On the Homoclinic Tangles of Henri Poincaré

Qiudong Wang

University of Arizona

(Joint with Ali Osasaoglu)
List of Contents

Part I: Snapshots of History

- Discovery of Homoclinic Tangle
- Smale's Horseshoe
- Hénon Maps and Newhouse Tangency

Part II: Structure of Homoclinic Tangles

- The Separatrix Map
- Goemetric Structure
- Dynamical Consequence

Part III: Numerical Investigation

- Three Dynamical Scenarios
- Periodic Occurrence
Part I

Snapshots of History
King Oscar II’s Prize Problem

• A prize for solving the N-body problem

Given a system of arbitrarily many mass points that attract each other according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.

– Acta Mathematica, vol. 7, of 1885-1886

• Prize was awarded to Henri Poincaré for his work on the restricted 3-body problem

In this particular case, I have found a rigorous proof of stability and a method of placing precise limits on the elements of the third body... I now hope that I will be able to attack the general case and ... if not completely resolve the problem (of this I have little hope), then at least found sufficiently complete results to send into the competition.

– Henri Poincaré, 1887
A Prize Mess

• Hugo Gyldén informed the prize committee that the prize was wrongly bestowed.
 — He published a paper two years earlier, in which Poincaré stability claim was proved.
 — Poincaré said Gyldén’ paper is not readable and is inconclusive.

• Poincaré then found a fatal mistake in his own essay.
 — The stability conclusion he claimed was wrong.
 — Acta Mathematica with the prize essay was recalled and all destroyed.
 — Poincaré completely re-wrote his essay and kept the prize.
 — Poincaré paid double the amount of the prize money to cover the cost of the recall.

• Power series solution constructed much later.
 By Sundman for the 3-body problem (1912) and by myself for all \(N \) (1985).
Homoclinic tangles of Henri Poincare

\[\frac{dx}{dt} = f(x) + \varepsilon g(x, t) \]

- The mistake Poincaré made

- The homoclinic tangle of Henri Poincaré

- Appeared to be an incompressible mess.
Smale’s Horseshoe (1960)

- The horseshoe map

- Horseshoe embedded in homoclinic tangle

- Melnikov method

A standard computational procedure in verifying chaos in differential equations
Hénon Attractors

\[H_{a,b} : \quad x_1 = 1 - ax^2 + y, \quad y_1 = bx \]

- Numerical evidence of strange attractors

- Theory on Hénon maps

Theorem For every \(b \) sufficiently small, there exists a positive measure set \(\Delta_b \subset (1, 2) \), such that for \(a \in \Delta_b \), \(H_{a,b} \) has a positive Lyapunov exponent Lebesgue almost everywhere on \((x, y) \in (0, 2) \times (-1, 1) \)

Remark: This theorem is mainly due to Benedicks and Carleson. Proof is long and hard.
The Theory of Newhouse Tangency

- Return map on B_n is essentially a Hénon family after re-normalization.

 — Newhouse’s infinitely many sinks.

 — Hénon-like attractors (Mora-Viana).

- Persistency of tangency.

 — Tangency is structured as intersection of two Cantor sets.

 — Small change of parameters can not do away the tangency.
Part II

Structure of Homoclinic Tangles
The Question of Homoclinic Tangles

\[
\begin{align*}
\frac{dx}{dt} &= -\alpha x + f(x, y) + \mu P(x, y, t), \\
\frac{dy}{dt} &= \beta y + g(x, y) + \mu Q(x, y, t).
\end{align*}
\]

- **Fundamental object:** \(\Lambda = \) the maximum set of solutions staying around the homoclinic loop.

- **Fundamental question:** The geometric and dynamical structure of \(\Lambda \)?

 — Horseshoe is only a participating part.
The separatrix map \mathcal{R}

\mathcal{R} is an annulus map proposed by Afraimovich and Shilnikov.

It is only partially defined on the annulus.

We rigorously derived a formula for \mathcal{R} from the equation.
The structure of homoclinic tangle

- \mathcal{R} is defined on vertical strips.

- **The action of \mathcal{R} on one strip**
 - Compressing in vertical direction
 - Stretching in horizontal direction, to infinity in length towards both end
 - Folded, and put back into \mathcal{A}.

- **The image moves horizontally in a constant speed with respect to** $a \sim \ln \mu^{-1}$ as $\mu \to 0$.
Dynamical Consequences

(I) There exists an infinitely many disjoint open intervals for μ as $\mu \to 0$, such that Λ_μ is conjugate to a horseshoe of infinitely many branches.

(II) There exists an infinitely many disjoint open intervals for μ as $\mu \to 0$, such that Λ_μ is the union of an periodic sink and a horseshoe of infinitely many branches.

(III) There are infinitely many open intervals of μ for $\mu \to 0$, such that Λ_μ admits Newhouse tangency.

--- Newhouse sinks;

--- Hénon attractors

(IV) As $\mu \to 0$, there is a periodic pattern of dynamical behavior Λ_μ would repeat in an accelerated fashion as $\mu \to 0$.
Part III

Numerical Investigation
Equation of Study

Step 1: We start with the Duffing equation
\[
\frac{d^2 q}{dt^2} - q + q^2 = 0.
\]

Step 2: Add non-linear dumping terms
\[
\frac{d^2 q}{dt^2} + (\lambda - \gamma q^2) \frac{dq}{dt} - q + q^2 = 0.
\]

For \(\lambda > 0 \) small, there exists \(\gamma_\lambda \) so that it has a homoclinic loops to a dissipative saddle.

Step 3: Add periodic perturbations
\[
\frac{d^2 q}{dt^2} + (\lambda - \gamma_\lambda q^2) \frac{dq}{dt} - q + q^2 = \mu \sin 2\pi t
\]
Numerical Simulation

- Numerical scheme
 - Fourth-order Runge-Kutta routine

- Values of λ and γ
 \[
 \lambda = 0.5, \quad \gamma_\lambda = 0.5770285901
 \]

- Initial phase position
 \[
 (q_0, p_0) = (0.01, 0.0)
 \]

- Parameters varied
 - μ ranged from 10^{-3} to 10^{-7}.
 - t_0 ranged in [0, 1).
 - Compute the solution for each fixed combination of μ and t_0.
Simulation Results

- **Transient Tangle**

 - Let t_0 run over [0, 1) with an increment of 0.001.

 - All 1,000 solutions leave the neighborhood of the homoclinic solution.

 - Homoclinic tangle contains no object *directly observable*.

- **Periodic Sink**

![Graphs](image.png)
• Hénon-Like Attractor

— These are a plot of a strange attractor associated to a Newhouse tangency.

— This is the kind of Chaos predicted by Mora-Viana based on Benedick-Carleson Theory on Hénon Maps.
Periodicity of Dynamical Behavior

Theoretical Multiplicity = $e^{\beta T} = 2.1831$

<table>
<thead>
<tr>
<th>μ</th>
<th>Dynamics</th>
<th>Actual Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7.041 \cdot 10^{-5}$</td>
<td>Transient</td>
<td>2.1815</td>
</tr>
<tr>
<td>$3.415 \cdot 10^{-5}$</td>
<td>Chaotic</td>
<td>2.1977</td>
</tr>
<tr>
<td>$3.342 \cdot 10^{-5}$</td>
<td>Non-chaotic</td>
<td>2.1867</td>
</tr>
<tr>
<td>$3.224 \cdot 10^{-5}$</td>
<td>Transient</td>
<td>2.1839</td>
</tr>
<tr>
<td>$1.574 \cdot 10^{-5}$</td>
<td>Chaotic</td>
<td>2.1696</td>
</tr>
<tr>
<td>$1.504 \cdot 10^{-5}$</td>
<td>Non-chaotic</td>
<td>2.2221</td>
</tr>
<tr>
<td>$1.474 \cdot 10^{-5}$</td>
<td>Transient</td>
<td>2.1872</td>
</tr>
<tr>
<td>$7.190 \cdot 10^{-6}$</td>
<td>Chaotic</td>
<td>2.1892</td>
</tr>
<tr>
<td>$6.931 \cdot 10^{-6}$</td>
<td>Non-chaotic</td>
<td>2.1700</td>
</tr>
<tr>
<td>$6.732 \cdot 10^{-6}$</td>
<td>Transient</td>
<td>2.1895</td>
</tr>
<tr>
<td>$3.272 \cdot 10^{-6}$</td>
<td>Chaotic</td>
<td>2.1974</td>
</tr>
<tr>
<td>$3.149 \cdot 10^{-6}$</td>
<td>Non-chaotic</td>
<td>2.2010</td>
</tr>
<tr>
<td>$3.060 \cdot 10^{-6}$</td>
<td>Transient</td>
<td>2.2000</td>
</tr>
<tr>
<td>$1.477 \cdot 10^{-6}$</td>
<td>Chaotic</td>
<td>2.2153</td>
</tr>
<tr>
<td>$1.448 \cdot 10^{-6}$</td>
<td>Non-chaotic</td>
<td>2.2182</td>
</tr>
<tr>
<td>$1.378 \cdot 10^{-6}$</td>
<td>Transient</td>
<td>2.2206</td>
</tr>
<tr>
<td>$6.547 \cdot 10^{-7}$</td>
<td>Chaotic</td>
<td>2.2560</td>
</tr>
<tr>
<td>$6.500 \cdot 10^{-7}$</td>
<td>Non-chaotic</td>
<td>2.2277</td>
</tr>
</tbody>
</table>
Summary

(I) A Theory on Homoclinic Tangles

We provided a comprehensive description on the overall dynamical structure of homoclinic tangles from a periodically perturbed homoclinic solution.

(II) Theories on maps come together

Horseshoes, Newhouse sinks and Hénon-like attractors all fall into their places as part of a larger picture.

(III) Applications

Our results can be applied to the analysis of given equations, such as Duffing equation.

(IV) A systematic numerical investigation

We know fully what to expect in numerical simulations around a periodically perturbed homoclinic solution.