1. Give values so that the table represents an invertible function.

m	1	2	3	4	5
f(m)	0.09			7.80	9.40

- **2.** For what values of A and K will $S(t) = At^3 K$ be a one-to-one function?
- 3. The life expectancy, L, of a child can be expressed as a function of the year of birth.

$$L(y) = \frac{y + 66.94}{0.01y + 1}$$

y = 0 corresponds to 1950.

A. Find the value of L(40). Use algebra to find the value of $L^{-1}(76)$.

B. Give practical interpretations of L(40) and $L^{-1}(76)$. (Include your values from part A.)

4. Let $f(x) = \frac{x}{1+x^2}$ and $g(x) = \frac{1}{x+1}$. Find f(g(x)) and g(f(x)). Simplify completely. (Write as a simple fraction.)

5. Use the numerical representation of f(x) below to match the numerical information in column A with the symbolic representation in column B.

х	-4	-2	0	2	4
f(x)	5	1	6	2	7

Note: One function in column B has no representation in Column A.

Column A

1							
Х	-4	-2	0	2	4		
g(x)	7	3	8	4	9		

2. ____

Х	-2	-1	0	1	2
h(x)	5	1	6	2	7

3. _____

Х	-2	0	2	4	6
m(x)	5	1	6	2	7

4.

х	-8	-4	0	4	8
n(x)	5	1	6	2	7

5.

·					
х	-4	-2	0	2	4
g(x)	-5	-1	-6	-2	-7

6. _____

Х	4	2	0	-2	-4
<i>k</i> (<i>x</i>)	5	1	6	2	7

7. ____

	_				
х	7	5	3	1	-1
u(x)	11	6	10	5	9

Column B

a.
$$f(x-2)$$

b.
$$f\left(\frac{1}{2}x\right)$$

c.
$$f(x) + 2$$

d.
$$f(-x)$$

e.
$$f(x-3)+4$$

f.
$$-f(x)$$

g.
$$f(x+2)$$

h.
$$f(2x)$$