On the Dynamics of Homoclinic Tangles

Qiudong Wang

University of Arizona

(Joint with Ali Osasaoglu)
Part I

Dynamics of Homoclinic Tangles
Unperturbed equation

\[\frac{dx}{dt} = -\alpha x + f(x, y), \]
\[\frac{dy}{dt} = \beta y + g(x, y) \]

- Dissipative saddle: \(0 < \beta < \alpha \).

- Homoclinic solution: (0, 0) is with a homoclinic solution

\[\ell = \{ \ell(t) = (a(t), b(t)) \in \mathbb{R}^2, \ t \in \mathbb{R} \}. \]
Periodically perturbed equation

\[
\frac{dx}{dt} = -\alpha x + f(x, y) + \mu P(x, y, t), \\
\frac{dy}{dt} = \beta y + g(x, y) + \mu Q(x, y, t).
\]

Two Scenarios:

Scenario (a) Scenario (b)

— Long history dates back to Poincaré.

— Chaos theory has been focused on (a).
Smale’s Horseshoe (1960)

- The horseshoe map

- Horseshoe implies complicated dynamics

The dynamics of a horseshoe map conjugates to the full shift of two symbols.

- Scenario (a) implies a horseshoe map
Analysis of a Given Equation

Part I Theoretic Analysis

• Compute the Melnikov function to verify that we are in scenario (a);

• Use Smale’s construction to confirm the existence of complicated dynamics.

part II Numerical Evidence

• To find a few values of μ that offer numerical plots of chaos
A Gap Between Theory and the Plots:

Plots are those of physical measures, not that of horseshoes.

Physical measures:

Invariant distribution with an attractive basin of positive Lebesgue measure.

- Sinks represent stable dynamics;
- SRB measures representing chaos.
- Horseshoe is always with an attractive basin of measure zero.
A Recent Dynamical Theory

There are THREE major dynamical scenarios:

(I) Transient tangles Homoclinic tangles admits no physical measures.

(II) Tangles dominated by sinks The only physical measures admitted are sinks.

(III) Hénon-like attractors SRB measures associated to Newhouse tangency representing chaos.

As \(\mu \to 0 \), there is a invariant pattern of dynamical behavior that would be repeat in an accelerated fashion as \(\mu \to 0 \).

Multiplicative Period: \(\mu_1 = e^{\beta T} \mu_0 \).
Part II

Numerical Investigation
Equation of Study

Step 1: We start with

\[\frac{d^2q}{dt^2} - q + q^2 = 0. \]

Step 2: Add non-linear damping terms

\[\frac{d^2q}{dt^2} + (\lambda - \gamma q^2) \frac{dq}{dt} - q + q^2 = 0. \]

For \(\lambda > 0 \) small, there exists \(\gamma_\lambda \) so that it has a homoclinic loops to a dissipative saddle.

Step 3: Add periodic perturbations

\[\frac{d^2q}{dt^2} + (\lambda - \gamma_\lambda q^2) \frac{dq}{dt} - q + q^2 = \mu \sin 2\pi t \]
Numerical Simulation

- Numerical scheme
 - Fourth-order Runge-Kutta routine

- Values of λ and γ
 \[
 \lambda = 0.5, \quad \gamma_{\lambda} = 0.5770285901
 \]

- Initial phase position
 \[
 (q_0, p_0) = (0.01, 0.0).
 \]

- Parameters varied
 - μ ranged from 10^{-3} to 10^{-7}.
 - t_0 ranged in $[0, 1)$.
 - Compute the solution for each fixed combination of μ and t_0.
Simulation Results

- Transient Tangle
 - Let t_0 run over $[0, 1)$ with an increment of 0.001.
 - all 1,000 solutions leave the neighborhood of the homoclinic solution.
 - Homoclinic tangle contains no object directly observable.

- Periodic Sink
- Hénon-Like Attractor

These are plots of a chaotic attractor close to a periodic solution.

They represent a Hénon-like attractor associated to Newhouse tangency (Mora-Viana)
Theory of Newhouse Tangency (1970’s)

- Return map on B_n is essentially a Hénon family after re-normalization.

 — Newhouse’s infinitely many sinks.

- Persistency of tangency.

 — Tangency is structured as intersection of two Cantor sets.

 — Small change of parameters can not do away the tangency.
Periodicity of Dynamical Behavior

Theoretical Multiplicity $= e^{\beta T} = 2.1831$

<table>
<thead>
<tr>
<th>μ</th>
<th>Dynamics</th>
<th>Actual Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7.041 \cdot 10^{-5}$</td>
<td>Transient</td>
<td>--</td>
</tr>
<tr>
<td>$3.415 \cdot 10^{-5}$</td>
<td>Hénon-like</td>
<td>--</td>
</tr>
<tr>
<td>$3.342 \cdot 10^{-5}$</td>
<td>Periodic Sink</td>
<td>--</td>
</tr>
<tr>
<td>$3.224 \cdot 10^{-5}$</td>
<td>Transient</td>
<td>2.1839</td>
</tr>
<tr>
<td>$1.574 \cdot 10^{-5}$</td>
<td>Hénon-like</td>
<td>2.1696</td>
</tr>
<tr>
<td>$1.504 \cdot 10^{-5}$</td>
<td>Periodic Sink</td>
<td>2.2221</td>
</tr>
<tr>
<td>$1.474 \cdot 10^{-5}$</td>
<td>Transient</td>
<td>2.1872</td>
</tr>
<tr>
<td>$7.190 \cdot 10^{-6}$</td>
<td>Hénon-like</td>
<td>2.1892</td>
</tr>
<tr>
<td>$6.931 \cdot 10^{-6}$</td>
<td>Periodic Sink</td>
<td>2.1700</td>
</tr>
<tr>
<td>$6.732 \cdot 10^{-6}$</td>
<td>Transient</td>
<td>2.1895</td>
</tr>
<tr>
<td>$3.272 \cdot 10^{-6}$</td>
<td>Hénon-like</td>
<td>2.1974</td>
</tr>
<tr>
<td>$3.149 \cdot 10^{-6}$</td>
<td>Periodic Sink</td>
<td>2.2010</td>
</tr>
<tr>
<td>$3.060 \cdot 10^{-6}$</td>
<td>Transient</td>
<td>2.2000</td>
</tr>
<tr>
<td>$1.477 \cdot 10^{-6}$</td>
<td>Hénon-like</td>
<td>2.2153</td>
</tr>
<tr>
<td>$1.448 \cdot 10^{-6}$</td>
<td>Periodic Sink</td>
<td>2.2182</td>
</tr>
<tr>
<td>$1.378 \cdot 10^{-6}$</td>
<td>Transient</td>
<td>2.2206</td>
</tr>
<tr>
<td>$6.547 \cdot 10^{-7}$</td>
<td>Hénon-like</td>
<td>2.2560</td>
</tr>
<tr>
<td>$6.500 \cdot 10^{-7}$</td>
<td>Periodic Sink</td>
<td>2.2277</td>
</tr>
</tbody>
</table>
Summary

(I) A Theory on Homoclinic Tangles

We provided a comprehensive description on the overall dynamical structure of homoclinic tangles from a periodically perturbed homoclinic solution.

(II) Theories on maps come together

Horseshoes, Newhouse sinks and Hénon-like attractors all fall into their places as part of a larger picture.

(III) Applications

Our results can be applied to the analysis of given equations, such as Duffing equation.

(IV) A systematic numerical investigation

The behavior of numerical solutions are entirely predictable and are consistent with the predictions of our new theory.