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The teaching of mathematics has been a source of particular concern
in the US for the past 15 years. One of the problems is exemplified by
the study in which school children were given the following question:

A shepherd has 125 sheep in his flock and 5 dogs. How
old is the shepherd?

Many children give a numerical answer (usually 25, obtained by observ-
ing that 125 + 5 = 130 is too old, as is 125-5 = 120, but that 125/5 =
25 is about right). More alarming than the number of numerical an-
swers, is the fact that children in older grades give numerical answers
more frequently than younger children — making us wonder about the
effectiveness of schooling.

On a local level, there are many occasions in my own teaching which
suggest that students come to the university viewing mathematics as a
subject in which they should be told what method to use. For example,
the following problem was given on a calculus exam:

A particle starts at the origin and moves along the graph
of y = x?/2 at a velocity of 10 units/second.

(a) Write down the integral which shows how far the
particle has travelled when it reaches the point where
x =a.

(b) You want to find the z-coordinate of the point
reached by the particle after travelling for 2 seconds.
Find upper and lower estimates, differing by less than
0.2, for this coordinate.

Some students described the problem as unfairly “vague,” because it
did not contain the words “arc length” to tell them what to do.

Surveys of Harvard students at the start of calculus and precalculus
courses confirm that many believe math courses are about learning
how to do computations rather than figuring out which computations
to do. For example, in a survey of several hundred undergraduates, the
question

A well-written problem makes it clear what method to

use to solve it.
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received 4.1 out of 5 agreement from calculus students and 4.6 out of
5 agreement from precalculus students.

This attitude towards mathematics is an enormous handicap for stu-
dents. It will block their chances of being successful in mathematics,
pure or applied, and it will prevent them from using mathematics in
any substantial way in other fields. If we are to produce mathemati-
cally able students and engineers, it is of the greatest importance that
we address this problem.

Over the last 15 years there have been widespread efforts throughout
the world to upgrade the curriculum at the high school and beginning
college level. A study of examinations given 15 years ago shows that it
was perfectly possible to pass and even do well in a calculus course by
knowing how to calculate derivatives and integrals and without know-
ing what a derivative and integral meant. Questions like the following,
which demand interpretation, have now been added to courses at many
institutions:

1. The US population (in millions) in year t is repre-
sented by the function P(t).

(a) What do the functions P(t) + 5 and P(t + 100)
represent? (b) What do the statements P’(1990) = 2.3
and (P71)/(250) = 0.5 tell us? What are the units of
each derivative?

2. If g(v) is the fuel efficiency of a car going at v
kilometers per hour (i.e., g(v) = the number of km per
liter at v km/hr), what are the units of ¢’(55)7 What is
the practical meaning of the statement ¢'(90) = —0.237?

Technology — first graphing calculators and now computer algebra
systems — have played, and continue to play, a significant role in chal-
lenging mathematics departments to make their courses thought-provoking.
Graphing calculators forced us to rethink the teaching of graphing.
With a calculator, producing the graph of a given function in a given
window is easy. Focussing the course on how to obtain such graphs
without using the calculator looks pointless to students. However, the
following problem requires the students to think about the behavior of
z* and 3%:

Use a graphing calculator or a computer to graph y = z*
and y = 3”. Determine approximate domains and range
that give each of the graphs in Figure 1.



(c)
FIGURE 1. y =z vs. y = 3%.

Attempts to do this problem by trial-and-error, without thinking
about the mathematics, are doomed to failure. It requires the stu-
dent to consider which function is largest where, how many times they
intersect, and so on.

A calculator or computer can enable students to make the connec-
tion between different representations: the graphical, the numerical,
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and the symbolic; such connections are an important first step toward
conceptual understanding. For example, consider the graph in Figure
2 of the parametric equations x = cos(t3),y = sin(¢®) for 0 < ¢t < 10
with At = 0.1

FIGURE 2. Graph for z = cos(t3),y = sin(#3) for
0 <t<10 with At =0.1

When I saw this shown to a class, they were at first surprised. Then
they realized, by doing the algebra, that the graph really should be a
circle. Then they figured out how the cube and the step size led to the
picture they saw.

The use of calculators and computer can lead to the introduction of
a more experimental, conjecture-based approach. This is more similar
to real mathematics than the purely computational emphasis of the
recent past. For example, the graph of a saddle point z = z% — 32
caused my students to ask what function had the graph of a monkey
saddle or a dog saddle. Using the 3-D graphing feature, they figured
out the answer and then checked that they were right.

The fact that a graphical approach is easier with calculators and
computers enables us to introduce some difficult topics earlier. For
example, the traditional approach to introducing the function e® (by



defining In(z) as the integral n and e” as the inverse function

of In(z)) has the effect of delaying e” till second semester calculus
— long after the biologists would like to use it. This approach also
involves several of the things students find most difficult (defining a
function as an integral, logarithms, and inverse functions). In addition,
it obscures the reason that e” is important: that the derivative of
e® is €®. The advantages of the traditional approach is that each of
the definitions and results can be made rigorous. However, for many
students, it may be better to delay the rigor and concentrate first on
developing understanding. An approach which can be done earlier and
which gives students a better sense of why e” is important is to study

the function f(xz) = a® and its derivative using the approximation
aa:+0.01 —ar
fl(z) ~ ool for various values of a. Graphs of f(z) and f'(z)

for a = 2 and a = 3 are shown in Figure 3.
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FIGURE 3. f(z) =a” and f'(z) for (a) a =2 and (b) a = 3.
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The graph of f(z) and f’(z) certainly look the same shape. To sug-
gest to students that f(z) and f'(z) are proportional to one another,
look at the values in the table which shows f(z), f'(z), and the ratio
f'(z)/f(z). The fact that the values of the ratio are constant (to three
decimal places) suggests that f’(z) and f(z) are indeed proportional.
This is confirmed by using the symbolic capability of a calculator or
computer or by the usual limit calculation. The number e is then in-
troduced as the base which makes the derivative of a® equal to itself.

¢ flz)=2" [f(z) [f(2)/f(z) g(z)=e" g'(x) d'(z)/g(x)
0 1 0.69556  0.69556 1 11047 1.1047
1 2 1.3911  0.69556 3 3.314 11047
2 4 2.7822  0.69556 9 9.942  1.1047
3 8 5.5644  0.69556 27 29.826  1.1047
4 16 11129 0.69556 81 89.478  1.1047
5 32 22.258  0.69556 243 26843  1.1047
6 64 44516 0.69556 720 8053  1.1047

Such a change in approach raises many questions. A central issue is the
virtue or danger of having students gain an intuitive appreciation of the
derivative of a® before they can prove the results. As you consider this
question, it is sobering to realize how few can remember (never mind
prove) the sequence of steps which lead to the traditional definition of

e:l)

Questions for the Future

The changes that we have seen in the teaching of mathematics over
the last 15 years foreshadows the much larger changes which will come
when computer algebra systems become a regular part of schools. Since
computer algebra systems are already available on easy to use calcu-
lators which cost less than US $200, and prices are falling, they could
become common place in the next few years. If computer algebra sys-
tems are not to undermine the teaching of algebra — factoring, simpli-
fying, solving equations — we must rethink the curriculum. To convince
students that they should learn any particular manipulation by hand,
we need to have a well thought-out argument for it. Similarly, any
topic for which we can find no such argument is eligible to be dropped.
The same issues arise in calculus: What do students need to be able
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to differentiate or integrate by hand, if they have a computer algebra
system which can do this for them?

These questions are far harder and far more urgent than most people
realize. The consequence of not answering them thoughtfully is that
the decision may drift out of the hands of academics. Our answers to
these questions will affect all the student who come to the university
and therefore are of the greatest importance to all of us.



