1D Dynamics: Periodic Orbits

Maps of study: \(T(x) : \mathbb{R} \to \mathbb{R} \).

\(T(x) \) is as smooth as we need along the way.

1. Graph of \(T(x) \) and orbits

- Fixed points: Intersection of the graph \(y = T(x) \) and \(y = x \).

- A given orbit: Trace the graph.
2. Stability of a fixed point

Claim: Let \(x_0 \) be a fixed point. \(x_0 \) is asymptotically stable if \(|T'(x_0)| < 1 \). It is unstable if \(|T'(x_0)| > 1 \).

Proof: If \(|T'(x_0)| < 1 \), then by continuity there exist \(I(x_0) \) (an interval contains \(x_0 \)), such that \(|T'(x)| < \lambda < 1 \) for all \(x \in I(x_0) \). By mean value theorem then,

\[
|T(x) - x_0| = |T(x) - T(x_0)| < \lambda |x - x_0|
\]

for all \(x \in I(x_0) \). This implies \(|T^n(x) - x_0| < \lambda^n |x - x_0| \to 0 \). The other half is similar.

A demonstration using graph
3. \(|T'(x_0)| = 1\): Degenerate case

Ex: \(T(x) = x + x^3\): unstable at \(x = 0\).

Proof: \(T'(x) = 1 + 3x^2 > 1\) around \(x = 0\). So \(|T(x) - 0| > x\) for all \(x \neq 0\).

Ex: \(T(x) = x - x^3\): asymptotically stable at \(x = 0\).

Proof: \(T'(x) = 1 - 3x^2 < 1\) around \(x = 0\). So \(|T(x) - 0| < |x - 0|\). Starting from, say, \(x \neq 0\), \(\{x_n\}\) is a increasing sequence. So \(x_n \to \hat{x}\). \(\hat{x}\) must be a fixed point. So \(\hat{x} = 0\) and \(x_n \to 0\).

Ex: \(T(x) = x^3 \sin \frac{1}{x} + x\): Stable but not asymptotically stable at \(x = 0\).

Proof: Fixed points of this \(T(x)\) is defined by

\[
x^3 \sin \frac{1}{x} = 0.
\]

This is a case in which \(T(x)\) has infinitely many fixed points accumulating at \(x = 0\).
4. Existence of periodic orbits

Claim: Let $T : \mathbb{R} \to \mathbb{R}$. If T has a periodic orbit of period three, then it has periodic orbit of all periods.

Proof: Assume $a < b < c$ is such that $f(a) = b$, $f(b) = c$ and $f(c) = a$. Let $I_0 = [a, b]$, $I_1 = [b, c]$, we have $T(I_0) \supset I_1$ and $f(I_1) \supset I_0 \cup I_1$.

Basic observation: For any interval A such that $T^i(A) \supset I_1$, there are two sub-intervals $A^0, A^1 \subset A$, such that $T^{i+1}(A^0) = I_0$, $T^{i+1}(A^1) = I_1$.

Let n be fix, we will be able to find an sub-interval A in I_1 such that

(a) $T^i(A) \subset I_1$ for all $i < n - 1$;

(b) $T^{n-1}(A) = I_0$.

Since $T^n(A) = T(I_0) \supset I_1 \supset A$. T^n has a fixed point, which is a periodic orbit of T of period n. The period of this orbit can not be less than n by design.
5. Sarkovskii’s Theorem

Sarkovskii order

\[3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright \cdots \triangleright 2^m \cdot 3 \triangleright 2^m \cdot 5 \triangleright \cdots \triangleright 2^n \triangleright 2^{n-1} \triangleright \cdots \triangleright 2 \triangleright 1. \]

Remark: We can always write an integer \(n \) in the form \(n = p2^m \) where \(p \geq 1 \) is odd and \(m \geq 0 \) be positive.

Theorem: Assume that \(T : \mathbb{R} \to \mathbb{R} \) is continuous. If \(T \) has a periodic orbit of period \(n \), then for all \(n' \) such that \(n \triangleright n' \), \(T \) has a periodic orbit of period \(n' \).

- The previous claim (period three implies all period) is a special case of this claim.

- If a 1D map has only finitely many periodic solutions, their period has to be multiples of 2.

- This claim is true only for interval maps (not even true for maps from \(S^1 \) to \(S^1 \)).
Case 1: Let us first consider the case that T has a periodic orbit of *odd* period.

A crucial observation:

- Let n be the smallest odd period T allows (assume n exists). List this periodic orbit as

$$x_1 < x_2 < \cdots < x_n$$
on \mathbb{R}.

- Let r be the largest integer such that $T(x_r) > x_r$. Then

(a) $r = \frac{1}{2}(n - 1)$; and

(b) T on $\{x_i\}$ is as one of the following two pictures:
Proof for Case 1:

All period > n: $I_1 \rightarrow I_2 \rightarrow \cdots I_{n-1} \rightarrow I_1 \rightarrow \cdots I_1$.

Other even period < n: Starting from I_{n-1} go to other vertices then come back.
Proof of the observation:

Let n be the smallest odd period T admits, and $x_1 < x_2 \cdots < x_n$ be a periodic orbit of period n. Let $I_i = [x_i, x_{i+1}]$.

Let $I_r := [x_r, x_{r+1}]$ where r is the largest such that $T(x_r) \geq x_{r+1}$.

Claim 1: There exists $i \neq r$ such that $f(I_i) \supset I_r$.

proof: Denote $L = \{x_1, \cdots, x_r\}$, $R = \{x_{r+1}, \cdots, x_n\}$. We observe that

- T does not map L into L or R into R. Otherwise $\{x_1, \cdots, x_n\}$ is not one single periodic orbit.

- T do not map L completely to R and R completely to L because R and L contains different number of point. (n is odd)

- Consequently, there exists $i \neq r$, such that $T(x_i)$ and $T(x_{i+1})$ are on different side of I_r.
Let $J_1 = I_r$ and $J_k = T^{k-1}(I_r)$. J_k, as a continuous image of an interval, is also an interval. We also have $J_k \subseteq J_{k+1}$ because $T(I_r) \supseteq I_r$.

Claim 2: Let k_0 be the smallest such that $J_{k_0} \supseteq [x_1, x_n]$. Then for $k < k_0$, we have

$$J_k \cap \{x_i\}_{i=1}^n \neq J_{k+1} \cap \{x_i\}_{i=1}^n.$$

Proof: By assumption $J_k \cap \{x_i\}_{i=1}^n$ is a proper subset of $\{x_i\}_{i=1}^n$. If this claim fails, then

$$T(J_k \cap \{x_i\}_{i=1}^n) = J_k \cap \{x_i\}_{i=1}^n,$$

claiming that a proper subset of $\{x_1, \ldots, x_n\}$ is invariant. A contradiction.
We caution that J_k is not necessarily a union of several I_i intervals.

Let I_i be as the interval asserted by Claim 1, and $k(i)$ be the smallest such that $I_i \subset J_{k(i)}$. Then

Claim 3: We have

$$k(i) = k_0 = n - 1.$$

Proof: $k_0 \leq n - 1$ follows from Claim 2. $k(i) \leq k_0$ is by definition. So all we need is to show that $k(i) \geq n - 1$.

If $k(i) < n - 1$, then

$$I_r \rightarrow J_{k(i)} \rightarrow I_r \ (\rightarrow I_r)$$

give a periodic orbit of odd period $< n$. Note that the last $\rightarrow I_r$ is optional. It is to make sure we end up with **odd** period.

Claim 3 implies that, every time we applying T to $J_k, k < n, J_{k+1}$ picks up one and only one point from $\{x_i\}_{i=1}^{n}$. So we have two possibilities for $T(x_r)$ and $T(x_{r+1})$:
(i) \(T(x_r) = x_{r+1}, \ T(x_{r+1}) = x_{r-1}. \)

(ii) \(T(x_r) = T(x_{r+2}), \ T(x_{r+1}) = x_r. \)

From this point on, the two pictures are forced.
Case 2: For $n = p2^m$, let $f = T^{2^m}$. Then f allow p, therefore allow all $n' < p$. Get back to T: T allows all $2^m n'$ with $n' < p$. This finishes the part in Sarkovskii order except all powers of 2 less than 2^m.

To allow these numbers we need to:

(i) Prove that if T allow an even period, then it allows two.

(ii) Use it then on $f = T^{2^l}$ for all $1 \leq l < m − 1$ to allow 2^{l+1}.

To prove (i) we assume that $\{x_1, \ldots, x_n\}$ is a periodic orbit where n is the smallest even period allowed. We go back to see in our previous proof where the condition n is odd is used. It is, as one could observe, only used in proving Claim 1. So here we face the following two possibilities:
(a) Claim 1 still hold regardless of \(n \) is even now.

Then by repeat the same proof we conclude that \(n \) is odd. A contradiction.

(b) Claim 1 is false because \(R \) and \(L \) indeed have the same number of points, and \(T \) maps \(R \) to \(L \), \(L \) to \(R \). In this case we obtain \(T([x_1, x_r]) \supset [x_{r+1}, x_n] \) and \(T([x_{r+1}, x_n]) \supset [x_1, x_r] \), creating a periodic orbit of period two.
Homework

1. Discuss the stability of the fixed points of $T(x) = \mu x(1 - x)$ for $2 < \mu < 5$.

2. Let $T(x) = x^3 - \lambda x$ for $\lambda > 0$.
 (a) Find all periodic points and discuss their stabilities for $0 < \lambda < 1$.
 (b) Prove that, if $|x|$ is sufficiently large, then $|f^n(x)| \to \infty$.
 (c) Prove that if λ is sufficiently large, then the set of points which do not tend to infinity is a Cantor set.

3. Let
 \[T(x) = \begin{cases}
 2x & 0 \leq x \leq \frac{1}{2} \\
 2 - 2x & \frac{1}{2} \leq x \leq 1
 \end{cases} \]
 be the tent map on unit interval. Prove
 (a) T has exactly 2^n periodic orbits of period n.
 (b) The set of all periodic points of $T(x)$ are dense in $[0, 1]$.

4. Suppose A_0, A_1, \ldots, A_n are closed intervals and $T(A_i) \supset A_{i+1}$ for $i = 0, \ldots, n - 1$. Prove that there is a point $x \in A_0$ such that $T^i(x) \in A_i$ for all i.

5. Construct a map that has periodic orbit of period 2^j for $j < \ell$ but not period 2^ℓ.