Math 485, HW4

(1) Let $T: S^{1} \rightarrow S^{1}$ be defined by $\theta_{1}=\theta+2 \pi \alpha \bmod (2 \pi)$ where α is a real number. Prove that T admits periodic orbit if and only if α is a rational number.
(2) Let $T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ defined by $x_{1}=1-4 x^{2}$. (a) Find all fixed points. (b) Show that $\left|x_{n}\right| \rightarrow \infty$ for all $x_{0}>1$ where $x_{n}=T^{n}\left(x_{0}\right)$.
(3) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined as $\left(x_{1}, y_{1}\right)^{T}=A(x, y)^{T}$ where A is a 2×2 matrix. We say F is area preserving if for any given region $D \subset \mathbb{R}^{2}$, we have $m(D)=$ $m(F(D))$ where $m(D)$ is the area of D. Prove that F is area preserving if and only if $|\operatorname{det}(A)|=1$.
(4) Find the time-1 map of the differential equation

$$
\frac{d x}{d t}=x+y, \quad \frac{d y}{d t}=x+2 y .
$$

(5) For the differential equation

$$
\begin{aligned}
& \frac{d x}{d t}=x+y-x\left(x^{2}+y^{2}\right) \\
& \frac{d y}{d t}=-x+y-y\left(x^{2}+y^{2}\right),
\end{aligned}
$$

(a) find a periodic solution, and (b) derive the Poincaré return map around this periodic solution.
(6) For the differential equation

$$
\begin{aligned}
& \frac{d r}{d t}=-r+\cos \theta \sum_{n=-\infty}^{+\infty} \delta(t-n T) \\
& \frac{d \theta}{d t}=2+r
\end{aligned}
$$

where $\delta(t)$ is the standard δ-function, find the time-T map.
(7) Discuss the stability of the fixed points for the map $T(x)=\mu x(1-x)$ for $2<\mu<6$.
(8) Let $x_{0} \in[0,1]$ be a periodic solution of period n for $T(x)=7 x(1-x)$. Is x_{0} stable? Why?
(9) Let $T:[0,1] \rightarrow[0,1]$ be defined by letting $T(x)=2 x$ for $x \in[0,1 / 2]$ but $T(x)=2-2 x$ for $x \in(1 / 2,1]$. Prove
(a) T has exactly 2^{n}-many periodic orbits of period n; and
(b) the set of periodic orbits is dense in $[0,1]$.

Solution on (4): Let $X=(x, y)^{T}$. For the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

The eigenvalues are

$$
\lambda_{1}=\frac{3+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{3-\sqrt{5}}{2} .
$$

The eigenvector for λ_{1} is $(1,(1+\sqrt{5}) / 2)^{T}$. The eigenvalue for λ_{2} is $(1,(1-\sqrt{5}) / 2)^{T}$. Let

$$
C=\left(\begin{array}{cc}
1 & 1 \\
(1+\sqrt{5}) / 2 & (1-\sqrt{5}) / 2
\end{array}\right) .
$$

We have

$$
C^{-1}=\left(\begin{array}{cc}
(1-\sqrt{5}) / 2 & -1 \\
-(1+\sqrt{5}) / 2 & 1
\end{array}\right)
$$

and

$$
C^{-1} A C=\left(\begin{array}{cc}
\frac{3+\sqrt{5}}{2} & 0 \\
0 & \frac{3-\sqrt{5}}{2}
\end{array}\right) .
$$

We now introduce Y such that $X=C Y$ to derive equation for Y as

$$
\frac{d Y}{d t}=C^{-1} A C Y=\left(\begin{array}{cc}
\frac{3+\sqrt{5}}{2} & 0 \\
0 & \frac{3-\sqrt{5}}{2}
\end{array}\right) Y
$$

It then follows that

$$
Y(t)=\left(\begin{array}{cc}
e^{\frac{3+\sqrt{5}}{2} t} & 0 \\
0 & e^{\frac{3-\sqrt{5}}{2} t}
\end{array}\right) Y_{0} .
$$

We finally have

$$
X(t)=C\left(\begin{array}{cc}
e^{\frac{3+\sqrt{5}}{2} t} & 0 \\
0 & e^{\frac{3-\sqrt{5}}{2} t}
\end{array}\right) C^{-1} X_{0}
$$

The time map is the map from $X_{0} \rightarrow X(1)$. It is the 2D map defined by the matrix

$$
C\left(\begin{array}{cc}
e^{\frac{3+\sqrt{5}}{2}} & 0 \\
0 & e^{\frac{3-\sqrt{5}}{2}}
\end{array}\right) C^{-1} .
$$

Solution on $\mathbf{(9) (b) : ~ I f ~ t h e ~ p e r i o d i c ~ o r b i t s ~ a r e ~ n o t ~ d e n s e ~ i n ~}[0,1]$, there exists an interval $I_{0}=[a, b]$ so that no periodic orbit is inside of I_{0}. Without loss of generality we assume I_{0} is completely inside of either $[0.1 / 2]$ or $[1 / 2,1]$. For the tent map T the slopes for both segments are 2 . This implies that the size of the image of I_{0} doubles that of $I_{0}:\left|T\left(I_{0}\right)\right|=2\left|I_{0}\right|$. Let $I_{i}=T^{i}\left(I_{0}\right)$, and i_{0} be the smallest i so that I_{i} crosses $x=1 / 2$. This is bound to happen because we can not have $\left|I_{i}\right|=2^{i}\left|I_{0}\right|<1 / 2$ for all i. Now $I_{i_{0}}$ is divided into two, both hold $x=1 / 2$ as one end. We notice that this end will be held at $x=0$ forever in future iterations of T. Since the images will double in size by 2 for each iteration of T. It will eventually cover I_{0}. But a map from a subset of I_{0} coming back to cover I_{0} must have a fixed point, which is a periodic orbit inside of I_{0}, a contradiction.

