation of

such a 0 is usually intractable analytically. A method that is in general more analytically tractable

utilizes the inherent net reproduction number 0 ( 0), which is defined as follows.

The demographic population vector +1 consists of offspring produced since time  plus sur-

vivors from the population  If  ( 0) is the number of offspring of class  produced by an adult

of class  per unit time then the demographic population of offspring at time +1 is  ( 0) where

11



 ( 0) = [ ( 0)] is the fertility matrix. If  ( 0) is the fraction of  class individuals who

survive and move to class  per unit time, then the demographic population vector of survivors is

 ( 0) where  ( 0) = [ ( 0)] is the survival-transition matrix. Thus, the projection matrix

has the additive decomposition

 ( 0) =  ( 0) +  ( 0) 

Note that both  ( 0) and  ( 0) are nonnegative matrices whose entries satisfy

 ( 0) ≥ 0 0 ≤  ( 0) ≤ 1 (19)

Without immigration into the population, the total survivors can be no larger than the original

population so that Σ=1 ( 0) ≤ 1
Recall that a nonnegative matrix has a nonnegative, dominant eigenvalue with associated non-

negative right and left eigenvalues [1]. Let  () ≥ 0 be the (not necessarily strictly) dominant
eigenvalue of  ( 0). The vector of survivors from  (0) at time  is   ( 0) (0) and the popula-

tion of survivors is |  ( 0) (0)|. To rule out immortality, we assume lim→+∞ |  ( 0) (0)| = 0
for all nonnegative initial vectors  (0). This is equivalent to  ( 0)  1 and implies the matrix

 −  ( 0) (where  is the × identity matrix) has a nonnegative inverse:

( −  ( 0))
−1
=  +  ( 0) +  2 ( 0) + · · ·

[29], [24]. The nonnegative matrix  ( 0) ( −  ( 0))
−1
is called the next generation matrix and

its dominant eigenvalue 0 ( 0) is the inherent net reproduction number [5].

The following theorem follows from results in [5] and [29].

Theorem 3 Assume  ( 0) and  ( 0) are continuously differentiable functions on  that

satisfy (19). Assume  ( 0) =  ( 0) +  ( 0) is nonnegative and irreducible,  ( 0) 6= 0 and
 ( 0)  1 for  ∈ . Then  ( 0) and 0 ( 0) are on the same side of 1 and  ( 0) = 1 if

and only if 0 ( 0) = 1

Remark 5 Theorem 3 implies that a value of  required in assumption A2 can be found by solving

0 ( 0) = 1 for  = 0 instead of solving  ( 0) = 1 for  = 0.

The advantage of using 0 ( 0) to find 0 is that one can often calculate an analytic formula

for it. ⊂The reason for this is that the fertility matrix is usually of low rank (because the number
of juvenile classes is usually low), which produces only a small number of nonzero rows in  ( 0).

For example, the most common case is that all juveniles lie in a single class in the classification

scheme, usually class  = 1 In this case only the first row in  ( 0)  and consequently also in the

next general matrix, is nonzero and, as a result, 0 ( 0) is the first row, first column entry in the

next generation matrix Thus, 0 ( 0) is the inner product of the first row of  ( 0) and the first

column of ( −  ( 0))
−1
.

For example, the classic Leslie, age-structured, projection matrix has fertility matrix

 ( 0) =

⎡⎢⎢⎢⎢⎢⎣
11 12 · · · 1−1 1
0 0 · · · 0 0

0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦
12



and transition matrix

 ( 0) =

⎡⎢⎢⎢⎢⎢⎣
0 · · · 0 0 0

21 ( 0) · · · 0 0 0
...

...
...

...

0 · · · −1−1 ( 0) 0 0

0 · · · 0 −1 ( 0)  ( 0)

⎤⎥⎥⎥⎥⎥⎦
from which one can calculate

0 ( 0) = 11 ( 0) +
P−1

=1 1 ( 0)
Q−1

=2 −1 ( 0) (20)

+ 1 ( 0)
1

1−  ( 0)

Q
=2−1 ( 0) 

For other examples of 0 formulas for special projection matrices see [9].

6 Examples

We consider two structured population models to illustrate the use of the results in Section 3.

The first example involves an  = 2 dimensional model that classifies individuals into two classes:

juveniles and adults. Adult fertility is assumed to be a function of the amount  of a food resource

available to adults. We use  as the bifurcation parameter to study the destabilization of the

extinction equilibrium and the resulting bifurcation of positive equilibria by applying Theorem 2.

Theorems about this bifurcation available in the literature do not apply to this example because

 does not appear linearly. A second example involves the well known LPA model, an  = 3

dimensional model in which individuals are classified by the life history stages of larva, pupa, and

adults. By using the adult death rate as the bifurcation parameter, we see an example of a backward

and stable bifurcation of positive equilibria (which is in contrast to the more familiar forward and

stable bifurcation found in most applications and which is found in the LPA model if instead the

adult fertility rate is used as the bifurcation parameter).

6.1 A Juvenile-Adult Model

A basic life stage model is the  = 2 dimensional matrix model in which the population is classified

into juveniles 1 and adults 2 and the time unit is taken equal to the juvenile maturation period.

This results in a projection matrix of the form [7], [17] [20], [21], [31]∙
0 

1 2

¸


In this matrix   0 is the per adult fertility rate (the number of juveniles produced by an adult

during one time unit), and 1 and 2 are the fractions of juveniles and adults that survive one time

step.

In this example we consider a nonlinear version of this model with projection matrix

 ( ) =

∙
0  () (2)

1 2

¸
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Here adult fertility  is assumed proportional to a food resource harvest rate  () where  is the

amount of food resource available to adults,  is the number of offspring produced per unit resource

per adult, and  (2) is the effect on reproduction of adult population density. For example, a

commonly used mathematical expressions for  is the Holling II type harvest rate

 () = ∗


+ 
(21)

where ∗  0 is the maximal possible amount of food resource that can be harvested per unit time
per adult and   0 is the half saturation level. Commonly used density factors are

 (2) =
1

1 + 2
or exp (−2) or

1 + 2

1 + 2 + 22
(22)

where    0. Note that the first two examples are monotone decreasing functions of  as is

the third if    If    then the third example initially increases to a maximum at  =¡√
− + 1− 1¢  after which it is monotone decreasing. (An increase in fertility with increased

low level density, such as this, is called a component Allee effect.) All three examples tend to 0 as 

increases without bound, that is to say, fertility effectively ceases at extremely large adult densities.

Our goal is to apply Theorem 2 using the resource availability  as a bifurcation parameter.

We’ll do this under the following assumptions. The survival rates satisfy

0  1 ≤ 1 0  2  1

(if 2 = 0 the inherent projection matrix is imprimitive) and the harvest and density factors  and

 are, on an open interval containing 1+, twice continuously differentiable and nonnegative valued

functions of their arguments that satisfy

 ()


 0

(i.e. the harvest rate increases with an increase in resource availability) and

 (0) = 1 and 0 ≤  () ≤ ∗  +∞
for all   0 and some positive constant ∗  0. Then the inherent projection matrix

 ( 0) =

∙
0  ()

1 2

¸
=

∙
0  ()

0 0

¸
+

∙
0 0

1 2

¸
is primitive and by (20) the inherent net reproduction number is

0 ( 0) =  ()
1

1− 2


Assume there exists a resource availability 0 for which 0 (0 0) = 1 i.e.

1− 2

1
lies in the range of  () (23)

so that

0 = −1
µ
1− 2

1

¶
 (24)
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For example, for the Holling II harvest rate

0 = 
1− 2

∗1 − (1− 2)

under the assumption that the maximal harvest rate ∗ is sufficiently large:

∗ 
1− 2

1


To apply Theorem 2, according to Remark 1, we only need to determine the signs of the two

quantities (18). To do this we can make use of Remarks 3 and 2. The only nonzero entry in

 (0 0)  is
12 (0 0)


= 

 (0)


 0

and it follows that




 (0 0)


  0

Second, the only nonzero partial derivative  (0 0)  is

12 (0 0)

2
=  (0)

 (0)

2

whose sign is that of  (0)  It follows by Remark 2 that the sign of  is that of − (0) 
Applying Theorem 2, we arrive at the following conclusions.

Assuming (23) holds, the extinction equilibrium destabilizes as the resource availability

 increases through 0 given by (24). The resulting bifurcation of positive equilibria is

forward and stable if  (0) 2  0 and backward and unstable if  (0)   0

As specific examples, the bifurcation is forward for the first two density factors  (2) in (22).

For the third density factor in (22), the bifurcation is forward and stable if    and backward

and unstable if   .

6.2 The LPA Model

The well-known LPA for the dynamics of an insect population has projection matrix  ( ) =

 ( ) +  ( ) where

 ( ) =

⎡⎣ 0 0  exp (−2 − 3)

0 0 0

0 0 0

⎤⎦

 ( ) =

⎡⎣ 0 0 0

1−  0 0

0 exp (−3) 1− 

⎤⎦
where the demographic population vector consists of larva 1 pupa 2 and adults 3. (The

bifurcation parameter  is yet to be chosen.) For a derivation of the model see [19] and for its many
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application see [3], [8], [11]. The unit of time is that for a larva to become a pupa, which in this

model is the same amount of time spent as a pupa. The density-free number of larvae produced

per adult per unit time is   0 and  and  are the larval and pupal death probabilities (per

unit time):

0     1

The density coefficients  , and  are positive (and measure the effects of larva and adult

cannibalism of eggs and pupae).

The inherent projection matrix ⎡⎣ 0 0 

1−  0 0

0 1 1− 

⎤⎦
primitive provided  6= 1 and by (20) the inherent net reproduction number is


1− 



As a first application of the bifurcation results in Section 3, we take the bifurcation parameter

to be the adult death rate  =  Then

0 ( 0) = 
1− 



and

0 =  (1− ) 

To be meaningful 0 must be less than 1 so we assume

 (1− )  1 (25)

Then

 (0 0) =

⎡⎣ 0 0 

1−  0 0

0 1 1−  (1− )

⎤⎦
is primitive.

To apply Theorem 2, according to Remark 1, we only need to determine the signs of the two

quantities (18). To do this we can make use of Remarks 3 and 2. First, since the only nonzero

entry in  (0 0)  is
33 (0 0)


= −1  0

it follows that




 (0 0)


  0

Second, by inspection we see that the only nonzero partial derivatives  (0 0)  are negative

and therefore it follows by Remark 2 that   0 Applying Theorem 2, we arrive at the following

conclusions.
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Assuming  =  and (25) holds, the extinction equilibria of the LPA model destabilizes

as  decreases through 0 and the resulting bifurcation of positive equilibria is backward

and stable.

If instead we chose the bifurcation parameter to be the inherent adult fertility rate  = , then

0 =


1− 

and

 (0 0) =

⎡⎣ 0 0 
1−

1−  0 0

0 1 1− 

⎤⎦
is primitive. In this case, the only nonzero entry in  (0 0)  is

13 (0 0)


= 1  0

which implies




 (0 0)


  0

By the same reasoning as above,   0 and we reach the following conclusion.

Assuming  =  the extinction equilibria of the LPA model destabilizes as  increases

through 0 and the resulting bifurcation of positive equilibria is forward and stable.

For more on the LPA model at its bifurcations using  =  as the parameter see [12].

7 Concluding Remarks

Theorem 2 generalizes available theorems concerning the bifurcation that occurs when the extinction

equilibrium destabilizes in two ways. First, it allows for a general appearance of the bifurcation

parameter  and therefore allows for a wider range of applications. Second, it includes the case

when backward bifurcations are stable. The theorem concerns the autonomous nonlinear matrix

equation (1) whose projection matrix depends on time only in that it depends on the population

demographic vector at time .

Population vital rates can vary with time in other ways as well. Vital rates varying periodically

in time (for example, due to seasonal, monthly or daily fluctuations of environmental conditions)

give rise to a projection matrix that is explicitly dependent on time in a periodic fashion. It would

be of interest to generalize Theorem 2 to the case of periodically forced matrix equations, so as

to generalize existing theorems [10], [23], [13]. Another reason the entries in the projection matrix

can vary with time is adaptation by means of evolutionary selection. Available theorems describing

the fundamental bifurcation from a destabilizing extinction state for Darwinian (evolutionary game

theoretic) matrix models assume a linear appearance of the bifurcation parameter [15], [17], [18],

[30] and it would be of interest to extend Theorem 2 to Darwinian matrix models.
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