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Abstract

The main purpose of this tutorial is to introduce to a more application-
oriented audience a new chaos theory that is applicable to certain systems
of differential equations. This new chaos theory, namely the theory of rank
one maps, claims a comprehensive understanding of the complicated geometric
and dynamical structures of a specific class of non-uniformly hyperbolic ho-
moclinic tangles. For certain systems of differential equations, the existence of
the indicated phenomenon of chaos can be verified through a well-defined com-
putational process. Applications to the well-known Chua’s and MLC circuits
employing controlled switches are also presented to demonstrate the usefulness
of the theory. We try to introduce this new chaos theory by using a balanced
combination of examples, numerical simulations and theoretical discussions.
We also try to create a standard reference for this theory that will hopefully be
accessible to a more application-oriented audience.
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1 Introduction

The main purpose of this paper is to introduce to a more application-oriented
audience a new chaos theory that is applicable to certain systems of differential
equations. This new chaos theory, namely the theory of rank one maps, claims
a comprehensive understanding of the complicated geometric and dynamical
structures of a specific class of non-uniformly hyperbolic homoclinic tangles.
For certain systems of differential equations, the existence of the indicated
class of homoclinic tangles is checkable through a well-defined computational
process.

Chaos as a dynamical phenomenon can be characterized in descriptive terms
by sensitive dependency on initial conditions and unpredictability of evolutions
of a generic orbit in the phase space. As was first observed by H. Poincaré
[Poincaré, 1890], the occurrences of chaos are closely related to homoclinic tan-
gles created by transversal intersections of the stable and unstable manifolds.
Later, the studies of homoclinic tangles led to the discovery of Smale’s horse-
shoe [Smale, 1967], which is a complicated dynamical structure that fulfills the
descriptive definition for chaos above and exists in all homoclinic tangles. The
conceptual simplicity of the formations of homoclinic tangles and the elegant
geometric structure of the horseshoe map have empowered the spreadings of
the gospel of modern dynamical systems to other scientific disciplines with a
relatively straight forward preaching that

(i) as a dynamical phenomenon that commonly exists in nonlinear systems,
chaos reflects the mathematical actuality of homoclinic tangles;

(ii) the complicated structure of homoclinic tangles is partly understood through
Smale’s horseshoes;

(iii) the existence of the homoclinic tangles and horseshoes can be systemat-
ically confirmed through geometric analysis and computations in many
systems of applications (see, e.g. [Guckenheimer & Holmes, 1997]).

A comprehensive theory of dynamics has been well-developed for uniformly
hyperbolic systems. These are the systems that split the orientations of the
phase space globally into uniformly expanding and contracting directions. This
theory is then extended to the studies of the systems with invariant cones
and discontinuities, elucidating important examples such as geodesic flows and
billiards (see, e.g., [Anosov, 1967; Bowen, 1975; Sinai, 1970, 1972; Smale, 1967;
Wojtkowski, 1983]). An abstract non-uniform hyperbolic theory also emerged in
the 1970’s and 80’s. This theory is applicable to systems in which hyperbolicity
is assumed only asymptotically in time and almost everywhere with respect to
an invariant measure (see, e.g., [Ledrappier & Young, 1985; Oseledec, 1968;
Pesin, 1977; Ruelle, 1976]).

Along the way of these magnificent developments, however, there has re-
mained a gap between the theory and its applications to concrete systems, in
particular, between the chaos observed in simulations and its mathematical jus-
tifications. The invariant cones property is quite special, and is rarely enjoyed
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by systems of real applications. For the new non-uniformly hyperbolic the-
ory to apply to concrete systems, it is necessary to first verify certain a priori
assumptions such as the positivity of Lyapunov exponents or the existence of
SRB measures, but these assumptions are inherently difficult to verify. Conse-
quently, this theory has had trouble in finding its way into the world of concrete
applications. With the theory of rank one maps and its applications to concrete
systems, we are finally at a point to make the much needed connection.

Non-uniformly hyperbolic tangles are exceedingly complicated structures,
and as a participating part, horseshoes are typically not observable. To provide
valid mathematical justifications for simulation results, one has to look deeper
into the tangles to find observable dynamical objects. These are, for the sys-
tems studied in this paper, periodic sinks and SRB measures, as we will see
momentarily through the various mathematical theories presented in Sec. 2 of
this paper. These theories include the theory of Newhouse sinks [Newhouse,
1974; Palis & Takens, 1993], the theories of rank one chaos for maps of various
forms and dimensions [Benedicks & Carleson, 1991; Jakobson, 1981; Mora &
Viana, 1993; Viana, 1993; Wang & Young, 2001, 2006b] and the theory of SRB
measures [Benedicks & Young, 1993; Bowen, 1975; Ruelle, 1976; Sinai, 1972].
In Sec. 3 we present a detailed formulation of the theory of rank one maps
following the recent work of Wang & Young [2001, 2006a,b], where the previ-
ous theory of Benedicks & Carleson [1985, 1991] on strongly dissipative Hénon
maps [Hénon, 1976] is generalized and developed into a form that is potentially
applicable to concrete systems.

This tutorial is not only about a mathematical theory, but also about its
applications. In Sec. 4, we introduce a general setting of periodically kicked
systems of ordinary differential equations, to which the theory of rank one
chaos is potentially applicable. In particular, we present the studies of Wang
& Young [2002a,b] on periodically kicked systems of Hopf bifurcations [Hopf,
1947]. Section 5 is devoted to applications of the theory of Secs. 3 and 4 to
certain switch-controlled circuits (or systems). Numerical simulations under
the guidance of the analytic computations proposed by the theory of Sec. 4 are
presented to demonstrate the usefulness of the theory. The examples used in
Sec. 5 are mainly from the work of Wang & Oksasoglu [2005, 2007], Oksasoglu
et al. [2006] and Oksasoglu & Wang [2006]. The theory of rank one maps has
also been applied to other systems of differential equations, see for instances,
[Lin, 2006] and [Guckenheimer et al., 2006].

In the writing of the Secs. 2 and 3 of this tutorial, we have placed more
emphasis on the explanations of the contents of the theorems we chose to present
than on providing proofs, for rigorous proofs are usually way too long to be
included. In suitable occasions we would supply sketching outlines and heuristic
arguments, through which we hope to at least convey to the reader certain
intuitive (but very rough) sense of justifications. More computational details
are included in Secs. 4 and 5 with the purpose of providing easy-to-follow
steps for the reader in case he/she intends to apply the theory to his/her own
problems.
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To put what we intend to achieve in perspective, we have, on one hand,
rigorous mathematical objects defined to infinitesimal precision. On the other
hand, we have simulations carried out on a finite collection of rational num-
bers within a restricted time frame. What is observed in the latter is at best
an imprecise shadow of the former and our task is to match the precise ob-
jects through the shadows they cast. Here we are clearly subjected to serious
limitations. The dots we connect sometimes are necessarily subjective and
judgemental.

The theories and applications we chose to present in this tutorial are only a
small sample of what has been achieved in the studies of non-uniformly hyper-
bolic systems in the last thirty years. Even within such a restricted context,
this paper is written as a lecture note of introductory nature, not a survey, and
the choice of the materials presented is obviously influenced by the research
interests of the authors.
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2 Periodic Sinks and Observable Chaos

Let S1 be the unit circle, R be the real number line and M = S1 × R. Let
Ta,b,L : M → M be a three-parameter family of maps defined by

(θ, r) → (a + θ + L sin 2πθ + r, br + bL sin 2πθ) (1)

where θ ∈ R/Z, r ∈ R. In this section we use Ta,b,L as a motivating exam-
ple to introduce such objects as strange attractors, Newhouse sinks, rank one
chaos and SRB measures. Our aim is to provide mathematical justifications
for certain numerical observations.

2.1 Preliminaries

Throughout this paper, | · | represents both the absolute value of a real number
and the size of a given vector. Let T : M → M be a diffeomorphism and DTz

be the Jacobi matrix for T at z = (θ, r) ∈ M . z ∈ M is a periodic point of
period n if Tn(z) = z. Let z be a periodic point of period n and λ1, λ2 be the
two eigenvalues of DTn

z . z is a hyperbolic periodic point if |λ1| < 1 < |λ2|, and
it is a periodic sink if |λ1|, |λ2| < 1. For a hyperbolic periodic point z ∈ M of
period n, let

W s(z) = {z′ ∈ M : lim
k→+∞

T kn(z′) → z},

W u(z) = {z′ ∈ M : lim
k→+∞

T−kn(z′) → z}.

W s(z) is called the stable manifold and W u(z) the unstable manifold of z. Both
W s(z) and W u(z) are 1D curves immersed in M and the eigenvectors of DTn

z

for λ1 and λ2 are tangent to W s(z) and W u(z), respectively, at z.
We say that z0 ∈ M has a positive Lyapunov exponent if

lim sup
k→∞

1
k

ln |DT k
z0

u| > 0

for some unit vector u in the tangent space of M at z0. Positive Lyapunov
exponents are a trademark for local instability and chaotic dynamics.

A bounded open set U ⊂ M is a trapping region for T : M → M if T (Ū) ⊂ U
where Ū is the closure of U . For a given trapping region U ⊂ M , let

Λ = ∩k≥0T
k(Ū).

Λ is a compact subset that is invariant under T and it is what we will refer to
as an attractor for T in this paper. We also refer to the set

B(Λ) := {z′ ∈ M : lim
k→∞

d(T k(z′), Λ) = 0}

as the basin of attraction for Λ, where d(T k(z′), Λ) := minz∈Λ |T k(z′) − z|.
U ⊂ B(Λ) by definition. All these are elementary.
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For a given T : M → M , an attractor for T can be as simple as one point but
it can also be a complicated set. Complicated attractors were first encountered
with surprises, and were regarded as strange. It was soon realized, however, that
strange attractors (and chaos) are common phenomena in nonlinear systems.
They are often associated with

(a) transversal intersections of stable and unstable manifolds of hyperbolic
periodic orbits,

(b) Smale’s horseshoes.

Let us now introduce these two in a little restricted setting of 2D maps from
M to M .

Let z ∈ M be a hyperbolic periodic point for T . We say that p ∈ M is
a point of transversal intersection of stable and unstable manifolds of z or, in
short, a homoclinic point if

(i) p ∈ (W s(z) ∩W u(z)) \ {z},
(ii) p is a non-tangential intersection of W s(z) and W u(z), as shown in Fig. 1.

Historically, it was first observed by H. Poincaré that transversal intersections
of stable and unstable manifolds give rise to exceedingly complicated dynamical
structures, which are since then called homoclinic tangles.

pz

Figure 1: Homoclinic tangles.

A horseshoe is illustrated in Fig. 2, where H1 and H2 are the respective
images of V1 and V2 under a map T . We assume that, in mapping to H1 and
H2, V1 and V2 are uniformly contracted in the vertical direction and uniformly
expanded in the horizontal direction by T . Let

D = ∩k∈ZT k(V1 ∪ V2).

D is an example of what is commonly referred to as Smale’s horseshoe.
Horseshoes are best understood through symbolic dynamics. Addresses a(z)

are first assigned to all z ∈ V1 ∪ V2 as follows: a(z) = 1 if z ∈ V1 and a(z) = 2
if z ∈ V2. For z0 ∈ D, let {sk(z0)}∞k=−∞ be such that sk(z0) = a(T k(z0)).

6



V V21

H1

H2

Figure 2: Horseshoe.

{sk(z0)}∞k=−∞ is a bi-infinite sequence of 1 and 2’s, which we denote as s(z0).
Observe that sk(T (z0)) = sk+1(z0) for all k. This is to say that s(T (z0)) is
obtained from s(z0) by a uniform shift of one position to the left. For the
horseshoe in Fig. 2, it is also true that, for any given sequence {sk}∞k=−∞, sk ∈
{1, 2}, there exists a z0 ∈ D, so that a(T k(z0)) = sk for all k. In particular, a
horseshoe of Fig. 2 contains infinitely many periodic orbits, each corresponding
to a cyclic symbolic coding.

Smale observed that horseshoes exist in all homoclinic tangles. Note that a
horseshoe of Fig. 2 also implies the existence of homoclinic tangles. To confirm
this let us pick two periodic points z1 and z2 in D that are arbitrarily close
(z1 and z2 must exist since we have infinitely many periodic orbits crowded
inside of a bounded region in M) and use the fact that, at z1 and z2, the stable
and unstable directions are roughly aligned, respectively. We obtain a loop
of intersections as shown in Fig. 3(a), from which a homoclinic intersection
follows as depicted in Fig. 3(b).

z2

z1 z1

2z

Figure 3: (a) Heteroclinic loop. (b) Homoclinic point.

We now prove the following proposition for T = Ta,b,L.
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Proposition 2.1 Let T = Ta,b,L be as in Eq. (1) and assume that L ≥ 2,
0 < 2πL|b| < 0.1. Then T has an attractor Λ and inside Λ there exists a
horseshoe. It also follows that T admits homoclinic tangles.

Proof: Let T = Ta,b,L and assume that L ≥ 2 and 0 < 2πL|b| < 0.1. For
z = (θ, r) ∈ M ,

DTz =
(

1 + 2πL cos 2πθ 1
2πbL cos 2πθ b

)
,

from which it follows that det(DTz) = b 6= 0 so T is a diffeomorphism. Let
U = {(θ, r) ∈ M : |r| < 1}. T (Ū) ⊂ U from Eq. (1) so U is a trapping region.
Let Λ = ∩k>0T

k(Ū) be the attractor for T .
Regarding the claim on the existence of a horseshoe in Λ, we first let

I1 = {θ : θ ∈ [−0.2116, 0.2116]} , I2 = {θ : θ ∈ [0.3151, 0.6849]} .

V1, V2 ⊂ M are such that

V1 = I1 × [−1, 1], V2 = I2 × [−1, 1].

Let H1 = T (V1), H2 = T (V2). From Eq. (1) it follows that H1 crosses both V1

and V2 in horizontal direction and so does H2, creating a horseshoe as shown
in Fig. 2.

For a rigorous proof, we need to further construct invariant cones in the
tangent space to identify precisely the directions of contraction and expansion
for all z ∈ V1 ∪ V2. We skip this step here. ¤

Keeping Proposition 2.1 and its implications for Λ in mind, we now turn to
numerical simulations.

2.2 Numerical simulations

In this subsection we present some results from the numerical iterations of
T = Ta,b,L. Numerical experiments are kept direct and simple. Values of para-
meters (a, b, L) are fixed first, then an initial point z0 ∈ U is arbitrarily picked
and zk = (θk, rk) := T k(z0) are numerically computed for k = 1, 2, · · · up to
k = 214. (θ, r) are regarded as polar coordinates and their rectangular corre-
spondences (x, y) are obtained through x = (1 + r) cos 2πθ, y = (1 + r) sin 2πθ.
To demonstrate the behavior of the map with an initial point randomly picked,
the x-coordinate versus time, (k, xk), the phase portrait, (xk, yk), and the fre-
quency spectrum of xk are plotted. Since our goal is to plot Λ through a
randomly picked orbit in U , the first 103 points of the iteration are dropped.
All maps used in this subsection satisfy the assumptions of Proposition 2.1, for
which attractors of complicated structures are proved to exist.

Scenario (a) (Periodic sinks) A typical result is shown in Fig. 4. For this plot
L = 2.0, b = 0.005, a = 0.5. Initial values are not very relevant, for all our picks
produce the same output. For this specific choice of parameters, assumptions
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of Proposition 2.1 are obviously satisfied, and thus, it follows that Λ contains
homoclinic tangles and horseshoes. They, however, do not show up in this
simulation.
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Figure 4: A periodic sink for L = 2.0, b = 0.005, a = 0.5. (a) Phase portrait xk − yk.
(b) Time evolution of xk. (c) Frequency spectrum of xk.

Scenario (b) (Chaotic attractors) For a different simulation, we keep L = 2.0
and b = 0.005 but change a to 0.8. Again, an initial point is randomly picked
and, as before, the same type of pictures are plotted in Fig. 5, illustrating a
dynamical behavior very different from what appeared in Fig. 4. The phase
portrait on the xy-plane is shown in Fig. 5(a). Due to the fact that the attractor
is compressed in the r-direction, it is hard to see its structure from the phase
portrait of Fig. 5(a). However, the truly complicated structure of the attractor
is revealed when a small section of the phase portrait of Fig. 5(a) (indicated
with a rectangular area) is magnified as shown in Fig. 5(b). The evolution of
the x-coordinate and its frequency spectrum are shown, respectively, in Fig.
5(c) and (d), indicating completely random evolutions in time.

It is also observed that, for different initial conditions, the corresponding
plots of Fig. 5(a), (b) and (c) appear identical to the naked eye but the corre-
sponding plots of Fig. 5(d) look completely different. The former hints at the
existence of one dominating distribution for almost all orbits in the phase space,
and the latter indicates that this distribution manifests itself independently in
the phase space by different orbits. These are the critical characteristics of
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Figure 5: A chaotic attractor for L = 2.0, b = 0.005, a = 0.8. (a) Phase portrait
xk − yk. (b) Magnification of the rectangular area in (a). (c) Time evolution of xk.
(d) Frequency spectrum of xk.

important consequences for the theory we intend to present in this paper. The
issues related to such distributions are further discussed in Sec. 2.3.3.

Over the space of parameters: We continue to fix L = 2.0, b = 0.005, but
now run the parameter a over [0, 1). For each a, we hit one of the two scenarios
above. Though the exact locations and periods of the sinks in Scenario (a)
and the corresponding plots in Scenario (b) vary as the parameter a varies,
the characteristics of all the plots are persistent. In the instances of Scenario
(a), periodic sinks, and in the instances of Scenario (b), complicated random
structures dominate the scene.

To see the impact of parameter b, we now change b to 0.0001, and keep
L = 2.0. We again see, for different values of a, one of the two scenarios above.
Once again, in the case of Scenario (b), the plots of (xk, yk) appear to be a
simple closed curve (see, e.g., Fig. 6(a)). Similar to the case of Fig. 5, a simple
zoom reveals the complicated structure in the r-direction compressed by strong
dissipation. This is shown in Fig. 6(b). Figures 5 and 6 are examples of rank
one chaos, the mathematical analysis and construction of which are the main
theme of this paper.

Let us now vary L. For the rest of the simulations we let b = 0.005. We
then set L = 2.0, 2.5, 3.0, 3.5, respectively, and run a over [0, 1) with an
increment of 0.005 totaling 200 simulations for each L. For each combination of
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Figure 6: A chaotic attractor for L = 2.0, b = 0.0001, a = 0.7. (a) Phase portrait
xk − yk. (b) Magnification of the rectangular area in (a). (c) Time evolution of xk.
(d) Frequency spectrum of xk.

(a, b, L), an orbit randomly picked is plotted. We again end up plotting either
a periodic sink (Scenario (a)), or a chaotic attractor (Scenario (b)). Since
L determines the strength of expansion of the term L sin 2πθ in Ta,b,L, it is
intuitively expected that, among the two competing scenarios, smaller L helps
Scenario (a), and larger L helps Scenario (b). This is indeed the case. The
results of these simulations are given in Table 1. It can be seen from Table 1
that as L increases, Scenario (b) rapidly dominates.

L Frequency of Scenario (a) Frequency of Scenario (b)
(%) (%)

2.0 14.0 86.0
2.5 11.0 89.0
3.0 5.0 95.0
3.5 2.5 97.5

Table 1: Frequencies of Scenarios (a) and (b) for different choices of L.

We finish this subsection with two remarks:

(1) The results of the numerical simulations above are typical. They occur
frequently in the simulations of systems of various applications. What
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we present here is a prototype of behavior for systems with non-uniform
expansions.

(2) Proposition 2.1 for Ta,b,L, though simple and elegant, is far from being
sufficient for explaining the numerical plots of this subsection. It appears
paradoxical for Scenario (a) since the complicated structures of horseshoes
and homoclinic tangles proved to exist by Proposition 2.1 do not show up,
i.e., not observed in simulations. For Scenario (b), other than the fact that
the plots are complicated, there exists no valid mathematical argument
in linking these plots to the objects of Proposition 2.1. As will be seen
in Sec. 2.3.3, the plots of Scenario (b) are not those of the horseshoes
of Proposition 2.1. They are, in fact, the plots of SRB measures, an
invariant distribution in the phase space introduced originally by Sinai,
Ruelle and Bowen in their study of uniformly hyperbolic systems [Bowen,
1975; Ruelle, 1976; Sinai, 1972].

2.3 Analytic justifications

In this subsection we introduce various mathematical theories developed for
the understanding of the numerical observations of the last subsection. These
theories, gradually built up by the pure mathematics side of the dynamical sys-
tems community since the late 1970’s, are fairly sophisticated. All propositions
of this subsection are stated for Ta,b,L of Eq. (1), a concrete example we use to
maintain a sense of unified purpose and direction throughout. These proposi-
tions are all backed up by rigorous proofs. We are, however, not interested in
presenting the often long and difficult proofs here. The emphasis in our discus-
sions is placed on how to mathematically justify the numerical simulations of
Sec. 2.2 based on these propositions.

One major subjective principle we adopt throughout this paper is on the
observability of an event with regards to numerical simulations of Sec. 2.2. We
regard an event in Rn observable only if it happens on a set of positive Lesbegue
measure in Rn. Consequently, events that occur on subsets of Lesbegue measure
zero are not observable in simulations.

2.3.1 Newhouse sinks

For Ta,b,L, let us first assume that (a, b, L) satisfies the assumptions of Proposi-
tion 2.1. Let U = {(θ, r) : |r| < 1} be the trapping region and Λ = ∩k>0T

k(Ū)
be the attractor for T . For a subset S ⊂ Λ, let

B(S) := {z ∈ U : lim
k→∞

d(T k(z), S) = 0}

be the basin of attraction for S. S is observable if m(B(S)) > 0 where m(·)
stands for the Lebesgue measure, otherwise S is not observable as far as the
visibility in the numerical experiments of Sec. 2.2 is concerned. For Ta,b,L, a
family of maps of three parameters, there is also an issue of observability in the
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parameter space. A dynamical scenario is observable in the parameter space
only if it holds for a set of parameters of positive Lebesgue measure.

Let us first deal with the seemingly paradoxical situation of Proposition
2.1 and Scenario (a). The horseshoe of Proposition 2.1 and the associated
stable manifolds are not observed in the simulations because they form a set
of Lesbegue measure zero in M . On the other hand, periodic sinks would have
a basin of attraction that is open, therefore, is of positive Lesbegue measure.
What appears in the plots of Scenario (a) is hence an indication that, for
the map iterated, the attractor Λ contains a periodic sink in addition to the
horseshoes of Proposition 2.1, and this sink is the likely destination for a typical
orbit starting in B(Λ).

For the existence of periodic sinks, here we supply two arguments, one for
1D maps and the other for some 2D maps. First the 1D argument. Let us start
with the 1D family fa,L : S1 → S1,

fa,L(θ) = a + θ + L sin 2πθ. (2)

Let L > 2 be fixed, and denote the 1D family fa,L as fa : S1 → S1. We
argue that there is a set for a such that fa admits periodic sinks. Let C(fa) =
{z ∈ S1 : f ′a(z) = 0} be the set of critical points for fa. For c0(a) ∈ C(fa)
let ci(a) = f i

a(c0(a)). For a small interval ∆0 suitably picked1 for a, we call
ci(a) : ∆0 → S1 a critical curve and plot z = ci(a) on the (z, a)-plane for
i = 0, 1, · · · . The graph for z = c0(a) is short and steep, as shown in Fig. 7(a),
but in a few iterations as we move forward in time, the critical curve z = ci(a)
will become long, stretching horizontally as shown in Fig. 7(b). Before too
long, z = ci(a) would cross z = c0(a) (see Fig. 7(c)), generating a parameter â
such that ci(â) comes back to c0(â). c0(â) is then a super-stable periodic sink.
If we keep iterating the parts of ci(a) that are not yet crossing c0(a), values of
parameters of periodic sinks of higher periods are further generated.

Let us observe that, since sinks persist under small perturbations, a periodic
sink for fâ implies a periodic sink for Ta,b,L for all b small and a sufficiently close
to â. Consequently, (i) periodic sinks are observable in the phase space; and
(ii) the maps admitting periodic sinks are observable in the parameter space.

Now a 2D argument. A well-known scenario for periodic sinks on M is as
follows. Let Tµ : M → M be a one parameter family of maps. Assume that

(i) (Dissipative hyperbolic fixed point) T = T0 has a fixed point p0 that
is hyperbolic (|λ1| < 1 < |λ2| where λ1, λ2 are the eigenvalues of DTp0) and
dissipative (|λ1λ2| < 1).

(ii) (Quadratic tangency) The stable and unstable manifolds of p0 have a
non-transversal intersection that is non-degenerate, as shown in Fig. 8(a).

1For the dynamical picture depicted in this paragraph to hold, fa should satisfy certain technical
conditions that are readily verified for fa,L of Eq. (2). These conditions will be introduced later in
detail in Sec. 3.2.
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Figure 7: Iterations of critical curves.

(iii) (Parameter transversality) Let pµ be the continuations of p0 and W s
µ,

W u
µ be the stable and unstable manifolds of pµ, respectively. Then, as µ moves

through µ = 0, W u
µ crosses W s

µ transversally as shown in Fig. 8(b).

z

nB

(a) (b)

Figure 8: Homoclinic bifurcation.

The following2 was observed by Newhouse [Newhouse, 1974; Palis & Takens,
1993].

(1) For every n sufficiently large, there exists an open region Bn (with
diam(Bn) → 0 as n → ∞) close to the point of tangency and a range of
parameters µ (also depending on n) such that Tn

µ (Bn) ⊂ Bn as depicted in Fig.
8(a).

(2) By a proper change of coordinates, Tn
µ : Bn → Bn is transformed to

become T̂a,b : [−2, 2]× [−2, 2] where T̂a,b is written as

(x, y) → (1− ax2 + y + bu, bv).

2These are Newhouse’s infinitely many sinks associated with homoclinic bifurcations.
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Here a, b are constants in µ, λi and n, and u, v are functions of (x, y) and µ, λi

and n, the C1-norms of which are bounded from above by constants independent
of n.

(3) b → 0 as n → ∞, and for every n that is sufficiently large, there exists
a range of µ close to µ = 0, such that the corresponding values of a for T̂a,b

covers the interval [1, 2].
For any given b that is sufficiently small, it is a triviality to find values of

a ∈ [1, 2] so that T̂a,b has a fixed point that is a sink. It then follows that, for
every n that is sufficiently large, there exists µn so that Tn

µn
admits a periodic

sink of period n, and hence the existence of infinitely many sinks.

2.3.2 On the existence of tangles with no sinks

The plots of Scenario (b) look very different from those of the periodic sinks
of Scenario (a), implicating a form of chaos that is observable. On the other
hand, there remains, however unlikely, the possibility that a plot of Scenario
(b) is part of a periodic sink of exceedingly long period, reducing the signifi-
cance of Scenario (b) from an independent dynamical scenario to a particular
case of Scenario (a). This possibility, unfortunately, can never be ruled out
through numerical computations. It can only be partially ruled out through
mathematical analysis. To argue that Scenario (b) is not that of a periodic
sink, we would need to prove that the attractor admitting no periodic sinks is
observable in both the parameter space and the phase space for Ta,b,L, a rather
difficult mathematical task.

Let us start again with 1D maps and with an observation first made by Mis-
iurewicz [1981]. Misiurewicz observed that, in order for a 1D map, such as f =
fa,L of Eq. (2), to have no periodic sinks, it suffices that the forward orbits from
C(f) stay a fixed distance away from C(f). Denoting C(f) = {c(1), · · · , c(q)},
this is to say that we have a δ0 > 0, so that d(fk(c(i)), C(f)) > δ0 for all k > 0
and all 1 ≤ i ≤ q. This is the so-called Misiurewicz condition.3

To find maps in a 1D family {fa} satisfying the Misiurewicz condition let
us go back to Fig. 7 to study the evolutions of critical curves. For fa,L of Eq.
(2), we have

Proposition 2.2 There exists L0 > 2, such that for all L > L0, there exist
values of parameter a such that (i) f = fa,L satisfies the Misiurewicz condi-
tion above, and (ii) there exists λ > 0 such that for almost every θ ∈ S1,
lim supk→∞

1
k ln |(fk)′(θ)| > λ.

Proposition 2.2(ii) rules out the possibility of periodic sinks for f .

Let us be aware that Proposition 2.2 does not mean nearly as much for
Scenario (b) as its counterpart in Sec. 2.3.1 meant previously for Scenario
(a). Sinks are persistent under small perturbations, and the existence of a
periodic sink for one particular map implies the existence of periodic sinks for

3To be completely rigorous, there are other technical conditions imposed. See Sec. 3.2.
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an open set of parameter of maps, hence the observability in the parameter
space. This is not the case for maps satisfying the Misiurewicz condition.
That is, the conclusions of Proposition 2.2 do not necessarily persist under
small perturbations because the Misiurewicz condition is not an open condition
maintainable in the parameter space. As a matter of fact, for a typical 1D
family {fa}, the set of parameter values fulfilling the Misuirewicz condition is
of Lebesgue measure zero, therefore, it is not observable in the parameter space.

To find more parameters admitting no periodic sinks, it is natural for us
to relax the Misiurewicz condition to allow critical orbits approaching C(f)
in controlled manners. This has turned out to be an extremely sophisticated
mathematical task over which long theories have been built, first by Jakobson
on quadratic maps, then followed by many others [Benedicks & Carleson, 1985;
Collet & Eckmann, 1983; Jakobson, 1981; Rychlik, 1988; Thieullen et al., 1994;
Wang & Young, 2006a]. In particular, by applying the theory in [Wang &
Young, 2006a] to fa,L we obtain

Proposition 2.3 There exists L0 > 2, such that for all given L > L0, there
is a set ∆ of positive Lebesgue measure for parameter a, such that for a ∈
∆ and f = fa,L, there exists λ > 0 such that for almost every θ ∈ S1,
limk→∞ 1

k ln |(fk)′(θ)| > λ.

The claims of Proposition 2.3 are significantly different from those of Propo-
sition 2.2. By asserting a good parameter set of positive Lebesgue measure, it
establishes maps admitting no sinks as a dynamical scenario observable in the
parameter space. The likes of Proposition 2.3 are commonly referred to as ver-
sions of the Jakobson’s theory,4 the proofs of which are much harder than that
of Proposition 2.2. For proofs of Propositions 2.2 and 2.3, see [Wang & Young,
2002a, 2006a].

To illustrate the differences between the parameter set satisfying Proposition
2.2 and that satisfying Proposition 2.3, let us first recall the construction of the
1
3 -Cantor set. Starting from the unit interval [0, 1], we first take away the
middle third (1

3 , 2
3), then take away the middle third (of size 1

9 now) again from
each of the remaining intervals. We then proceed inductively, taking away the
middle third of every interval left over from the previous step along the way.
The set that survives all the deletions is the 1

3 -Cantor set, which we denote as
K 1

3
⊂ [0, 1]. K 1

3
is a closed subset of [0, 1] that is nowhere dense (meaning that

it contains no intervals), uncountable, and the Lebesgue measure of which is
zero. The last clause follows because the sum of the lengths of all intervals we
delete along the way totals to one. Note that the number 1

3 in this construction
is not particularly meaningful. Replacing it by any other positive ε < 1 will
result in a new Cantor set Kε and m(Kε) = 0 for all ε > 0. This is to say
that to make ε small would not help to increase the measure of Kε from zero
to positive.

4Here we are not distinguishing between the uni-modal and the multi-modal cases.
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Let us now adopt the following adjustment in the construction of K 1
3
: At

step n, instead of deleting the middle 1
3 , we will delete the middle 1

3n of the
intervals left over from the earlier steps. Let us denote the set so obtained as
K̂ 1

3
. K̂ 1

3
remains a closed subset of [0, 1] that is nowhere dense and uncountable.

However, it is easy to check that K̂ 1
3

is now a set of positive measure. We call

K̂ 1
3

a fat Cantor set. Again, in this construction the number 1
3 is not important.

We can use any positive ε < 1 in place of 1
3 to construct a fat Cantor set K̂ε of

non-zero Lebesgue measure.
With the critical curves evolving in the way as illustrated in Fig. 7, prevent-

ing the critical orbits from coming within a fixed distance of C(f) (the condition
for the good parameters of Proposition 2.2) is like constructing a Cantor set
Kε for some ε small in the parameter space. To construct the good parameter
set of Proposition 2.3, we allow the critical orbits to come back to C(f), but
neither too close nor too soon. The good parameter set constructed this way
is like constructing the fat Cantor set K̂ε as described in the last paragraph.

We now move to the studies of two dimensional maps. Again, the conclu-
sions of Proposition 2.3 do not persist under small perturbations of a particular
1D map, and the geometric and dynamical structures of attractors of 2D maps
Ta,b,L, b 6= 0, are much more complicated than those of the corresponding 1D
maps.5 Nevertheless, a theory of two-dimensional maps, originally invented
for the analysis of strongly dissipative Hénon maps by Benedicks & Carleson
[1991], has been developed recently by Wang & Young [2001] into a form that
is applicable to a class of maps including Ta,b,L. In Secs. 3-5 we will discuss
the contents of this theory and its applications to certain systems of differential
equations. For the moment let us state what we have for Ta,b,L, b 6= 0.

Proposition 2.4 Let Ta,b,L be as in Eq. (1). Then there exists L0 > 2, such
that for every L > L0, there exists b0 > 0 sufficiently small so that for all
0 < |b| < b0, there exists a set ∆b,L of positive Lebesgue measure, such that for
a ∈ ∆b,L, T = Ta,b,L has a positive Lyapunov exponent for almost all z ∈ M .

Propositions 2.3 and 2.4 are proved through the theory of rank one maps,
which we will discuss in more detail in Sec. 3. For a map of Proposition 2.4, the
attractor Λ contains no periodic sinks. Proposition 2.4 claims that attractors
of this kind are observable in the parameter space.

Based on the conclusions of Proposition 2.4, we will, from this point on,
adopt a point of view as follows:

(1) the plots of Scenarios (a) and (b) are distinct;

(2) Scenario (a) corresponds to attractors dominated by periodic sinks;

(3) Scenario (b) corresponds to attractors with no periodic sinks;

5See Sec. 3.2 for a detailed description of the geometric and dynamical structures of the critical
set for 2D maps.
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(4) a typical orbit of Scenario (b) has a positive Lyapunov exponent.

Remember that positive Lyapunov exponents are trademark for chaos.
We finish this discussion by cautioning that, as analysis requires, the con-

stant b0 that appears in Proposition 2.4 is exceedingly small. A theory admit-
ting larger b0, say to include all b < 10−2 would be much more favorable to
the position we adopt here. Unfortunately, mathematical analysis has its own
limitations and we are not quite there yet.

2.3.3 Observable invariant measures

Next, we try to identify the mathematical objects represented by the chaos
structure revealed through the plots of Scenario (b). As we will see momentarily,
these are the plots of SRB measures, specific kinds of Borel invariant measures
that represent an existing statistical law in chaos. Let us start with some
elementary measure theory.

A. Borel measures
Let M be a smooth surface compactly embedded in Rn, m be the Lebesgue

measure induced from the surface area. Let B be the collection of all subsets
of M that is m-measurable. B is the Borel algebra for M .

We call a function µ from B to R+ a Borel measure if
(i) µ(∅) = 0, 0 < µ(M) < ∞ where ∅ is the empty set, and
(ii) for mutually disjoint Ai ∈ B, i = 1, · · · , µ(∪iAi) =

∑
µ(Ai).

The Lebesgue measure on M is a Borel measure. If the measure of the entire
space equals one, then the measure is also called a probability measure.

For a given M in Rn, there are infinitely many ways to define various Borel
measures on M . For instances, let M = [0, 1]. We first take a finite set of points
P = {p1, · · · , pn} in [0, 1], then define µ(A) = 1

ncard(A∩P ) where card(A∩P )
is the number of points in A ∩ P for A ∈ B. Measures defined this way are
atomic, meaning that they are positively defined on isolated points.

We can also define Borel measures of a different kind. First let m be the
Lebesgue measure on [0, 1] and ρ : [0, 1] → R+ be a Lebesgue measurable
function satisfying 0 <

∫
[0,1] ρdm < ∞, then µ : B → R+ defined by

µ(S) =
∫

S
ρdm

for S ∈ B is a Borel measure. Observe that these Borel measures, defined by
using density functions ρ, are non-atomic. In fact, for any given S ∈ B such
that m(S) = 0 we have µ(S) = 0.

In general, let µ, ν be two Borel measures defined on the same Borel algebra.
We say that µ is absolutely continuous with respect to ν if ν(A) = 0 implies
µ(A) = 0. For the Borel measures defined on [0, 1] above, the first kind is
atomic and the second kind is non-atomic and is absolutely continuous with
respect to Lebesgue.
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B. Invariant measures and ergodicity
Let T be a smooth mapping from M to M . With regards to T and the

various Borel measures on M , there are two conceptually different ways to
proceed. The first is to fix a Borel measure µ that is predominately important,
such as the Lebesgue measure m induced from a surface area, and study the
properties of T with respect to such pre-fixed µ. The second is to find particular
Borel measures that are most interesting and suitable for the studies of a given
T . Here we emphasize more on the second approach.

A Borel measure µ is an invariant measure for T if µ(T−1A) = µ(A) for all
A ∈ B. Let µ be an invariant measure for T . µ is an ergodic measure for T
if all invariant subsets for T are either of full µ-measure or of null µ-measure.
Recall that A ∈ B is an invariant subset for T if T−1A = A.

For S ∈ B let XS be the characteristic function of S defined as follows:

XS(x) =
{

1, if x ∈ S
0, otherwise

For any given x ∈ M , let

IS,n(x) =
1
n

n−1∑

k=0

XS(T k(x)); IS(x) = lim
n→∞ IS,n(x).

IS,n(x) is the percentage of the first n points along the orbit starting from x
that fall in S and IS(x) is the limit of this percentage. In general, IS(x) as a
limit does not necessarily exist. It does, however, for µ-almost every x ∈ M if
µ is an ergodic invariant measure for T .

Theorem (Birkhoff’s Ergodic Theorem) Let µ be an ergodic invariant measure
for T : M → M . Then for all S ∈ B and for µ-almost every point x ∈ M ,

lim
n→∞

1
n

n−1∑

i=0

XS(T i(x)) =
µ(S)
µ(M)

. (3)

Birkhoff’s Ergodic Theorem [Katok & Hasselblatt, 1995] claims that the
space distributions of points of individual trajectories starting from µ-almost
every point in M are dictated by µ.

Let us be aware that the amount of information held by an ergodic invariant
measure µ about T through Birkhoff’s Ergodic Theorem could be minimal. For
instance, let P = {p1, · · · , pn} be a periodic orbit of period n. Then the atomic
Borel measure µ supported on P by using µ(pi) = 1

n is an ergodic invariant
measure. With respect to this invariant Borel measure, P is a set of full measure
and consequently, Birkhoff’s Ergodic Theorem claims that all orbits starting
from P are dictated by µ, a completely trivial statement. Invariant measures
absolutely continuous with respect to the Lebesgue measure on M are usually
much more meaningful. They are supported on m-positive sets, therefore, are
at the very least observable based on Birkhoff’s Ergodic Theorem.
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D. Invariant measures and observability
Let us now shift our attention from the support6 of µ to its surroundings.

Let µ be an invariant measure for T and x ∈ M , not necessarily in the support
of µ. We want to figure out an appropriate way to say that the orbit of x
is dictated by µ. A naive try would be to copy the conclusions of Birkhoff’s
Ergodic Theory to say that the orbit of x is dictated by µ if IS(x) = µ(S)

µ(M) for
all S ∈ B. This would be, unfortunately, a bad definition. Let µ be the atomic
invariant measure supported on a periodic sink P = {p1, · · · , pn}, and x ∈ M
be sufficiently close to p1. The orbit of x is attracted to the periodic orbit of
p1, and it ought to be obvious that we have every intention to claim that the
orbit of x is dictated by µ. The definition proposed above, however, would fail
such a claim.

A good definition is as follows: Let x ∈ M be a starting point, and µ be
an invariant measure for T . We say that the space distribution of the points of
the orbit starting from x is dictated by µ, or in short, we say that x is generic
with respect to µ, if for all continuous functions φ : M → R,

lim
n→∞

1
n

n−1∑

k=0

φ(T k(x)) =
1

µ(M)

∫

M
φ(x)dµ. (4)

We note that Eq. (3) implies Eq. (4) but the reverse is not true. By replacing
the characteristic functions in Eq. (3) with continuous ones, we are now allowed
to reach the part of the phase space that is out of the support of µ. This
definition will serve us well.

Let m be the Lebesgue measure on M . We say that an ergodic invariant
measure µ for T : M → M is observable if there exists a subset S that is
m-positive such that every x ∈ S is generic with respect to µ. According to
Birkhoff’s Ergodic Theorem, any ergodic invariant measure µ that is absolutely
continuous with respect to m is observable. Any periodic sink would define
an observable atomic ergodic invariant measure. On the other hand, atomic
measures defined by hyperbolic periodic orbits are in general not observable.

Let us now return to the numerical plots of Sec. 2.2. The plots of Scenario
(a) are clearly those of observable atomic ergodic invariant measures represent-
ing periodic sinks. The plots of Scenario (b), as we will see momentarily, are
the plots of SRB measures, a specific kind of non-atomic invariant measures
that dictate the space distributions of points of individual trajectories for at
the very least an observable collection of chaotic orbits in M .

E. Absolutely continuous invariant measures for 1D maps
To better understand the plots of Scenario (b), let us take a closer look at the

corresponding results of the numerical computations. We start with fa = fa,L.
Figure 9(b) is again a case of random evolution of θk against time k, and Fig.
9(c) is its frequency spectrum. This is for L = 2, a = 0.6. The distribution

6The support supp(µ) of a probability measure µ is defined to be the smallest closed set S such
that µ(S) = 1.
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of the points (histogram) on the orbit is shown in Fig. 9(a) which is obtained
as follows: First, we divide [0, 1] for θ into subintervals of Dj = [ j

1000 , j+1
1000 ],

0 ≤ j ≤ 999. Then we compute the percentages of points of the plotted orbit
that fall in each of the subintervals out of the total number of points plotted.
The percentage for Dj we denote as µj . Let ρ(θ) =

∑
µjXDj (θ). The graph of

ρ : S1 → [0, 1] is then plotted as shown in Fig. 9(a).
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Figure 9: An example of Scenario (b) for 1D maps (N = 214). (a) Histogram for θk.
(b) Time evolution of θk. (c) Frequency spectrum of θk.

Next we compute the same histogram using orbits of length up to k = 215

and 216. These are shown in Figs. 10(a) and 11(a), respectively. The graphs
for the distribution are roughly the same. Using different initial values also
produce roughly the same plots. These computations hint at the existence of
an observable non-atomic ergodic invariant measure for the map plotted. This
is indeed proved to be the case, at least for the good maps of Proposition 2.3.
We have

Proposition 2.5 For the good parameters ∆ of Proposition 2.3, and for any
given a ∈ ∆, fa admits an invariant probabilistic measure that is absolutely
continuous with respect to Lesbegue.

For a proof of Proposition 2.5, see [Wang & Young, 2002a].

F. SRB measure for 2D maps
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Figure 10: An example of Scenario (b) for 1D maps (N = 215). (a) Histogram for θk.
(b) Time evolution of θk. (c) Frequency spectrum of θk.

Let us now consider Scenario (b) for 2D maps Ta,b,L : M → M . The
numerical plots again point towards a non-atomic invariant measure µ for T .
However, unlike the case of 1D, such invariant measures are not absolutely
continuous with respect to the Lesbegue measure on M . This is because Λ, the
attractor that supports µ, is a set of zero Lesbegue measure in M .

To better comprehend the nature of this new non-atomic invariant measure,
let us take a closer look at the plot of Fig. 5(a). It appears that the strongly
dissipative nature of T crashes M into Λ along the radial direction, and the
absolute continuity of the plotted measure with respect to the Lebesgue mea-
sures is preserved only in the angular direction by the expanding nature of fa,L

in θ. As a rigorously defined mathematical object, the likes of such invariant
measures, crashed in the contractive direction but remaining absolutely con-
tinuous with respect to the Lebesgue measures in the directions of expansion,
were formally introduced by Sinai, Ruelle and Bowen originally in their studies
of axiom A systems [Bowen, 1975; Ruelle, 1976; Sinai, 1972]. These are the
so-called SRB measures. The development of the theory of SRB measures has
had a great impact on the studies of dynamical systems of non-uniform expan-
sions with far reaching consequences. It has provided a critical element for the
ergodic theory to become actively involved in the studies of maps such as Ta,b,L,
leading to deeper understandings of the geometric and dynamical properties of
certain chaotic attractors.
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Figure 11: An example of Scenario (b) for 1D maps (N = 216). (a) Histogram for θk.
(b) Time evolution of θk. (c) Frequency spectrum of θk.

A formal definition is as follows: A T -invariant Borel measure µ is called an
SRB measure if

(i) T has a positive Lyapunov exponent µ-a.e.;

(ii) the conditional measures of µ on unstable manifolds are absolutely con-
tinuous with respect to the Lebesgue measures on these leaves.

Note that (i) requires that µ is supported by a collection of orbits that are
chaotic in nature. It is also proved that, in general, the set of points that
are generic with respect to an SRB measure is always m-positive, therefore
SRB measures are observable.7 This last property makes an SRB measure
non-ignorable in simulations.

Unfortunately, more sophisticated knowledge from the abstract measure
theory and the ergodic theory would be required for further expositions. We
refer the more mathematically oriented reader to, for instance, [Young, 1995,
2002], for further reading of the subject. Again, what matters the most for
us here about SRB measures is as follows: First, SRB measures are observable
objects corresponding to the plots of Scenario (b) in Sec. 2.2 for Ta,b,L. Second,
for a map T admitting chaotic attractors such as those of ours, an SRB measure

7This does not follow from Birkhoff’s Ergodic Theory because the support of an SRB measure is
in general a null m-measure set.
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as a dynamical object controls the space distribution of points of individual
trajectories from an observable set in the basin of attraction B(Λ).

Let us finish this paragraph by a proposition that claims that SRB measures
are observable for Ta,b,L in both the parameter and the phase spaces. Recall
that U = {(θ, r), |r| < 1} is the trapping region.

Proposition 2.6 For the good parameters of Proposition 2.4, (i) T = Ta,b,L

admits a unique ergodic SRB measure µ such that 0 < µ(U) < ∞; and (ii)
Lesbegue almost every point z ∈ U , is generic with respect to µ.

For a proof of Proposition 2.6, see [Wang & Young, 2001].

Summary: The plots of Sec. 2.2 for both Scenarios (a) and (b) are invariant
measures that control the space distribution of individual trajectories for at
least an observable set of orbits in the basin of attraction for Λ. For Scenario
(a), the invariant measure is atomic, representing a periodic sink. For Scenario
(b), it is an SRB measure representing an existing statistical law for chaos.
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3 A Theory on Rank One Chaos

Various theories of dynamics, including the theories of horseshoes and homo-
clinic tangles, Newhouse sinks, observable chaos (attractors with no sinks), and
SRB measures, are introduced in Sec. 2 to explain the simulation results of
Sec. 2.2 for Ta,b,L. However, propositions for one particular family of maps,
such as the ones presented in Sec. 2.3 for Ta,b,L, are not suitable for appli-
cations,8 for it is not likely for a real world problem to assume the particular
formulas of Ta,b,L. In this section we introduce a detailed formulation of rank
one maps following the work of Wang & Young [2001, 2006a,b], aiming at pro-
viding a general framework for applications. A version of Proposition 2.3 for
non-uniformly expanding 1D maps is presented in Sec. 3.2 and the work of
Wang & Young [2001, 2002b] on rank one chaos is discussed in Sec. 3.3. Note
that as specific cases, Propositions 2.3-2.6 are proved through applications of
the theorems presented in this section.

3.1 A brief introduction

Let us start with uniformly hyperbolic systems. Assume that M is two-dimensional.
Let T : M → M be a C1 diffeomorphism and Λ ⊂ M be T -invariant. We say
that Λ is uniformly hyperbolic if

(a) over every point of Λ, there is a well-defined direction in which Λ is ex-
panding and there is also another well-defined direction in which Λ is
contracting under the iterations of T ;

(b) to make these directions coherent, it is also required that they vary con-
tinuously on the entire Λ.

For instance, the horseshoes of Sec. 2.1, including those of Proposition 2.1, are
uniformly hyperbolic; the expanding direction for Λ is roughly horizontal and
the contracting direction is roughly vertical. This concept can be generalized
naturally to the maps of higher dimensions. Chaos associated with uniform
hyperbolicity is of relatively simple geometric structure, and the dynamical
properties of these systems are well-understood.

A simple and illuminating example of a uniformly hyperbolic attractor is
the axiom A solenoid. As shown in Fig. 12, let us start with a solenoid S. We
perform the following surgery: first, we cut the solenoid open and regard it as
a cylinder, then we stretch the cylinder to make it at least twice as long, and
compress it to make it very thin. We then put the resulting object back into the
original solenoid, wrapping it twice around (again, see Fig. 12). Regarding this
surgical process as a mapping T , we obtain a uniformly hyperbolic attractor
Λ = ∩n≥1T

n(S).

8This had been in fact a hurdle. For a long time theories were developed exclusively for not
exactly Ta,b,L in Sec. 2, but the Hénon family and their perturbations [Benedicks & Carleson, 1991;
Benedicks & Young, 1993; Mora & Viana, 1993], therefore remained in a form that is much less
likely to attract attention from the world of real applications.
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Figure 12: Axiom A Solenoid.

The attractors in real applications, unfortunately, are rarely uniformly hy-
perbolic. One of the mechanisms for non-hyperbolic behavior, on which we will
focus in the rest of this paper, is due to the confusions of the expanding and
contracting directions. To provide an example, we modify the construction of
the axiom A solenoid by allowing movements in both clockwise and counter-
clockwise directions while we wrap the thin tube around. This is depicted in
Fig. 13. The changes in the wrapping direction create turns at which the ex-
panding and the contracting directions are confused. The maps Ta,b,L of Sec.
2 are like the solenoid of Fig. 13, with the critical points of fa,L serving as the
“turning points” in wrapping. Rank one maps, which we will soon introduce
in Sec. 3.3, model precisely the non-uniformly hyperbolic maps of this kind.

For systems that are uniformly hyperbolic, we have positive Lyapunov expo-
nent everywhere by definition, and the existence of SRB measures is proved by
Sinai, Ruelle and Bowen [Bowen, 1975; Ruelle, 1976; Sinai, 1972]. For systems
that are not uniformly hyperbolic, sinks are allowed to appear, and the exis-
tence of positive Lyapunov exponents becomes questionable. Systems such as
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Figure 13: Non-axiom A solenoid.

those depicted in Fig. 13 are exceedingly complicated and notoriously difficult
to analyze. Coherent mathematical statements for these systems are subtle, and
their proofs are hard to build. The theory we present in this section has come
a long way. It originated from Jacobson’s theory on quadratic maps [Jakobson,
1981] and the theory of Benedicks and Carleson on strongly dissipative Hénon
maps [Benedicks & Carleson, 1991]. Our main objectives here are to properly
motivate, and to formally introduce the conclusions of this theory to the reader.
Rigorous proofs are out of the scope of this presentation.

3.2 Non-uniformly expanding 1D maps

In this subsection we study the iterations of 1D maps with critical points,
presenting a theory of non-uniformly expanding 1D maps following primarily
Wang & Young [2006a]. Admissible non-uniformly expanding 1D families are
introduced in Sec. 3.2.1. This is a setting that takes fa,L in Sec. 2 as a
particular case. Propositions parallel to those of Sec. 2 for fa,L are presented
in Sec. 3.2.2.

3.2.1 Admissible family of non-uniformly expanding 1D maps

A. Misiurewicz maps. Let I be either an interval or a circle. For f ∈ C2(I, I),
let C = C(f) = {x ∈ I : f ′(x) = 0} denote the critical set of f , and let Cδ

denote the δ-neighborhood of C in I. For x ∈ I, let d(x, C) := minx̂∈C |x− x̂|.
Following Wang & Young [2006a], we adopt a definition for Misiurewicz

maps that is a little tedious to state but easier to verify in applications. Con-
ceptually they are 1D maps with the following characteristics:

(a) the critical orbits (orbits of x ∈ C) stay a fixed distance away from the
critical set, and

(b) the phase space is divided into two regions, Cδ0 (the δ0-neighborhood of
the critical set C) and I \Cδ0 ; and (i) on I \Cδ0 , f is uniformly expanding;
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(ii) for x ∈ Cδ0 \ C, even though |f ′(x)| is small, the orbit of x does not
return to Cδ0 again until its derivative has regained a definite amount of
exponential growth.

The precise definition is as follows:

Definition 3.1 We say f ∈ C2(I, I) is a Misiurewicz map, denoting f ∈ M,
if the following holds for some δ0 > 0:
(a) Outside of Cδ0 : there exist λ0 > 0,M0 ∈ Z+ and 0 < c0 ≤ 1 such that

(i) for all n ≥ M0, if x, f(x), · · · , fn−1(x) 6∈ Cδ0, then |(fn)′(x)| ≥ eλ0n;
(ii) if x, f(x), · · · , fn−1(x) 6∈ Cδ0 and fn(x) ∈ Cδ0, for any n, then |(fn)′(x)| ≥

c0e
λ0n.

(b) Inside Cδ0 : (i) f ′′(x) 6= 0 for all x ∈ Cδ0;
(ii) for all x̂ ∈ C and n > 0, d(fn(x̂), C) ≥ δ0;
(iii) for all x ∈ Cδ0 \ C, there exists p0(x) > 0 such that f j(x) 6∈ Cδ0 for all

j < p0(x) and |(fp0(x))′(x)| ≥ c−1
0 e

1
3
λ0p0(x).

Condition (a) in Definition 3.1 says that on I \ Cδ0 , f is essentially uniformly
expanding. (b)(ii) says that for x ∈ Cδ0 \C, if n is the first return time of x ∈ Cδ0

to Cδ0 , then |(fn)′(x)| ≥ e
1
3
λ0n. (To see this, use (b)(ii) followed by (a)(ii)).

Claim 2.1 Let f ∈ C3(I, I) be such that
(i) Sf (x) < 0 where Sf (x) denotes the Schwarzian derivative of f ,9

(ii) f ′′(x̂) 6= 0 for all x̂ ∈ C,
(iii) if fn(x) = x, then |(fn)′(x)| > 1, and
(iv) for all x̂ ∈ C, infn>0d(fn(x̂), C) > 0.

Then f ∈M.10

Claim 2.2 Let fa,L : S1 → S1 be given by

fa,L(θ) = θ + a + LΦ(θ)

where a, L ∈ R and Φ : S1 → S1 is a Morse function11 (the right side is mod 1).
Then there exists L0 > 0 such that for all L ≥ L0, there exists an O( 1

L)-dense
set of a for which fa,L ∈M.

Claim 2.2 is an important technical proposition for us in applying the theory
of rank one maps in Sec. 3.3 to the family Ta,b,L of Sec. 2 and the other systems
of applications in Secs. 4 and 5. We refer the more technically oriented reader
to [Wang & Young, 2002a, Lemma 5.3] for a proof. fa,L in Sec. 2 is a special
case of Claim 2.2 for which Φ(θ) = sin 2πθ.

B. Admissible family of 1D maps. We continue to introduce admissible families
following [Wang & Young, 2006a]. Assume that F (x, a) : I × (a1, a2) 7→ I is

9Recall that Sf (x) = f ′′′(x)f ′(x)− 3
2 f ′′(x)2

f ′(x)2 .
10(i)-(iv) are the properties used traditionally in defining Misiurewicz maps, among which (iii) is

not directly checkable and (i) is often not fulfilled in applications.
11Φ(θ) is a Morse function if it is C2 and all its critical points are non-degenerate.
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C2 and let {fa ∈ C2(I, I) : a ∈ (a1, a2)} be the one-parameter family of one-
dimensional maps defined through fa(x) := F (x, a). We say that fa is an
admissible family if it satisfies two conditions. The first is that it contains a
Misiurewicz map fa∗ . The second compares the movement of critical points
and critical orbits of fa with respect to parameter a at a∗. This one is a little
long to state.

To be more precise, first we assume that there exists a∗ ∈ (a1, a2) such that
fa∗ is a Misiurewicz map satisfying Definition 3.1. We define the continuations
of critical points as follows: For every c ∈ C(fa∗), continuations c(a) ∈ C(fa)
satisfying c(a∗) = c is well-defined around a∗ following Definition 3.1(1)(a). Let
C(fa∗) = {c(1)(a∗) < . . . < c(q)(a∗)} be the critical set for fa∗ . Continuation of
c(i)(a∗) is denoted as c(i)(a).

Next we define the continuations of critical orbits. For c(i)(a∗) ∈ C(fa∗),
denote ξ(a∗) = fa∗(c(i)(a∗)). Then for all a that is sufficiently close to a∗, there
exists ξ(a), a unique continuation of ξ(a∗), such that the orbits {fn

a∗(ξ(a
∗))}n≥0

and {fn
a (ξ(a))}n≥0 have the same itineraries, by which we mean that, for any

given n ≥ 0, if fn
a∗(ξ(a

∗)) ∈ (c(j)(a∗), c(j+1)(a∗)) then fn
a (ξ(a)) ∈ (c(j)(a),

c(j+1)(a)).12 Furthermore, a 7→ ξ(a) is differentiable (this is proved in Sec.
4.2 of [Wang & Young, 2006a]). Note that ξ(a) is not to be confused with
fa(c(i)(a)).

Definition 3.2 Let F (x, a) : I × (a1, a2) 7→ I be C2, and {fa} be such that
fa(x) := F (x, a). We say that {fa} is an admissible family if the following
holds:

(a) There exists a∗ ∈ (a1, a1) such that fa∗ ∈M is a Misiurewicz map.
(b) Let c(a) and ξ(a) be continuations of c(a∗) ∈ C(fa∗) and ξ(a∗) =

fa∗(c(a∗));
d

da
fa(c(a)) 6= d

da
ξ(a) at a = a∗.

It is also proved in [Wang & Young, 2002a] that Definition 3.2(b) holds for
fa,L in Claim 2.2. So under the assumption that L > L0 is sufficiently large,
fa,L of Claim 2.2 is an admissible family. In particular, this applies to fa,L in
Sec. 2.

Admissible families are defined by abstract conditions that are in principle
checkable. Through these definitions we hope to build a dynamical theory
that is flexible enough to be applied to certain systems of ordinary differential
equations.

3.2.2 Dynamical theories on admissible 1D family

Let fa, a ∈ (a1, a2) be an admissible 1D family, and fa∗ ∈ M for some a∗ ∈
(a1, a2). First we claim that there are many parameters of periodic sinks around

12The end of I in the interval case is denoted as c(0) and c(q+1). If I is a circle, then we use the
cyclic convention c(1)(a) < · · · < c(q)(a) < c(q+1)(a) := c(1)(a).
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a∗. To prove this claim we argue along the lines of the first part of Sec. 2.3.1,
iterating critical curves as shown in Fig. 7. Using the notations of Sec. 2.3.1,
the critical curves cn(a), defined inductively by cn(a) = fa(cn−1(a)), satisfying

d

da
cn(a) =

∂F (cn−1(a), a)
∂cn−1(a)

d

da
cn−1(a) +

∂F (cn−1(a), a)
∂a

=f ′a(cn−1(a))
d

da
cn−1(a) + ∂afa(cn−1(a)).

(5)

Observe that |∂afa| is uniformly bounded, therefore negligible provided that
| d
dacn(a)| is sufficiently large, a condition guaranteed to hold for some large n

through Definition 3.2(b).13 It then follows that, under the assumption that
the critical curves stay out of Cδ0 ,

d

da
cn ∼ (fn

a )′(c1(a))

grows exponentially in magnitude according to the assumptions of Definition
3.1(a). Consequently, with cn(a∗) staying out of Cδ0 , the critical curve would
cross Cδ0 repeatedly, creating parameters which admit periodic sinks. Since
periodic sinks persist under small perturbations, they are observable in both
the parameter and the phase spaces.

Along the same lines of thinking, next we construct the set of parameter
a ∈ (a1, a2) for which fa satisfies Definition 3.1(b)(ii), a necessary condition for
fa to be a Misiuriwicz map. To simplify the situation let us for the moment
deal only with maps of one critical point (the uni-modal case). We iterate the
critical curves forward in time, deleting the part that is over Cδ0 along the way.
The deletions would chop the critical curves into small pieces, each of which we
iterate forward. Clearly, parameters surviving all deletions are those satisfying
Definition 3.1(b)(ii) in (a1, a2). Excluding the deleted pieces on (a1, a2) along
the way, we would construct in (a1, a2) a parameter set that appears very similar
to a Cantor set with, say, a fixed proportion of deletions.

To obtain a correspondence of Proposition 2.3, that is, to construct a para-
meter set of positive Lebesgue measure admitting no periodic sinks, we again
follow the same lines of thinking, iterating critical curves forward in time. We,
however, relax the rule of deletion as follows: Instead of deleting the critical
curves over Cδ0 , we delete those over Cδn where δn = min{δ0, e

−αn} for some
α > 0. By exponentially shrinking the proportions of deletion, we end up con-
structing a fat Cantor set of positive measure. These parameters are the ones
admitting no periodic sinks.

Let us caution that, in reality, the construction of the indicated fat Cantor
set of parameters is not as easy as it sounds in this brief outline. By allowing
critical orbits to come back close to the critical set, we risk the much needed
expansions of critical curves, and the potential losses of derivatives at close
returns to C(f) need to be controlled with caution (the issue of derivative

13This is the purpose of this rather technical assumption.
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recovery). The mappings from cn(a) to cn+1(a) are obviously not linear so the
proportion of deletions on (a1, a2) is not exactly the same as the proportion of
deletions on cn+1(a). This nonlinearity also needs to be carefully maintained
along the way of iterations (distortion estimates). These issues are carefully
settled for maps of one critical point primarily through the work of Jakobson
[1981] and Benedicks & Carleson [1985]. Allowing more than one critical point
would introduce additional complexities in the construction of good parameters.
For a complete treatment of this issue, see [Wang & Young, 2006a].

Let us end this discussion by stating in precise terms the primary results of
[Wang & Young, 2006a] for a given admissible family of 1D maps.

Proposition 3.1 Let fa, a ∈ (a1, a2) be an admissible family of 1D maps sat-
isfying Definition 3.2. Then there is a positive measure set ∆ ⊂ (a1, a2), such
that for all a ∈ ∆, f = fa satisfies the following: Let C(f) = {x : f ′(x) = 0} be
the critical set, then for all x̂ ∈ C(f),

(a) d(fn(x̂), C(f)) > min{δ0, e
−αn} for all n ≥ 1; and

(b) (fn)′(f(x̂)) > ceλn for some c, λ > 0 for all n ≥ 1.

We also have

Proposition 3.2 Let {fa} and ∆ be the same as in Proposition 3.1. Then,
for f = fa, a ∈ ∆,

(a) there exists λ > 0 such that for almost all x ∈ I, lim supn→∞
1
n ln |(fn)′(x)|

> λ;
(b) f admits an invariant measure that is absolutely continuous with respect

to Lebesgue.

Propositions 3.1 and 3.2 together are sufficient to make maps without periodic
sinks an observable dynamical scenario in both the parameter and the phase
spaces. By the fact that fa,L of Claim 2.2 is admissible, which is proved in
[Wang & Young, 2002a], Propositions 2.2, 2.3 and 2.5 follow from Propositions
3.1 and 3.2.

3.3 A theory of rank one chaos

Let M = I×[−1, 1] where I is either an interval or a circle, ∆0 = (a1, a2)×(0, b1)
and let Ta,b : M → M, (a, b) ∈ ∆0 be a two-parameter family of 2D maps. Let
us assume that Ta,b assumes the general form

Ta,b :
(

x
y

)
7→

(
F (x, y, a) + b u(x, y, a, b)

b v(x, y, a, b)

)
. (6)

We also assume that

(C1) For any given (a, b) ∈ ∆0, Ta,b is a diffeomorphism from M to its image;
and as functions in (x, y, a), the C3-norms of F (x, y, a), u(x, y, a, b) and
v(x, y, a, b) are uniformly bounded.
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(C2) Let fa := F (x, 0, a). {fa}, a ∈ (a1, a2) is an admissible family of 1D maps
satisfying Definition 3.2.

(C3) Let fa∗ , a
∗ ∈ (a1, a2) be a Misiurewicz map of Definition 3.2(a) and C(fa∗)

be the critical set of fa∗ . Then for x̂ ∈ C(fa∗),

∂

∂y
F (x, y, a)

∣∣∣∣
(x̂,0,a∗)

6= 0.

Definition 3.3 Let Ta,b : M → M be as in Eq. (6). Ta,b is an admissible
family of rank one maps if it satisfies (C1)-(C3).

In one sentence, Ta,b is an admissible family of rank one maps if it is a non-
degenerate 2D unfolding of an admissible 1D family. (C1) imposes the usual
2D regularity and (C3) requires in particular that the unfolding is not singular
in the direction of y. Ta,b,L in Sec. 2 is an example of an admissible family of
rank one maps if L is sufficiently large. Another example is the Hénon family
(x, y) → (1− ax2 + y, bx) around a∗ = 2.

We now consider the correspondences of Scenarios (a) and (b) of Sec. 2 for
a given admissible family of rank one maps. That periodic sinks are observable
in both the parameter and the phase spaces follows again from the fact that
the periodic sinks of 1D maps are persistent under small perturbations. It is
an easy exercise to prove that, if a particular fâ has a periodic sink, then so
does all Ta,b for a sufficiently close to â and |b| sufficiently small. This way the
issue of observability for Scenario (a) is quickly disposed of.

The hard part is to justify the observability of Scenario (b) in the parameter
space, that is, to prove the existence of a parameter set ∆ of positive measure,
for which the attractor of Ta,b, (a, b) ∈ ∆ admits no periodic sinks. From this
point on, this scenario will be referred to as rank one chaos. To prove the
observability of rank one chaos in the parameter space for an admissible family,
we imitate the 1D theory of Sec. 3.2, and as a starting point we try to draw a
corresponding version of Proposition 3.1 for Ta,b. An immediate hurdle for us
in repeating the claims of Proposition 3.1 is how to identify the set of critical
points for a 2D map Ta,b, over which we wish to impose a rule of the likes of
Proposition 3.1(a). As it turns out, to this question there is no straight and
easy answer as in the case of 1D maps. To find an answer we need to take a
closer look at how Ta,b acts on M .

For T = Ta,b let R0 := I × [−Kb, Kb] where K > 0 be such that T (R0) ⊂
R0. Detone Rn = Tn(R0). {Rn} is a decreasing sequence of neighborhoods
of the attractor Λ := ∩∞n=0Rn. Let δ be a small positive number such that
d(fn(x̂), C) >> δ for all x̂ ∈ C and n > 0, where f = fa∗ and C is the set of
critical points for f . Define

C(0) = {(x, y) ∈ R0 : |x− x̂| < δ for some x̂ ∈ C}.

C(0) is a collection of vertical strips of width 2δ.
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The picture of R1 = T (R0) is rather simple. T maps the connected compo-
nents of R0 \C(0) to vertically compressed and horizontally stretched horizontal
strips, and the components of C(0) become small quadratic turns connecting
these strips. Under one more iteration of T , new turns are created from the
intersections of R1 and C(0), and the images of the old turns are kept away
from C(0). Let us keep iterating forward in time. As far as the images of all
the quadratic turns are prevented from coming back to C(0), we can maintain
a relatively simple and clean picture of sharp turns connected by horizontal
strips for Rn. This is depicted in Fig. 14. Since T is obtained by perturb-
ing a Misiurewicz map, this simple picture of Rn would last at least up to
n = N0 = O(logδ). ���� ��

��
��

Figure 14: R0, C(0) and their images.

We now study the structure of C(0) ∩ Rn. As long as the images of the
turns are kept away from coming back to C(0), Rn ∩ C(0) is a collection of thin,
horizontal strips crossing C(0), and the intersection of Rn+1 with each of the
strips of Rn ∩ C(0) is again a collection of thinner strips. Again, see Fig. 14.

However, the horizontal size of the images of the turns does grow and will
eventually intersect C(0). So the best we could hope for in terms of getting a
nested structure of horizontal strips of Fig. 14 for Rn ∩C(0) is to make the tips
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of the turns on the boundary of Rn stay out of C(0). This is depicted in Fig.
15. Such geometric pictures kept forever would give the correspondences of the
1D Misiurewicz maps in 2D.

Figure 15: Two ways to maintain the nested structure of Rn ∩ C(0).

To obtain the correspondences of the good maps of Proposition 3.1, we have
to allow the tips of the turns to come back to C(0). Consequently the nested
structure of horizontal strips of Fig. 14 could not last forever. We will, however,
impose a rule of slow return similar to Proposition 3.1(a), and shrink the length
of the horizontal strips of Fig. 14 gradually to maintain a nested structure with
dwindling horizontal scale.

The theorem below is a formulation of a correspondence of Proposition 3.1
for Ta,b based on these ideas. For z0 ∈ R0, let zi = T i(z0). If w0 is a tangent
vector at z0, let wi = DT i(z0)w0. A curve in R0 is called a C2(b)-curve if the
slopes of its tangent vectors are O(b) and its curvature is everywhere O(b).14

Theorem 1 Let Ta,b, (a, b) ∈ (a1, a2)× (0, b1) be an admissible family of rank
one maps. Then for every b > 0 sufficiently small, there is a positive measure
set ∆b ⊂ (a1, a2) such that the following holds for Ta,b, a ∈ ∆b. In what follows,
α, δ, c > 0 and 0 < ρ < 1 are positive constants, and b << α, δ, ρ, e−c.

(1) Critical regions and critical set. There is a Cantor set C ⊂ Λ called
the critical set given by C = ∩∞k=0C(k) where the C(k) is a decreasing se-
quence of neighborhoods of C called critical regions.
Geometrically:
(i) C(0) = {(x, y) ∈ R0 : d(x, C) < δ} where C is the set of critical points
of fa∗ ∈M.
(ii) C(k) has a finite number of components called Q(k) each one of which
is diffeomorphic to a rectangle. The boundary of Q(k) is made up of two
C2(b) segments of ∂Rk (Rk = T k(R0)) connected by two vertical lines:

14The requirement on the curvature is a requirement on second derivative, which we must impose
for this theorem to hold.
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the horizontal boundaries are ≈ min (2δ, ρk) in length, and the Hausdorff
distance between them is O(b

k
2 ).

(iii) C(k) is related to C(k−1) as follows: Q(k−1) ∩ Rk has at most finitely
many components, each of which lies between two C2(b) subsegments of
∂Rk that stretch across Q(k−1) as shown in Fig. 16. Each component of
Q(k−1) ∩Rk contains exactly one component of C(k).���� ��������

Figure 16: Critical regions.

Dynamically: On each horizontal boundary γ of Q(k) there is a unique
point z located within O(b

k
4 ) of the midpoint of γ with the property that if

τ is the unit tangent vector to γ at z, then DTn(z)τ decreases in length
exponentially as n tends to ∞.

(2) Properties of critical orbits. For z ∈ R0, let dC(z) denote the following
notion of “distance to the critical set”: If z 6∈ C(0), let dC(z) = δ; if
z ∈ C(0) \ C, let k be the largest number with z ∈ C(k), and define dC(z) to
be the horizontal distance between z and the midpoint of the component of
C(k) containing z. Then for all z0 ∈ C:
(i) dC(zj) ≥ min{δ, e−αj} for all j > 0;
(ii) ‖DT j(z0)( 0

1 )‖ ≥ K−1ecj for all j > 0.

This theorem, though very long to lay out, is a direct parallel of Proposition
3.1. Theorem 1(2)(i) corresponds to Proposition 3.1(a) and Theorem 1(2)(ii)
to Proposition 3.1(b). Theorem 1(1) is a detailed identification of the set of
critical points, which is now an infinite set. This theorem ([Wang & Young,
2001]), together with a generalization to higher dimensions ([Wang & Young,
2006b]), forms the core of what we will refer to as the theory of rank one
chaos. Proof of Theorem 1 is based on an analytic machinery originally invented
by Benedicks & Carleson [1991] in their studies of strongly dissipative Hénon
maps. It involves complicated analytical schemes, the details of which are
unfortunately not suitable for us to pursue further in this paper.

Let us finish by presenting a parallel of Proposition 3.2, which, when com-
bined with Theorem 1, confirms that
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(1) attractors without periodic sinks are observable in both the parameter
and the phase spaces, and

(2) these attractors do admit SRB measures dominating the statistical be-
havior of almost all orbits in R0.

First let us further assume that, for Ta,b,

(C4) there exists K > 1 such that for arbitrary (x1, y1), (x2, y2) ∈ R0,

K−1 <
|det DTa,b(x1, y1)|
|det DTa,b(x2, y2)| < K.

Theorem 2 Let Ta,b, (a, b) ∈ (a1, a2)× (0, b0) be an admissible family of rank
one maps satisfying also (C4), and let ∆ be the good parameter set of Theorem
1. Then,

(1) T = Ta,b has a positive Lyapunov exponent for Lebesgue-almost every
z0 ∈ R0.

(2) T admits finitely many ergodic SRB measures, which we denote as
µ1, µ2, · · ·µr;

(3) Lebesgue almost all points z0 ∈ R0 are generic with respect to one of the
SRB measures in (2).

Both Theorems 1 and 2 are proved in [Wang & Young, 2001]. Let us note that
Theorem 2(1) implies that T admits no periodic sinks, and Theorem 2(2) con-
firms the observability of SRB measures in the phase space. Since Ta,b,L in Sec.
2 is an admissible family of rank one maps for L large, and det(DTa,b,L(z)) = b
for all z ∈ M , Propositions 2.4 and 2.6 follow from Theorems 1 and 2.

Rank one chaos for maps of dimension > 2. A similar theory for rank
one maps of higher dimensions is further developed in [Wang & Young, 2006b].
We now proceed to define the dynamical systems under consideration. Let
M = I×Dm−1 where I is either an interval or a circle and Dm−1 is an (m−1)-
dimensional disk, m ≥ 2. Points in M are denoted by (x,y) where x ∈ I
and y = (y1, · · · , ym−1) ∈ Dm−1. We consider a 2-parameter family of maps
Ta,b : M → M , a ∈ (a1, a2), b ∈ (0, b1) in the form of

Ta,b :




x
y1

...
ym−1


 7→




F (x, y1, · · · , ym−1; a) + bu(x, y1, · · · , ym−1; a, b)
bv1(x, y1, · · · , ym−1; a, b)

...
bvm−1(x, y1, · · · , ym−1; a, b)


 (7)

where

(C1) (x,y, a) 7→ F (x,y; a), u(x,y; a, b) and vi(x,y; a, b), i ≤ m − 1, are C3

and their C3-norms are bounded above by a constant independent of b;

(C2) fa := F (x,0; a) is an admissible family of 1D maps;
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(C3) let a∗ ∈ (a1, a2) be such that fa∗ ∈ M; then for every x0 ∈ C(fa∗), there
exists j ≤ m− 1 such that

∂F (x,y; a)
∂yj

∣∣∣∣
(x0,0,a∗)

6= 0;

(C4) let us further assume that there exists K > 1 such that for arbitrary
(x1,y1), (x2,y2) ∈ M ,

K−1 <
|det DTa,b(x1,y1)|
|det DTa,b(x2,y2)| < K.

We call Ta,b in Eq. (7) satisfying (C1)-(C4) above an admissible family of rank
one maps of dimension m. In short, Ta,b is a non-degenerate unfolding of an
admissible 1D family into a phase space of m dimensions. Let R0 = {(x,y) ∈
M : |y| < Kb} be such that Ta,b(R0) ⊂ R0.

A main difference between the two dimensional theory and the theory of
higher dimensions is as follows: In two dimensions, the geometric structure of
Theorem 1(1) is maintained by inductively using Rk+1 = T k+1(R0) intersecting
C(k), which we can control by imposing Theorem 1(2)(i) on the tips of the turns
on the boundaries of Rk+1. In dimensions > 2, the boundaries of Rk are no
longer curves; they are surfaces of dimension m − 1, the geometry of which is
impossible to control. Consequently, the nested structure of Theorem 1(1) for
C(k) ∩ Rk+1 cannot be maintained for all k > 0 and we are in need of major
modifications in formulating a generalized version of Theorem 1(1) to maps of
higher dimensions [Wang & Young, 2006b].

Let us finish this section by stating one more theorem that is parallel to
Theorem 2 in 2D for maps of higher dimensions.

Theorem 3 Let Ta,b, (a, b) ∈ (a1, a2)× (0, b1) be an admissible family of rank
one maps of dimensions m > 2. Then there exists b0 > 0 such that for all
b < b0, there exists a set ∆b of positive Lebesgue measure, such that for T =
Ta,b, a ∈ ∆b,

(1) T = Ta,b has a positive Lyapunov exponent for Lebesgue-almost every
z0 ∈ R0.

(2) T admits finitely many ergodic SRB measures, which we denote as
µ1, µ2, · · ·µr;

(3) Lebesgue almost all points z0 ∈ M are generic with respect to one of the
SRB measures in (2).
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4 A General Framework for Applications

In this section we present a specific way of applying the theory of rank one
chaos to certain systems of ordinary differential equations. We prove that, by
periodically kicking a periodic solution that is asymptotically stable, we induce
a time-T map that assumes the form of Eq. (7). As a particular case, the
time-T maps of periodically kicked Hopf limit cycles are subsequently studied.
Most of the ideas and the results presented in this section originate from [Wang
& Young, 2002a,b].

4.1 Periodically kicked limit cycles

Let x ∈ Rm be the phase variable and t be the time. We start with an au-
tonomous ordinary differential equation

dx
dt

= f(x) (8)

and assume that Eq. (8) has an asymptotically stable periodic solution which
we write in parametrized form as x = p(s) where s ∈ R is the curve length
from p(s) to p(0). p(s) = p(s + L0) is a vector-valued periodic function of
period L0 where L0 is the total length. We assume that f(x) is C4 in a small
neighborhood of this periodic solution. To Eq. (8), we add a time-periodic
forcing term εPT,p(t)Φ(x) to obtain a new nonautonomous system

dx
dt

= f(x) + εPT,p(t)Φ(x) (9)

where PT,p(t) =
∑∞

n=−∞ Pp(t−nT ) is a periodic pulsetrain of period T , Pp(t) =
1
p for 0 < t ≤ p and Pp(t) = 0 otherwise, Φ(x) is C4 representing the shape of
the forcing and ε its magnitude. In what follows we assume

p << ε << 1 << T (10)

and we show that, in the vicinity of the periodic solution x = p(s), the time-T
map of Eq. (9), which we denote as FT , is a map of the form of Eq. (7)
with the corresponding u and vi uniformly bounded from above in magnitude,
indicating that Eq. (9) represents a natural setting to which the theory of Sec.
3 potentially applies.

(A) A preliminary change of coordinates. First we introduce a change of
variables. The old phase variables are x = (x1, · · · , xm) and the new phase
variables are u = (s,y) where s ∈ S1 := [0, L0), y = (y1, · · · , ym−1). s and
y1, · · · ym−1 are defined as follows. First, s is the parameter in p(s), representing
the curve length. To define y = (y1, · · · , ym−1), we denote em(s) = d

dsp(s).
Since s is the curve length, |em(s)| = 1. Let (e1(s), e2(s), · · · , em−1(s)) be a
set of unit vectors such that e1(s), · · · , em−1(s) and em(s) form an orthonormal
basis of Rm for all s ∈ [0, L0). For x ∈ Rm that is sufficiently close to the
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periodic solution x = p(s), there is a unique s ∈ [0, L0) and (m − 1)-vector
y = (y1, · · · , ym−1) such that

x = y1e1(s) + · · ·+ ym−1em−1(s) + p(s). (11)

Denote e(s) = (e1(s), · · · , em(s))T and let

e′(s) = k(s)e(s)

where k(s) = (ki,j(s)) is the m by m skew symmetric matrix of curvatures. We
further write

ki(s) = (k1,i(s), · · · , km−1,i(s))

for i ≤ m. ki is the i-th raw of the matrix k(s). Differentiating with respect to
t on both sides of Eq. (11) we have

dx
dt

=
m−1∑

i=1

(
ei(s)

dyi

dt
+ yie′i(s)

ds

dt

)
+ p′(s)

ds

dt

:= f(x) + εPT,p(t)Φ(x),

(12)

from which it follows that

ds

dt
=

1
1 + km(s)y

[f(s,y)em(s) + εPT,p(t)Φ(s,y)em(s)]

dyi

dt
= f(s,y)ei(s) + εPT,p(t)Φ(s,y)ei(s)− ki(s)y

ds

dt

(13)

where i = 1, · · · ,m − 1, and f(s,y) and Φ(s,y) are the expressions of f(x)
and Φ(x) in new variables (s,y), respectively. Observe that in the new phase
variable u = (s,y), y = 0 represents the periodic solution x = p(s). The vector
field of Eq. (13) is well-defined for all y that is sufficiently close to y = 0.

Periodic forcing in Eq. (13) is turned on at t = kT then turned off at
t = kT + p. We call [kT, kT + p) a forcing period and [kT + p, (k + 1)T ) a
relaxation period. With the forcing in action for t ∈ [kT, kT + p), Eq. (13)
becomes

ds

dt
=

1
1 + km(s)y

[f(s,y)em(s) + ε
1
p
Φ(s,y)em(s)]

dyi

dt
= f(s,y)ei(s) + ε

1
p
Φ(s,y)ei(s)− ki(s)y

ds

dt

(14)

and with the forcing de-activated for t ∈ [kT + p, (k + 1)T ), Eq. (13) becomes

ds

dt
=

1
1 + km(s)y

f(s,y)em(s)

dyi

dt
= f(s,y)ei(s)− f(s,y)em(s)

1 + km(s)y
ki(s)y.

(15)
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We denote u0 = (s0,y0), up = (sp,yp) and let û(u0, t) be the solution of Eq.
(14) satisfying û(u0, 0) = u0, and u(up, t) be the solution of Eq. (15) satisfying
u(up, 0) = up. Then the time-T map is given by FT = G ◦ κ where

up := κ(u0) = û(u0, p), G := GT−p(up) = u(up, T − p). (16)

(B) Map κ at the end of a forcing period. We introduce a new time t̂ = 1
p t.

For t ∈ [0, p), t̂ ∈ [0, 1). We re-write Eq. (14) as

ds

dt̂
= O(p) +

εΦ(s,y)em(s)
1 + km(s)y

dyi

dt̂
= O(p) + εΦ(s,y)ei(s)− ki(s)y

εΦ(s,y)em(s)
1 + km(s)y

.

(17)

where O(p) represents terms with a factor of p in front. In a similar way, the
rest of the terms on the right side of Eq. (17) can be written as terms of O(ε),
and we have from Eq. (17) that for t̂ ≤ 1,

s(t̂) = s0 +O(ε) +O(p), y(t̂) = y0 +O(ε) +O(p). (18)

With the assumption p << ε, we can ignore the O(p) terms. Let

Uε = {(s,y) : |y| < ε}.

For u0 = (s0,y0) ∈ Uε, we have from Eq. (18)

s(t̂) = s0 +O(ε), y(t̂) = O(ε). (19)

With Eq. (19) at hand, we now write the second equation of Eq. (17) as

dyi

dt̂
= O(p) + ε (Φ(s0, 0)ei(s0) +O(ε)) , (20)

from which we obtain that at t̂ = 1,

y(1) = y0 + ε(φ(s0) +O(ε))

where
φ(s0) = (Φ(s0,0)e1(s0), · · ·Φ(s0,0)em−1(s0)).

In summary, for u0 ∈ Uε, up = (sp,yp) := κ(u0) is such that

sp = s0 +O(ε), yp = y0 + ε(φ(s0) +O(ε)). (21)

(C) Map G at the end of a relaxation period. We now study the solutions of
Eq. (15). For i = 1, · · · , m, let

ψi(s,y) := f(s,y)ei(s).
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ψi(s,y)ei is the projection of f(s,y) onto ei. We have for y = 0,

ψ1(s,0) = ψ2(s,0) = · · · = ψm−1(s,0) = 0, ψm(s,0) = |f(s,0)|

because f(s, 0) and em(s) are in the same direction on y = 0. Expanding
ψ(s,y) in terms of y we have, for i ≤ m− 1,

ψi(s,y) = ψ
(1)
i (s)y +O(y2)

where

ψ
(1)
i (s) =

∂

∂y
(f(s,y)ei(s))

∣∣∣∣
y=0

.

Note that ψ
(1)
i are (m− 1)-vectors for i ≤ m− 1. We also have for ψm(s,y)

ψm(s,y) = ψ(0)
m (s) + ψ(1)

m (s)y +O(y2)

where

ψ(0)
m (s) = |f(s,0)|, ψ(1)

m (s) =
∂

∂y
(f(s,y)em(s))

∣∣∣∣
y=0

.

From Eq. (15) we obtain

dt

ds
= b0(s) + (b1(s) +O(y))y

dy
ds

= (a(s) +O(y))y
(22)

where a(s) is an (m− 1) by (m− 1) matrix, and the i-th row of a(s) is

ai(s) =
ψ

(1)
i (s)

ψ
(0)
m (s)

− ki(s).

We also have
b0(s) =

1

ψ
(0)
m (s)

> 0,

and

b1(s) =
1

ψ
(0)
m (s)

(
km − ψ

(1)
m (s)

ψ
(0)
m (s)

)
.

Note that by writing the equations in the form of Eq. (22), we are switching
the roles of t and s, regarding t as one of the phase variables and s as the
time variable. Observe that all the functions on the right side of Eq. (22) are
periodic with period L0 in s.

We now apply Floquet’s theory to the second item of Eq. (22). Let P(s)
be the matrix of fundamental solutions of the equation

d

ds
y = a(s)y,
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By introducing new coordinates z := Q−1(s)y, where P(s) = Q(s)eAs, Eq.
(22) is transformed into

dt

ds
= b0(s) + (b1(s)Q(s) +O(z))z

dz
ds

= (A +O(z))z
(23)

where Q(s) is periodic matrix and A is a constant matrix that is negative-
definite. Let {λi} be the eigenvalues of A and λ > 0 be such that λi < −λ for
all i. Note that by definition b0(s) > 0 for all s. In using Eq. (23), we regard
(t, z) as phase variables and s as time. Let (t(s), z(s)) be the solution of Eq.
(23) satisfying t(sp) = 0, z(sp) = zp. We have from Eq. (23),

t(s) =
∫ s

sp

b0(τ)dτ +
∫ s

sp

K(τ)dτ.

|z(s)| < Ce−
λ
2
(s−sp)|zp|

(24)

where
K(τ) = (b1(τ)Q(τ) +O(z(τ))) z(τ). (25)

Equation (24) is what we use for the solutions in the relaxation period.

(D) The time-T map FT = G ◦ κ. Let M := {(s, z) : |z| < K̃−1ε} where
K̃ = maxs∈[0,L0] ‖Q(s)‖, and FT : (s0, z0) → (sT , zT ) be the time-T map for
(s0, z0) ∈ M . For κ : (s0, z0) → (sp, zp) we have from Eq. (21)

sp = s0 +O(ε), zp = z0 + ε(Q−1(s0)φ(s0) +O(ε)); (26)

and for G we have

T − p =
∫ sT

sp

b0(τ)dτ +
∫ sT

sp

K(τ)dτ.

|zT | < Ce−
λ
2
(sT−sp)|zp|

(27)

where K(τ) is as in Eq. (25). To obtain FT we combine Eqs. (26) and (27).
Note that G : (sp, zp) → (sT , zT ) is implicitly defined through Eq. (27).

To fit FT : M → M into the form of Eq. (7), we need to first introduce
parameters a and b. Denote

T0 =
∫ L0

0
b0(s)ds

and let n ≥ 0 be the largest integer such that

T − p− nT0 > 0.

(i) We define
a = T − p− nT0, b = e−

λ
10

nL0 . (28)
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Observe that, as T →∞, b → 0 and a ∈ [0, T0).
(ii) We also define a function ga(s0, z0) implicitly by letting

a + nT0 =
∫ ga(s0,z0)

sp

b0(s)ds +
∫ ∞

sp

K(s)ds. (29)

(iii) We write FT : (s0, z0) → (sT , zT ) as

sT = ga(s0, z0) + bu; zT = bv. (30)

To show that FT is in the form of Eq. (7), we now prove |u|, |v| < 1 for T
sufficiently large. First, for v, we have v = b−1zT , and from Eq. (24) it follows
that

|v| < e
1
10

λnL0e−
1
2
λ(sT−sp) < 1.

For the last inequality, let us note that sT ≈ nL0.
Estimation for u is as follows. By definition u = b−1(sT − ga(s0, z0)). We

have

|sT − ga(s0, z)| ≤ K

∣∣∣∣∣
∫ ga(s0,z0)

sT

b0(s)ds

∣∣∣∣∣ = K

∣∣∣∣
∫ ∞

sT

K(s)ds

∣∣∣∣ < Kλ−1e−
1
2
λsT .

To obtain the first inequality we use b0(s) > 0 for all s and let K−1 =
mins∈[0,L0] b0(s). For the last inequality we use Eq. (24) for z(s), and for
the middle equality we compare the first items of Eqs. (27) and (29).

(E) 1D limit ga(s, 0) and the existence of rank one chaos. To apply the theory
of Sec. 3 we need to further verify conditions (C1)-(C4) for FT in Eq. (30). We
caution that in principle there is no reason a priori for (C1)-(C4) to hold for
FT . In fact, the general setting of infrequent kicks (T large) of small magnitude
(ε small) to a stable periodic solution does not favor chaos. To get the kind of
expansions assumed in (C2), we need additional assumptions on ε, Φ(x) and
the properties of Eq. (8) around p(s).

Let us be more concrete by presenting a specific example, through which
we hope to provide to the reader some conceptual understanding of the various
factors that determine the properties of the 1D limit ga(s, 0) and the existence
of rank one chaos. For this example let us assume m = 2. We drop all O(y)
terms in Eq. (22), and assume that

Q(s) = Id, a(s) = −λ, b0(s) = 1, b1(s) = B

where λ and B are constants. Note that λ here represents the attractive
strength of the periodic solution y = 0, and B represents the strength of shear-
ing, that is, the change of the angular velocity for the solutions of the unforced
equation with respect to their distances from the periodic solution y = 0. It
then follows from Eq. (29) that

ga(s0,0) = a + s0 +O(ε) +
εB

λ
(φ(s0) +O(ε)).
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This function is almost in the form of fa,L of Claim 2.2 with

L =
εB

λ

where ε represents the magnitude of the forcing. ε, λ and B are three inde-
pendent parameters. For the theory of Sec. 3 to apply we need L large. This
could be achieved with either a sufficiently small λ (weak stability) and/or a
sufficiently large B.

In conclusion, periodically kicking a weakly stable periodic solution with strong
shearing is more likely to create rank one chaos.

4.2 Hopf bifurcation and rank one chaos

In this subsection we discuss a particular setting of Eq. (9) for the applications
of the theory of rank one maps. The stable limit cycles freshly coming out of
a generic supercritical Hopf bifurcation [Hopf, 1947; Marsden & McCracken,
1976] are periodically kicked to produce rank one chaos. This is a particular
case where the time-T maps FT can be semi-explicitly computed to the extend
that conditions of (C1)-(C4) are readily checked. Observe that the attractive
strength of Hopf limit cycles can be made as weak as desired. The strength of
shearing in this case is determined by the third order term of the normal forms
for the Hopf bifurcation.

(I) Statement of Results. Let x ∈ Rm (m ≥ 2) be the phase variable and
t ∈ R be the time. Consider the following µ-dependent system of differential
equations

dx
dt

= Aµx + fµ(x) (31)

where Aµ is a real m by m matrix and fµ(x) is a vector-valued real analytic
function in x defined on a given neighborhood of x = 0 such that fµ(0) = 0,
Dxfµ(0) = 0. Both Aµ and fµ(x) are smooth dependents of µ at and around
µ = 0. Let {λi}m

i=1 be the eigenvalues of Aµ. We assume that

(A1) There is a conjugated pair λ1,2 = a(µ) ± ω(µ)
√−1 such that a(0) =

0, ω(0) 6= 0, and d
dµa(0) > 0. In addition, there exists c > 0 such that

Re(λi) < −c, i ≥ 3.

Corresponding to λ1,2, Eq. (31) has a 2-dimensional local center manifold W c

at x = 0, and the equations for the solutions on W c can be written in a complex
variable z in the normal form as

ż = (a(µ) + iω(µ))z + k1(µ)z2z̄ + k2(µ)z3z̄2 + · · · (32)

where k1(µ), k2(µ), · · · are complex numbers. Note that by transforming z
to cz, k1 is changed to |c|2k1. This is, however, the only ambiguity for k1.
In particular, the sign of Re(k1(0)) and arg(k1(0)) are uniquely determined.
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The ratio of the real and the imaginary parts of the coefficient k1 above is
particularly important for us. Let us denote from this point on that

k1(µ) = −E(µ) +
√−1F (µ).

Our next assumption is that

(A2) E(0) > 0.

We say that Eq. (31) has a generic supercritical Hopf bifurcation at x = 0 for
µ = 0 if (A1) and (A2) hold for Eq. (31). It is well-known that, under the
assumptions (A1) and (A2), an asymptotically stable periodic solution of size
O(µ

1
2 ) bifurcates out of x = 0 on the center manifold for µ > 0. This periodic

solution will be referred to as the Hopf limit cycle. See the depiction in Fig.
17.

Figure 17: A supercritical Hopf bifurcation.

We now add a time-dependent forcing term to Eq. (31) to form a new
equation

dx
dt

= Aµx + fµ(x) + εΦ(x)PT,p(t) (33)

where Φ(x), PT,p(t) are the same as in Sec. 4.1. Let (r, s) be the polar coordi-
nates for x ∈ Rm. This is to say that r = |x|, s = 1

|x|x. We have x = rs where
r ∈ R+ and s ∈ Sm−1 is such that |s| = 1.

Let us assume that for Φ(x)

(A3) Ψ(r, s) := 1
rΦ(rs) as a function of r and s is C4 on [0, ε̂) × Sm−1 for

some ε̂ > 0.
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Let x → Lµx := (x, y,w)T be a linear coordinate change that transforms
Eq. (33) into

ẋ = ax− ωy + fx + εΦxPT,p(t)
ẏ = ωy + ay + fy + εΦyPT,p(t)

ẇ = A(s)w + fw + εΦwPT,p(t)

(34)

so that A(s) is an (m−2) by (m−2) matrix of eigenvalues of negative real part,
and

(fx, fy, fw)T = Lµfµ(L−1
µ (x, y,w)T ), (Φx, Φy, Φw)T = LµΦ(L−1

µ (x, y,w)T ).

Denote the polar coordinates for (x, y,w) as (r̂, ŝ). This is to say that r̂ =√
x2 + y2 + |w|2, ŝ = 1

r̂ (x, y,w). Let

Ψx(r̂, ŝ) :=
1
r̂
Φx(r̂ŝ); Ψy(r̂, ŝ) :=

1
r̂
Φy(r̂ŝ); Ψw(r̂, ŝ) :=

1
r̂
Φw(r̂ŝ).

Ψx(r̂, ŝ), Ψy(r̂, ŝ), Ψw(r̂, ŝ) are C4 in (r̂, ŝ) according to (A3). Finally we let

φ(θ) = cos θΨx(0, ŝ0) + sin θΨy(0, ŝ0) (35)

where ŝ0 = (cos θ, sin θ,0), θ ∈ [0, 2π].

The time-T map of Eq. (33) is denoted as Fµ,ε,T,p where µ is the bifurcation
parameter of the unperturbed Eq. (31) and ε, T, p are the parameters of forcing.
Also recall that k1(µ) = −E(µ) + iF (µ) where k1 is as in Eq. (32). Let us
assume that

(a) (A1)-(A3) hold for Eq. (33);

(b) φ(θ) in Eq. (35) is a Morse function; and

(c) µ, ε, p are such that 0 < µ << 1, 0 < p << ε << 1.

Then, we have

Theorem 4 Let the values of µ, p and ε be fixed and assume that (a)-(c) above
hold. We regard the period T of the forcing as a parameter and denote FT =
Fµ,ε,T,p. Then there exists a constant K1, determined exclusively by φ(θ), such
that if ∣∣∣∣ε

F (0)
E(0)

∣∣∣∣ > K1,

then there exists a positive measure set ∆ ⊂ (µ−1,∞) for T , so that for T ∈ ∆,
FT has a strange attractor Λ admitting no periodic sinks. This is to say that
there exists an open neighborhood U of Λ in Rm such that FT has a positive
Lyapunov exponent for Lesbegue almost every point in U . Furthermore, FT

admits an ergodic SRB measure, with respect to which almost every point of U
is generic.
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In Sec. 5 we will present various examples of applications of Theorem 4 to
switch-controlled circuits and systems.

A slightly different version of Theorem 4 is proved in [Wang & Young,
2002b]. To prove Theorem 4, we need to first compute the time-T map using the
normal forms in the vicinity of a Hopf limit cycle. Then we need to further verify
(C1)-(C4) for the time-T map computed. Since in this case our computations
are focused on a small neighborhood of the center of a Hopf bifurcation, the
resulting formula for the time-T map is more explicit than the formula derived
for a periodically kicked arbitrary limit cycle in Sec. 4.1. As a matter of fact,
the time-T map we obtain at the end is an unfolding of a 1D family in the
form of fa,L of Claim 2.2 in Sec. 3.1, with a and b correspondingly extracted

from T − p through Eq. (28) in Sec. 4.1 and L ≈ ε
∣∣∣F (0)
E(0)

∣∣∣. The actual process
of computing FT and checking (C1)-(C4) for Eq. (33) are long, and we refer
the reader to [Lu et al., 2007; Wang & Young, 2002a,b] (in particular to [Lu
et al., 2007]), for detailed derivations, which we have no choice but skip here.
We, however, would compute the time-T map and identify the 1D limit for a
simplified case, through which we hope to illustrate the main ideas involved.

(II) A simplified system. To simplify the issue we first assume m = 2
so the strongly stable directions represented by w in Eq. (34) are completely
dropped. Second we assume that Eq. (34), now with only two equations of
(x, y), is in the normal form. For notational simplicity, let us also assume
a(µ) = µ. Consequently, we are going to compute the time-T map of the
following system of equations

ẋ = µx− ωy − E(x2 + y2)x− F (x2 + y2)y +O((x2 + y2)
5
2 ) + εΦxPT,p(t)

ẏ = ωx + µy + F (x2 + y2)x−E(x2 + y2)y +O((x2 + y2)
5
2 ) + εΦyPT,p(t).

(36)

First we need to introduce a sequence of coordinate changes that would facilitate
our computations of FT .
Transformation # 1. Let (r, θ) be the polar coordinates for (x, y) such that

x = r cos θ, y = r sin θ.

We write Eq. (36) in (r, θ) as

ṙ = (µ− Er2)r +O(r5) + εΦrPT,p(t)

θ̇ = ω + Fr2 +O(r4) + ε
1
r
ΦθPT,p(t)

(37)

where
Φr = cos θΦx + sin θΦy, Φ̂θ = cos θΦy − sin θΦx.

Transformation # 2. Without the forcing terms, Eq. (37) has a periodic

solution r ≈
√

µ
E . To make the distance from this solution to the center
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roughly one we let

ξ =

√
E

µ
r

and write Eq. (37) in (ξ, θ) as

ξ̇ = µ(1− ξ2)ξ +
( µ

E

)2
ξ5O(1) + ε

√
E

µ
ΦrPT,p(t)

θ̇ = ω + µ
F

E
ξ2 +

( µ

E

)2
ξ4O(1) + ε

1
ξ

√
E

µ
ΦθPT,p(t).

(38)

Transformation # 3. The stable periodic solution bifurcating from the center
is now close to ξ = 1, which we now write as ξ = 1 + ψ(θ). It is well-known
that ψ(θ) = O(µ). Let us further introduce a new variable ξ̂ = ξ − 1− ψ(θ) so
as to move the Hopf limit cycle to ξ̂ = 0. We derive the equation for the new
variable ξ̂ and re-write ξ̂ as ξ. Then Eq. (38) becomes

ξ̇ = −µ(2 + 3ξ + ξ2 +O(µ))ξ + +ε

√
E

µ
(Φr +O(µ2))PT,p(t)

θ̇ = ω + µ2g(θ) + µ
F

E
(2 + ξ +O(µ))ξ + ε

√
E

µ

(
1

ξ + 1
+O(µ)

)
ΦθPT,p(t)

(39)

where g(θ) is a function of θ of magnitude O(1). Note that the derivation of Eq.
(37) from Eq. (36), and that of Eq. (38) from Eq. (37) are rather simple. On
the other hand, the derivation of Eq. (39) from Eq. (38) is much less straight
forward. We suggest that the reader work this derivation himself/herself (not
a trivial one though).

Transformation # 4. Next we adjust the angular variable to remove the term
µ2g(θ) from the second item of Eq. (39). Let

s =
∫ θ

0

1
1 + ω−1µ2g(τ)

dτ.

We can re-write Eq. (39) in (ξ, s) as

ξ̇ = −µ(2 + 3ξ + ξ2 +O(µ))ξ + ε

√
E

µ
(Φr +O(µ2))PT,p(t)

ṡ = ω + µ
F

E
(2 + ξ +O(µ))ξ + ε

√
E

µ

(
1

ξ + 1
+O(µ)

)
(Φθ +O(µ2))PT,p(t).

(40)
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Note that s ∈ S1 = [0, L0) where

L0 =
∫ 2π

0

1
1 + ω−1µ2g(τ)

dτ.

Equation (40) is the equation we use to compute FT .

(III) Time-T map and the 1D limit. We again call [kT, kT +p) a forcing
period and [kT +p, (k +1)T ) a relaxation period. With the forcing in action for
t ∈ [kT, kT + p), Eq. (40) becomes

ξ̇ = −µ(2 + 3ξ + ξ2 +O(µ))ξ +
1
p
ε

√
E

µ
(Φr +O(µ2))

ṡ = ω + µ
F

E
(2 + ξ +O(µ))ξ +

1
p
ε

√
E

µ

(
1

ξ + 1
+O(µ)

)
(Φθ +O(µ2))

(41)

and with the forcing de-activated for t ∈ [kT + p, (k + 1)T ), Eq. (40) becomes

ξ̇ = −µ(2 + 3ξ + ξ2 +O(µ))ξ

ṡ = ω + µ
F

E
(2 + ξ +O(µ))ξ.

(42)

Denote u0 = (ξ0, s0), up = (ξp, sp). Let û(u0, t) be the solution of Eq. (41)
satisfying û(u0, 0) = u0, and u(up, t) be the solution of Eq. (42) satisfying
u(up, 0) = up. Then we can write the time-T map as FT = G ◦ κ where

up := κ(u0) = û(u0, p), G := GT−p(up) = u(up, T − p). (43)

(A) Solutions of Eq. (41). Denote U = {(ξ, s) : |ξ| < ε}. For u0 = (ξ0, s0) ∈
U , let

κ(u0) = up = (ξp, sp).

We have from Eq. (41) that

ξp = ξ0 + ε(φ(s0) +O(ε)), sp = s0 +O(ε) (44)

where
φ(s0) = Ψx(cos s0, sin s0) cos s0 + Ψy(cos s0, sin s0) sin s0. (45)

Recall that (Ψx, Ψy) := 1
r (Φx(x, y), Φy(x, y)) where r =

√
x2 + y2.

(B) Solutions of Eq. (42). Let (ξt, st) = u(t− p,up). We have from Eq. (42)

|ξt| < 2e−
3
2
µ(t−p)

st = sp + ω(t− p) + µ
F

E

∫ t−p

0
(2 + ξ)ξdt +

∫ t−p

0
O(µ2)ξ2dt.

(46)
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Since s ∈ S1 is represented by the interval [0, L0), st above is mod(L0). We
have from Eq. (46)

|ξT | < 2e−
3
2
µ(T−p)|ξp|

sT = sp + ω(T − p) + µ
F

E

∫ T−p

0
(2 + ξ)ξdt +

∫ T−p

0
O(µ2)ξ2dt.

(47)

(C) Parameters a, b and the 1D limit. Let n be the largest integer such that
T − p− ω−1nL0 > 0. As was done in Sec. 4.1(D), we let

a = ω(T − p)− nL0; b = e−µω−1nL0

and write FT : (ξ0, s0) → (ξT , sT ) as

ξT = bv, sT = ga(ξ0, s0) + bu

where ga(ξ0, s0) is defined by replacing the integral bound T − p to +∞ in the
equation for sT in Eq. (47). This is to say that

ga(ξ0, s0) = sp + a + µ
F

E

∫ ∞

0
(2 + ξ)ξdt +

∫ ∞

0
O(µ2)ξ2dt.

We have

Proposition 4.1 Assume that T >> µ−1. Then
(i) for T >> µ−1, we have |u|, |v| < 1; and
(ii) for the 1D limit we have

ga(0, s0) = a + s0 + ε
F (0)
E(0)

(φ(s0) +O(ε)) +O(ε)

Proof: That |u| < 1 is straight forward from the first item of Eq. (47). |v| < 1
is from

|sT − ga| = µ
F

E

∫ ∞

T−p
(2 + ξ)ξdt +

∫ ∞

T−p
O(µ2)ξ2dt < Ke−

3
2
µ(T−p).

For (ii), we have from Eq. (42)

dξ

ξ + 1
= −µ(ξ + 2)ξdt +O(µ2)ξdt

from which it follows that
∫ ∞

0
µ(ξ + 2)ξdt = ln(ξp + 1) +O(ε).

We then have
ga = sp + a +

F

E
ln(ξp + 1) +O(ε). (48)
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(ii) is now obtained by combining Eqs. (44) and (48). ¤
(D) Proof of Theorem 4. To prove Theorem 4, we need to further check
(C1)-(C4) in Sec. 3.1 for FT , among which (C2) now follows from a slightly
generalized version of Claim 2.2 in Sec. 3.1 provided that L = εF (0)

E(0) is suffi-
ciently large. Note that, even at this point, it is by no means easy to check
other conditions. For instance, to verify (C1), being able to control the magni-
tude of u and v as we did above is far from being adequate. Detailed estimates
on the C4-norms of u and v are needed in order to verify (C1). On the other
hand, though mathematically important, these estimates fall in general into
the category of conceptually less important details, for which we would refer
the reader to [Wang & Young, 2002a] or [Lu et al., 2007].

(IV) Geometric mechanism and examples. Let us now illustrate on
an intuitive level how the rank one chaos is created by the external force. In
Fig. 18(a), the dotted circle represents the limit cycle coming out of the center.
When the external force is applied, this circle is deformed to become the solid
curve in Fig. 18(a). At this point, two competing factors are in action. The
first is the effect of shearing, meaning points at different distances from the
center of the circle rotate at different speeds. Shearing acts to exaggerate the
initial deformation brought in by the external forcing. The strength of shearing
is measured by the ratio of the imaginary and the real parts of the constant k1

in Eq. (32), i.e. |F (0)/E(0)|, which we will call from this point on as the twist
constant for Eq. (32). The second factor is the magnitude of the forcing, which
is represented by ε. If twist constant is not large enough in comparison with
ε−1, then the initial deformation of size ε is suppressed by the contracting force
of the original limit cycle, and the attractor for the time-T map is a simple
closed curve. This is a case where (C2) fails to hold. On the other hand,
if the twist constant is large, then the initial deformation brought in by the
kicking force is exaggerated. The attracting set starts to disintegrate into a
finite collection of periodic saddles and sinks. As the twist constant gets larger,
the initial deformation introduced by the kicking force is exaggerated further,
getting us into a situation in which Scenarios (a) and (b) of Sec. 2.2 co-exist.
In this case, the time-T maps are an admissible family of rank one maps of Sec.
3, to which the theory of Sec. 3 applies (see Fig. 18(b)).

Examples

Example 1: Let r, s be the polar coordinates for x ∈ Rm and assume that

Φ(x) = rψ(r, s)s

where ψ : R+ × Sm−1 → R is C4. Let Lµ be the linear coordinate change that
transforms Eq. (33) to Eq. (34), and r̂, ŝ be the polar coordinates for (x, y,w).
We have

(Ψx, Ψy,Ψw) = ψ

(
r̂|L−1

µ ŝ|, L−1
µ ŝ

|L−1
µ ŝ|

)
L−1

µ ŝ.
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(b)(a)

Figure 18: A Hopf attractor.

Let L−1
µ = (v1, · · · ,vm) where vi = (v1i, · · · , vmi)T are vectors in Rm. Then

we have from Eq. (35) that

φ(θ) = ψ

(
0,

v1 cos θ + v2 sin θ

|v1 cos θ + v2 sin θ|
)

(v11 cos2 θ+(v12+v21) sin θ cos θ+v22 sin2 θ).

(49)
Theorem 4 applies provided that φ(θ) in Eq. (49) is a Morse function in θ.

If Lµ is the identity matrix, then φ(θ) = ψ(0, (cos θ, sin θ,0)).

Example 2: We assume that, in Eq. (33), Φ(x) is real-analytic around x = 0
and Φ(0) = 0. Then

Φ(x) = Ax + h.o.t.

where A is an m by m constant matrix, and

(Ψx, Ψy, Ψw) = LµAL−1
µ ŝ + h.o.t.

where h.o.t. = 0 at r̂ = 0. Let B = (bij) := LµAL−1
µ . From Eq. (35) we have

φ(θ) = b11 cos2 θ + b22 sin2 θ + (b12 + b21) cos θ sin θ.

It is straight forward to check that if

(b11 − b22)2 + (b12 + b21)2 6= 0, (50)

then φ(θ) is a Morse function.
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5 Application to Circuits and Systems

In this section, we give several practical examples to demonstrate the applica-
bility of the various aspects of the theory presented in Secs. 3 and 4. The
examples we use are mainly from the field of Electrical Engineering.

The study of electrical circuits has provided a major inspiration for the
development of the modern theory of dynamical systems. The mathemati-
cal analysis and numerical and experimental simulations of electrical systems,
such as van der Pol’s equation and Duffing’s equation, have helped shape the
modern theories of chaos and bifurcations [Cartwright & Littlewood, 1945;
Guckenheimer & Holmes, 1997; Levinson, 1949]. On the other hand, profound
mathematical theories often come back to provide powerful insights, and guide
the design of circuits and systems of theoretical and practical importance.

For applications presented in this section, we specifically choose the well-
known Chua’s [Chua, 1994; Madan, 1993] and MLC (Murali-Lakshmanan-
Chua) circuits [Murali et al., 1994a,b; Thamilmaran et al., 2000] with a smooth
nonlinearity to demonstrate the applicability of the theory to the case of peri-
odically kicked Hopf limit cycles. We will also kick the non-Hopf limit cycles
from the original piecewise linear Chua’s circuit to show that the theory is
applicable to arbitrary limit cycles, too. Here we mainly follow the work in
[Oksasoglu et al., 2006; Wang & Oksasoglu, 2005, 2007].

A generic scheme: Let us start with the following autonomous system

du
dt

= f(u) (51)

where u ∈ Rm,m ≥ 2. Assume that Eq. (51) is capable of generating a
supercritical Hopf bifurcation. To obtain rank one chaos in such a system, we
add to it a forcing term as shown below:

du
dt

= f(u) + εΦ(u)PT,p(t) (52)

where PT,p(t) is a periodic pulsetrain of period T , and of pulsewidth p. If
Φ(u) in Eq. (52) contains only first-order terms, then the forcing term in Eq.
(52) can be realized by modulating the system’s state variables by a periodic
pulsetrain. If we deal with electrical circuits, and assume that the system
state variables consist of capacitor voltages and inductor currents, we can use
externally controlled switches to achieve the desired modulation scheme. Such
a scheme is depicted in Fig. 19.

In Fig. 19, each switch is controlled by a periodic pulsetrain PT,p(t), and
the governing equations for the capacitor voltage and the inductor current are
given by

C
dvc

dt
=is(t)− vcG1PT,p(t)

L
diL
dt

=vs(t)− iLR2PT,p(t)
(53)
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Figure 19: A switch-controlled state variable modulation scheme.

Note from Eq. (53) that the magnitude of forcing, ε, can be adjusted by the
resistors R1, R2 of Fig. 19 which can be done without affecting other system
parameters. With the above scheme applied to a given autonomous circuit, we,
then, follow a step by step procedure to prove the existence of rank one chaos
in the resulting nonautonomous circuit using Theorem 4 of Sec. 4. The steps
are as follows:

(a) First, in the autonomous system, find a fixed point that is the center of
a generic Hopf bifurcation with a weakly stable periodic solution coming
out of the center.

(b) Then, compute k1 = −E+iF in a normal form of the central flow. τ =
∣∣F
E

∣∣
ought to be large for Theorem 4 of Sec. 4 to apply.

(c) Also compute φ(θ) following the well-defined process of Sec. 4.2 and check
that φ(θ) is a Morse function, i.e., a function of non-degenerate critical
points.

(d) Then, Theorem 4 of Sec. 4 guarantees the existence of rank one attractors
on a positive measure set(s) of T and/or ε.

Once the system parameters are chosen following the steps above, we can vary T
and/or ε of Eq. (52) to observe rank one chaos in simulations and experiments.

This step by step procedure is applied to the well-known Chua’s circuit with
smooth nonlinearity in Sec. 5.1 and the results of the numerical simulations
are discussed. In Sec. 5.2 we discuss various extensions of the switch-controlled
circuit design using the MLC circuit as an example. Finally in Sec. 5.3 we go
back to the general setting of Sec. 4.1 to present numerical evidence of rank
one attractors in periodically kicked piecewise linear Chua’s circuit.
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Figure 20: Switched-controlled Chua’s circuit.

5.1 Rank one chaos in a switch-controlled smooth
Chua’s circuit

In this subsection we apply the scheme of Fig. 19 to Chua’s circuit as shown
in Fig. 20. The switches Si are controlled by a periodic pulsetrain with p0 and
T0 being the pulsewidth and the period, respectively. Let p0 << 1 << T0.

5.1.1 Derivation of equations

The governing equations for this circuit are given by

C1
dv1

dt
=G(v2 − v1)− f(v1)−G1v1

C2
dv2

dt
=i + G(v1 − v2)−G2v2

L
di

dt
=− v2 −R3i

(54)

for nT0 ≤ t < nT0 + p0, and by

C1
dv1

dt
=G(v2 − v1)− f(v1)

C2
dv2

dt
=i + G(v1 − v2)

L
di

dt
=− v2

(55)

for nT0 + p0 ≤ t < (n + 1)T0. Here, f(·) represents the v − i characteristics of
the nonlinear resistor in Fig. 20, and is given by

f(v1) = a1v1 + a3v
3
1 (56)
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Putting Eqs. (54) and (55) together, we obtain

C1
dv1

dt
=G(v2 − v1)− f(v1)−G1v1

∞∑

n=0

Fn,p0,T0(t)

C2
dv2

dt
=i + G(v1 − v2)−G2v2

∞∑

n=0

Fn,p0,T0(t)

L
di

dt
=− v2 −R3i

∞∑

n=0

Fn,p0,T0(t)

(57)

where

Fn,T0,p0(t) =
{

1 nT0 ≤ t < nT0 + p0

0 elsewhere.
(58)

By setting

x =
v1

V0
, y =

v2

V0
, z =

i

I0
, t → t

ωn
,

we obtain the following dimensionless set of equations

dx

dt
=α[y − h(x)]− ε1xPp,T (t)

dy

dt
=γ[x− y + ρz]− ε2yPp,T (t)

dz

dt
=− βy − ε3zPp,T (t)

(59)

where

Pp,T =
1
p

∞∑
n=−∞

Fn,T,p, h(x) = b1x + b3x
3;

b1 = 1 +
a1

G
, b3 =

a3V
2
0

G
;

p = p0ωn, T = T0ωn;

α =
G

C1ωn
, γ =

G

C2ωn
= 1.0;

ρ =
R

Rn
, Rn =

V0

I0
, β =

Rn

Lωn
;

ε1 =
αRp

R1
, ε2 =

Rp

R2
, ε3 =

βR3p

Rn
.

(60)

Various single- or multi-switch control schemes are easily formulated by making
respective εi zero/non-zero. For the computations to follow in this subsection,
we set ε2 = ε3 = 0, ε1 = ε, i.e., we only consider the single-switch case. Other
switch-control schemes, such as, multi-switch, multi-pulse, and asynchronous
control, will be considered within the context of a different example in Sec. 5.2.
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5.1.2 Location of supercritical Hopf bifurcation

Let us rewrite Eq. (59) as

d

dt




x
y
z


 =



−αb1 α 0

1 −1 ρ
0 −β 0







x
y
z


 +



−b3αx3

0
0


 +



−εx
0
0


Pp,T (t). (61)

For the moment let us fix the values of α, b1, β and regard ρ as the parameter
of bifurcation. Considering the autonomous part of Eq. (61), it follows from a
straight-forward computation that, at

ρ0 = −α(b1 − 1)(αb1 + 1)
β

> 0, (62)

the eigenvalues of the linear part of Eq. (61) are ±iω and −(αb1 + 1) where

ω2 = −α2b1(b1 − 1) > 0. (63)

Consequently, for a Hopf bifurcation to occur,

b1 ∈ (0, 1). (64)

Assuming Eq. (64) holds true, a generic Hopf bifurcation occur at (x, y, z) =
(0, 0, 0) for the autonomous system obtained by setting ε = 0 in Eq. (61) for
ρ = ρ0. As ρ changes passing ρ0, the origin becomes unstable, but a weakly
stable periodic solution comes out of it. From this point on, all computations
are performed at ρ = ρ0.

To convert the linear part of Eq. (61) into the standard Jordan form we let



x
y
z


 = P




ξ
η
ζ


 =




1 ω
αb1

−α

1 0 1
0 −β

ω
β

αb1+1







ξ
η
ζ


 . (65)

In terms of the new variables ξ, η and ζ, Eq. (61) becomes

dξ

dt
= ωη − c0(ξ +

ω

αb1
η − αζ)3 + εΦξPp,T (t)

dη

dt
= −ωξ + c0

ω

1 + αb1
(ξ +

ω

αb1
η − αζ)3 + εΦηPp,T (t)

dζ

dt
= −(αb1 + 1)ζ + c0(ξ +

ω

αb1
η − αζ)3 + εΦζPp,T (t)

(66)

where
c0 =

αb3(αb1 + 1)
α2b1 + 2αb1 + 1

(67)

and

Φξ = − αb1 + 1
α2b1 + 2αb1 + 1

{
ξ +

ω

αb1
η − αζ

}

Φη =
ω

α2b1 + 2αb1 + 1

{
ξ +

ω

αb1
η − αζ

}

Φζ = − (αb1 + 1)
α2b1 + 2αb1 + 1

{
ξ +

ω

αb1
η − αζ

}
.

(68)
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5.1.3 Normal form and the twist constant

We now compute the central manifold and the normal form. Let

ζ = h2(ξ, η) + h3(ξ, η) + · · · (69)

be the central manifold at ξ = η = ζ = 0 where hi are the terms of degree i.
Because the starting nonlinear term in Eq. (66) is of degree three, we have

h2(ξ, η) = 0. (70)

So in computing the normal form we can practically regard the central manifold
as ζ = 0. If we define z = ξ + iη, then

ξ =
1
2
(z + z̄), η =

1
2i

(z − z̄). (71)

We set ζ = 0 in Eq. (66), to obtain

dz

dt
= −ωiz +

1
8
c0(−1 + i

ω

1 + αb1
)(z + z̄ − ω

αb1
(z − z̄)i)3. (72)

Note that k1 is the coefficient in front of z2z̄. Thus we have

k1 = c1[1 + 2αb1 − α− ω

αb1
(1 + 2αb1)i] (73)

where
c1 =

−3c0

8b1(1 + αb1)
. (74)

Hence the twist constant

τ :=
∣∣∣∣
Im(k1)
Re(k1)

∣∣∣∣ =
∣∣∣∣

ω(1 + 2αb1)
αb1(1 + 2αb1 − α)

∣∣∣∣ . (75)

For the stability of the limit cycle, we must have Re(k1) < 0 yielding

−3αb3

8b1(α2b1 + 2αb1 + 1)
[1 + 2αb1 − α] < 0. (76)

Then, for a supercritical Hopf limit cycle to occur, we must have

b1 >
α− 1
2α

, if b3 > 0

b1 <
α− 1
2α

, if b3 < 0.

(77)

Note that b1 must also satisfy b1 ∈ (0, 1) for Eq. (63) to hold.
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5.1.4 The function φ(θ) and the existence of rank one chaos

The function φ(θ) is computed by first setting ζ = 0 in Φξ and Φη to obtain

Φξ = − αb1 + 1
α2b1 + 2αb1 + 1

{
ξ +

ω

αb1
η

}

Φη =
ω

α2b1 + 2αb1 + 1

{
ξ − ω

αb1
η

}
.

(78)

We then set ξ = cos θ, η = sin θ and

φ(θ) = cos θΦξ + sin θΦη

= c2

{
cos2 θ +

ω

αb1(αb1 + 1)
cos θ sin θ +

α(b1 − 1)
αb1 + 1

sin2 θ

} (79)

where
c2 = − αb1 + 1

α2b1 + 2αb1 + 1
.

It is easy to verify from Eq. (79) that φ(θ) is a Morse function.

To apply Theorem 4 of Sec. 4, we first identify the values of parameters
around which we have a generic supercritical Hopf bifurcation with a large twist
constant. Let α, β, γ, ρ, b1, b3 be the parameters of the autonomous part of Eq.
(61), and p, ε, T be the parameters of the periodic forcing in Eq. (61). We fix
the values of all parameters except T as follows:

(i) Parameter values for Hopf bifurcation: b3 6= 0, β > 0, α > 1 are
arbitrarily fixed, and ρ is around ρ0 = −α(b1−1)(αb1+1)

β .

(ii) Strong shearing: choose b1 ∈ (0, 1) sufficiently close to b1 = α−1
2α either

from above or below depending on the sign of b3 (see Eq. (77) for stability
criterion).

(iii) Parameters of forcing: p, ε and T are such that p << ε << 1, T >>
|ρ− ρ0|−1.

Then we have

Proposition 5.1 Let the values of parameters (α, β, ρ, b1, b3) and p, ε be fixed
as in the above, and FT be the time-T map for Eq. (61). Then there exists a
positive measure set ∆ for T such that FT , T ∈ ∆ has an attractor Λ satisfying
(i) There exists an open neighborhood U of Λ, such that FT admits no peri-
odic sinks in U ; (ii) Λ admits an ergodic SRB measure, with respect to which
Lebesgue almost every point in U is generic.

This proposition is a direct corollary of Theorem 4 of Sec. 4. It establishes
rank one chaos as an observable phenomenon in both the parameter and the
phase spaces.
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Figure 21: A Hopf limit cycle from smooth Chua’s circuit (ε = 0).

5.1.5 Numerical simulations

In this subsection we present results of numerical simulations for the switch-
controlled smooth Chua’s circuit of Sec. 5.1. Proposition 5.1 serves not only as
a theoretical assurance, but also as a practical guidance in searching for rank one
chaos in numerical simulations. Simulation results presented in this subsection
are in perfect match with the theories of Secs. 3 and 4. Our simulations are
performed using the fourth-order Runge-Kutta routine starting at t0 = 0+.

In what follows, one orbit that is close to the attracting set of the time-T
map for Eq. (61) is plotted in each picture. For all pictures presented, we keep
α = 2, β = 2, b3 = −1, |ρ − ρ0| = 0.005 and experiment with ε, b1, and T .
With the choices of these parameter values we are close to a Hopf bifurcation.
The magnitude of the twist constant is adjusted through b1. Since the values
of α and β are already fixed, b1 also determines the value of ρ0.

For Fig. 21, we set ε = 0 and b1 = 0.242 for which ρ0 = 1.119872. The
value of T is irrelevant. What is depicted in Fig. 21 is the limit cycle emerging
from the center of a Hopf bifurcation for the autonomous part of Eq. (61).

A. Case of small L. We now set ε > 0 and consider the case of small L.
Recall that L = ε

∣∣∣ Im(k1)
Re(k1)

∣∣∣ and, for the values chosen above, i.e., α = 2, β =
2, b1 = 0.242, we have ∣∣∣∣

Im(k1)
Re(k1)

∣∣∣∣ = 108.84 (80)

The graph of
∣∣∣ Im(k1)

Re(k1)

∣∣∣ as a function of b1 is depicted in Fig. 22.
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Figure 22: Twist constant as a function of b1 (Eq. (75)).

Figure 23 is for the case where L is small. It is obtained by letting ε = 0.03,
T = 107 with α, b3, ρ, b1 being the same as those chosen for Fig. 21. In this
case L ≈ 3.26 is not strong enough to create expansion against the strength of
attraction so there is no rank one chaos. In Figs. 23-27, part (a) (top) is the
plot of an orbit of the time-T map on the x − y plane; part (b) (bottom left)
is the plot of the x-coordinate of this orbit versus discrete time k; and part (c)
(bottom right) the frequency spectrum of the x-coordinate for the orbit plotted.

B. Case of larger L. We now move to the parameter values for which strange
attractors are observable. For this we surely want ε larger. On the other hand,
to make the orbit of interest stay in a reasonably small neighborhood of the
center of the associated Hopf bifurcation, ε should be kept appropriately small.
To balance these considerations, we set ε = 0.2, which serves our purpose well.
For Fig. 24, we set ε = 0.2, T = 107, and adjust |L| by varying b1. The size of
|L| is determined now by the distance of b1 from 0.25 (refer again to Fig. 22).
For b1 = 0.246, Fig. 24 shows an observable strange attractor. In this case
L ≈ 43.4

For the remaining figures of this subsection (Figs. 25-27) we follow a differ-
ent venue by keeping α = 2, β = 2, b3 = −1, b1 = 0.246 (ρ0 = 1.119968) and
varying T to show the existences of periodic sinks and strange attractors with
regards to T as the parameter of the system. Fig. 25 is obtained for T = 106.5
where the visible part of the attractor is a periodic sink. Another strange at-
tractor is obtained for T = 106.8 as depicted in Fig. 26. Figure 27 is another
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Figure 23: Limit cycle not broken for (T = 107, ε = 0.03).

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.1

−0.05

0

0.05

0.1

0.15
(a)

x(kT)

y(
kT

)

0 2000 4000 6000 8000

−0.2

−0.1

0

0.1

0.2

(b)

k

x(
kT

)

0 1000 2000 3000 4000
0

20

40

60

80

100
(c)

k

X
(ω

)

Figure 24: A strange attractor from smooth Chua’s circuit for T = 107, ε = 0.2.

62



−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.1

−0.05

0

0.05

0.1

0.15
(a)

x(kT)

y(
kT

)

0 2000 4000 6000 8000

−0.2

−0.1

0

0.1

0.2

(b)

k

x(
kT

)

0 1000 2000 3000 4000
0

1

2

3

4
(c)

k

X
(ω

)

Figure 25: A periodic sink from smooth Chua’s circuit for T = 106.5, ε = 0.2.

example of a periodic sink for T = 107.5. Note that, in the plot of x(kT ) versus
k in Figs. 25 and 27, the number of horizontal lines represents the period of
the periodic sink plotted. Chaotic attractors occur more frequently as b1 ap-
proaches to 0.25. This is consistent with the predictions of the theory. Figures
25-27 also confirm our earlier claim that periodic sinks and chaotic attractors
are the two main dynamical scenarios competing in the space of parameters.

In summary, when the smooth Chua’s system undergoing a generic Hopf
bifurcation is subjected to periodic kicks, rank one chaos occurs if the value of
twist constant is sufficiently large. The results of our numerical simulations are
in perfect agreement with the theoretical predictions of Secs. 3 and 4. Periodic
sinks and rank one chaos are the two main competing dynamical scenarios,
and the dynamical behavior of the time-T maps are similar to that of Ta,b,L

numerically studied in Sec. 2.2.

5.2 Multiple switches and asynchronous kicks

In this subsection we extend the scheme of Fig. 19 to those of multi-pulse and
asynchronous switch control. The multi-pulse scheme refers to controlling the
switches by a periodic signal of multiple pulses. Asynchronous control refers
to the application of the control pulses to the switches at different times. This
approach is depicted in Fig. 28.

63



−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.1

−0.05

0

0.05

0.1

0.15
(a)

x(kT)

y(
kT

)

0 2000 4000 6000 8000

−0.2

−0.1

0

0.1

0.2

(b)

k

x(
kT

)

0 1000 2000 3000 4000
0

20

40

60

80

100
(c)

k

X
(ω

)

Figure 26: A strange attractor from smooth Chua’s circuit for T = 106.8, ε = 0.2.
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Figure 27: A periodic sink from smooth Chua’s circuit for T = 107.5, ε = 0.2.
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Figure 28: A switch control scheme for employing multiple kicks of different magni-
tude.
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Figure 29: Switch-controlled MLC circuit based on different magnitude, multi-pulse
control scheme.

The system we study in this subsection is the switch-controlled MLC (Murali-
Lakshmanan-Chua) circuit [Murali et al., 1994b] as shown in Fig. 29. Note that
Fig. 29 employs a three-pulse switch control scheme. By choosing different val-
ues for the resistors Rjk, each resulting pulse can have a different magnitude.
We denote the switches of Fig. 29 as S1k, S20 and S2k, k = 1, 2, 3. Let s1k, s2k,
k = 1, 2, 3 be the times at which S1k and S2k are to be turned on, respectively.
Note that S20 is closed whenever all S2k, k 6= 0 are open. We assume that
each periodic pulsetrain has the same period T0, and the pulsewidth p0. For
k = 1, 2, 3, S1k is closed for s1k + nT0 ≤ t < s1k + nT0 + p0 (ON time), and is
open elsewhere (OFF time) within a single period. Similarly, S2k is closed for
s2k + nT0 ≤ t < s2k + nT0 + p0 (ON time), and is open elsewhere (OFF time).
We also assume that at any given time there is at most one switch (discounting
the default switch S20, of course) that is turned on.

5.2.1 Derivation of equations

From Fig. 29, we have for k = 1, 2, 3,

C
dv

dt
= i− f(v)−G1kv

L
di

dt
= −v −Ri

(81)

if S1k is turned on, and

C
dv

dt
= i− f(v)

L
di

dt
= −v −Ri−R2ki

(82)
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if S2k is turned on. If all switches (except S20) are turned off, then

C
dv

dt
= i− f(v)

L
di

dt
= −v −Ri.

(83)

Putting these equations together and assuming a three-pulse control signal, we
obtain

C
dv

dt
= i− f(v)− v

3∑

k=1

∞∑

n=0

G1kFn,T0,p0,s1k
(t)

L
di

dt
= −v −Ri− i

3∑

k=1

∞∑

n=0

R2kFn,T0,p0,s2k
(t)

(84)

where

Fn,T0,p0,sjk
(t) =

{
1 sjk + nT0 ≤ t < sjk + nT0 + p0

0 elsewhere.
(85)

By setting

x =
v

V0
, y =

i

I0
, t → t

ωn
,

we obtain the following dimensionless set of equations

dx

dt
= α[y − h(x)]− x

3∑

k=1

ε1kP
(1)
T,p,d1k

dy

dt
= −β[x + γy]− y

3∑

k=1

ε2kP
(2)
T,p,d2k

(86)

where

P
(j)
T,p,djk

=
1
p

∞∑

n=0

Fn,T,p,djk
;

d1k = s1kωn, d2k = s2kωn;

p = p0ωn, T = T0ωn, Rn =
V0

I0
;

h(x) = b1x + b2x
2 + b3x

3, bm = amRnV m−1
0 ;

α =
1

RnCωn
, β =

Rn

Lωn
, γ =

R

Rn
;

ε1k =
αRnp

R1k
, ε2k =

βR2kp

Rn

(87)

for j = 1, 2, k, m = 1, 2, 3. The general form of the resulting periodic pulsetrain
in Eq. (86) for one period is depicted in Fig. 30.
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Figure 30: Periodic pulsetrain with multiple kicks of different magnitude.

5.2.2 Hopf bifurcations and normal form

Let us observe that the theory of Sec. 4.2 is established only for synchronized
forcing of a single kick in one period. So by directly quoting Theorem 4, the
existence of rank one chaos could only be rigorously established in the restricted
context of the scheme of a synchronized single kick. In principle, however,
the method of Sec. 4.2 should also apply to systems employing synchronized
multiple kicks.

To apply Theorem 4 to the synchronized single kick setting we set in Eq.
(86)

d1k = d2k = 0, k = 1, 2, 3
ε1k = ε2k = 0, k = 2, 3.

(88)

Equation (86) is now written as

d

dt

[
x
y

]
=

[ −αb1 α
−β −βγ

] [
x
y

]
+

[−b2αx2 − b3αx3

0

]
+ ε11

[ −x
− ε21

ε11
y

]
PT,p,0(t).

(89)
We fix the values of α, b1, β and regard γ as a parameter of bifurcation. It
follows from a straight forward computation that, at

γ0 = −αb1

β
> 0, (90)

the eigenvalues of the linear part of Eq. (89) are purely imaginary, and a super-
critical Hopf bifurcation occurs at (x, y) = (0, 0) for the autonomous system.
The eigenvalues of the linear part of Eq. (89) are σ ± iω with

σ = −1
2
(αb1 + βγ), ω2 = αβ − 1

4
(αb1 − βγ)2. (91)
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From Eq. (91), we have at γ = γ0,

σ = 0, ω2 = α(β − αb2
1) > 0 (92)

which implies that

b1 ∈ (−
√

β

α
, 0). (93)

To convert the linear part of Eq. (89) into the standard Jordan form we let
[
x
y

]
=

[
1 0

b1 + σ
α −ω/α

] [
ξ
η

]
. (94)

In terms of the new variables ξ and η, Eq. (89) becomes

dξ

dt
= σξ − ωη − α(b2ξ

2 + b3ξ
3)− ε11ξPT,p,0(t)

dη

dt
= ωξ + ση − α(σ + αb1)

ω
(b2ξ

2 + b3ξ
3) + ε11[

σ + b1α

ω
(
ε21

ε11
− 1)ξ − ε21

ε11
η]PT,p,0(t).

(95)

Next, we rewrite Eq. (95) in a complex variable z = ξ + iη and derive a normal
form for the autonomous part in z. From z = ξ + iη, z̄ = ξ − iη, we have

ξ =
1
2
(z + z̄), η =

1
2i

(z − z̄). (96)

We obtain from Eq. (95) that

dz

dt
= (σ + iω)z − α

8
[1 + i

σ + b1α

ω
][2b2(z + z̄)2 + b3(z + z̄)3]. (97)

According to the standard normal form theory, there exists a change of variables
near identity, which we write as

z = Z + c2Z
2 + c3Z

3 + · · · , (98)

that transfers Eq. (97) to

dZ

dt
= (σ + iω)Z + k1Z

2Z̄ +O(|Z|5) (99)

where the termO(|Z|n) represents the terms of magnitude < K|Z|n in a suffi-
ciently small neighborhood of Z = 0 for some constant K. Using the formula
given in [Guckenheimer & Holmes, 1997, p. 155], we have

k1 =
i

2ω
(hzzhzz̄ − 2|hzz̄|2 − 1

3
|hz̄z̄|2) +

1
2
hzzz̄ (100)
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where, in our case,

hzz = −αb2

2
[1 + i

σ + b1α

ω
]

hzz̄ = −αb2

2
[1 + i

σ + b1α

ω
]

hz̄z̄ = −αb2

2
[1 + i

σ + b1α

ω
]

hzzz̄ = −3αb3

4
[1 + i

σ + b1α

ω
]

(101)

are the normalized coefficients of the terms z2, zz̄, z̄z̄ and zzz̄ on the right hand
side of Eq. (97), respectively. By a straight forward computation, we obtain

Re(k1) = − α

8ω2
[2α2b2

2(b1 + σ/α) + 3b3ω
2]

Im(k1) = − α2

24ω3

[
(b1 + σ/α)(9b3ω

2 + 10α2b2
2(b1 + σ/α)) + 4b2

2ω
2
]
.

(102)

5.2.3 Twist constant and rank one chaos

A periodic solution emerges from Z = 0 when the value of γ passes γ0 in Eq.
(89) provided that Re(k1) 6= 0. This periodic solution is asymptotically stable
if Re(k1) < 0. Thus, from Eq. (102), we need

2α2b2
2(b1 + σ/α) + 3b3ω

2 > 0. (103)

Note that we have, at γ = γ0,

Re(k1) =
−α

8(β − αb2
1)

[2αb2
2b1 + 3b3(β − αb2

1)]

Im(k1) = − α2

24ω(β − αb2
1)

[10α2b2
2b

2
1 + (β − αb2

1)(4b2
2 + 9b1b3)],

(104)

and the stability condition of Eq. (103) becomes

2α2b2
2b1 + 3b3α(β − αb2

1) > 0. (105)

Let us also note that, at γ = γ0 we have
∣∣∣∣
Im(k1)
Re(k1)

∣∣∣∣ =
α

3ω

∣∣∣∣
[10α2b2

2b
2
1 + (β − αb2

1)(4b2
2 + 9b1b3)]

2αb2
2b1 + 3b3(β − αb2

1)

∣∣∣∣ . (106)

This ratio is the twist constant, the magnitude of which needs to be large for
chaotic attractors to exist.

To apply Theorem 4 we also need to compute φ(θ). Following the definition
of Sec. 4.2 we have in this case

Φξ = −ξ

Φη =
σ + b1α

ω
(
ε21

ε11
− 1)ξ − ε21

ε11
η.

(107)
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Let
ξ = cos θ, η = sin θ. (108)

We have

φ(θ) = cos θΦξ + sin θΦη

= − cos2 θ + (
σ + αb1

ω
)(

ε21

ε11
− 1) cos θ sin θ − ε21

ε11
sin2 θ.

(109)

φ(θ) is indeed a Morse function. We can now formulate a statement parallel to
Proposition 5.1, the details of which we leave to the reader.

5.2.4 Numerical simulations

We now present a few new pictures of rank one chaos in the multi-switch-
controlled MLC circuit. Again, our simulations are performed using the fourth-
order Runge-Kutta routine starting at t = 0. For each picture presented, one
discrete orbit starting near the attractor of the time-T map is plotted.

A. Initial Choice of Parameter Values. Computations performed earlier on the
parameters of Hopf bifurcation and on the twist constant are instrumental for
our choice of the parameter values below. Our main considerations are to be
reasonably close to a point of supercritical Hopf bifurcation, and to have a
relatively large twist constant.

(1) The parameters α = 10, β = 1, γ = 0.99, b1 = −0.1, b2 = 1.165, b3 = 1
(|γ − γ0| = 0.01) are fixed throughout. With these parameter values we
are close to a Hopf bifurcation (appears at γ0 = 1) with a relatively large
twist constant (≈ 2850). There is nothing more that is intentional in our
specification of these parameter values.

(2) In all cases, we let p, the length of time the switches are on, be fixed at
p = 0.5.

(3) With the parameter values specified as above, the things left for us to
vary at the moment are (i) the forcing period T , (ii) the magnitude of
the kicks in one period (εik), and (iii) the times at which the kicks are
initiated (dik).

(4) To further remove (3)(iii) from this list of uncertainties we set d11 = 0,
d12 = 50, d13 = 85, d21 = 25, d22 = 110, d23 = 130 throughout. These
specific choices for dik are rather arbitrary but the unevenness in the
spacing of consecutive pulses is intentional.

The weakly stable limit cycle, obtained by setting all εik = 0, is depicted in
Fig. 31. This limit cycle is then kicked periodically to create various pictures
of chaos. For the figures of this subsection, the following convention is adopted:
For Figs. 32-40, part (a) (top) is the plot of an orbit of the time-T map on
the x − y plane; part (b) (middle left) is the plot of the x-coordinate of this
orbit versus discrete time k; part (c) (middle right) is the frequency spectrum
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Figure 31: A Hopf limit cycle from MLC circuit.

of the x-coordinate for the orbit plotted; and part (d) (bottom) is the two-
dimensional density function z(x, y), which represents the SRB measure of the
corresponding attractor. For Fig. 41, part (a) (top left) is the plot of an
orbit of the time-T map on the x − y plane; part (b) (top right) shows the
locally magnified version of the indicated area in part (a); part (c) (middle
left) is the plot of the x-coordinate of this orbit versus discrete time k; part
(d) (middle right) is the frequency spectrum of the x-coordinate for the orbit
plotted; and part (e) (bottom) is the two-dimensional density function z(x, y),
which represents the SRB measure of the corresponding attractor.

B. Observable Chaos: Multiple Kicks of the Same Magnitude. For the simula-
tions we now present, εik is either 0.33 or 0. In this case the circuit is controlled
by the simpler scheme of Fig. 19. We are free to take away any one of the six
potential kicks by setting its corresponding magnitude to 0. Figures 32-37 are
a set of pictures of chaotic attractors obtained by numerical simulations. These
pictures are presented in the ascending order in the number of kicks involved
(from one to six).

The geometric complexity of the chaotic attractors appears to increase as
more kicks are employed within one period. Also, observe that, for the simula-
tions presented above, the length of the last relaxation interval, i.e., the time
from the last kick in one forcing period to the end of the same forcing period, is
not very long. Consequently, the rank one character present in these pictures
is not yet dominating.
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Figure 32: A strange attractor from MLC circuit for T = 60, and a single kick
ε11 = 0.33.
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Figure 33: A strange attractor from MLC circuit for T = 85, and two kicks ε11 =
ε12 = 0.33.
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Figure 34: A strange attractor from MLC circuit for T = 116, and three kicks ε11 =
ε12 = ε13 = 0.33.
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Figure 35: A strange attractor from MLC circuit for T = 146.5, and four kicks
ε11 = ε12 = ε13 = 0.33, ε21 = 0.33.
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Figure 36: A strange attractor from MLC circuit for T = 169.5, and five kicks
ε11 = ε12 = ε13 = 0.33, ε21 = ε22 = 0.33.
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Figure 37: A strange attractor from MLC circuit for T = 199, and six kicks εij = 0.33,
i = 1, 2, j = 1, 2, 3.
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C. Observable Chaos: Multiple Kicks of Varying Magnitudes. We now present
pictures of chaotic attractors allowing multiple kicks of different magnitude.
All parameters except εik and T are the same as before. We set ε1k = 0.22,
ε2k = 0.12, k = 1, 2, 3 and T = 160 for Fig. 38. Here the circuit is controlled by
two switches according to the scheme of Fig. 28, each admitting three pulses in
one forcing period. To adjust ε1k and ε2k we adjust the values of R1 and R2 in
Fig. 28 as given by Eq. (87). For Fig. 39, we use ε11 = ε13 = 0.12, ε12 = 0.52,
ε2k = 0.22, k = 1, 2, 3 and T = 169. And for Fig. 40, we use ε11 = 0.32,
ε12 = 0.52, ε13 = 0.12, ε21 = 0.22, ε22 = 0.32, ε23 = 0.42 and T = 218. The
differences in these two pictures are caused by varying magnitudes of the control
pulses. These pictures do indicate that utilizing kicks of varying magnitudes
does contribute to the generation of chaotic attractors of interesting geometric
structure.

Note that in favor of getting chaotic pictures of complicated structure, so
far the forcing periods are intentionally set short to minimize the compressing
effect in the radial direction. By making T larger, rank one character for these
chaotic attractors can be made more dominating. Figure 41 is an example of
a truly rank one strange attractor. This is obtained by setting εij = 0.32,
i = 1, 2 j = 1, 2, 3 and T = 468. With a very long relaxation period (T = 468)
the attractor of Fig. 41(a) is pressed down in the radial direction, getting the
look of a simple curve. However, this is a picture of a chaotic attractor, the
complexity of which is illustrated through Fig. 41(b),(c), (d) and (e).

It is important to note that the two-dimensional density function z(x, y) in
each of Figs. 32-41 reflects the SRB measure for its respective attractor shown
in part (a) of each figure.

5.3 Non-Hopf periodic solutions

Around supercritical Hopf bifurcations, the combined effect of forcing, shearing
and attraction is represented by L = ε

∣∣∣ Im(k1)
Re(k1)

∣∣∣, a number that can be analyti-
cally computed. For the more general setting of Sec. 4.1, analytic computation
of similar quantities does not appear feasible. However, to be restricted to the
setting of a Hopf bifurcation is to impose serious restrictions in practical im-
plementations. In order to have a generic supercritical Hopf bifurcation, local
nonlinearity is a necessity. For instance, in Sec. 5.1, a cubic nonlinearity for
the nonlinear resistor characteristics is used in the Chua’s circuit, replacing the
original piecewise linear design that is much easier to implement in practice.
Moreover, being restricted to a small neighborhood of some tiny Hopf limit cy-
cle might very well be a serious drawback in terms of practical implementations
and detections of rank one attractors.

In this subsection we explore the possibility of using the original piecewise
linear Chua’s circuit of Fig. 20 to generate rank one attractors by following
mainly the work in [Wang & Oksasoglu, 2007]. For simplicity, we only use
one switch. By the piecewise linear character, generic Hopf bifurcations do not
exist.
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Figure 38: A strange attractor from MLC circuit for T = 160, ε1j = 0.22, ε2j = 0.12,
j = 1, 2, 3.
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Figure 39: Strange attractor for T = 169, ε11 = ε13 = 0.12, ε12 = 0.52, ε2j = 0.22,
j = 1, 2, 3.
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Figure 40: A strange attractor from MLC circuit for T = 218, ε11 = 0.32, ε12 = 0.52,
ε13 = 0.12, ε21 = 0.22, ε22 = 0.32, ε23 = 0.42.
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Figure 41: A rank one attractor from MLC circuit for T = 468, εij = 0.32, i =
1, 2, j = 1, 2, 3.
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5.3.1 Derivation of equations

The set of nondimensional equations for the original Chua’s system is given by

dx

dt
=α[y − h(x)]

dy

dt
=γ[x− y + ηz]

dz

dt
=− βy

(110)

where h(x) = m1x+0.5(m0−m1)(|x+B|−|x−B|). Equation (110) is obtained
from the original piecewise linear Chua’s circuit (Fig. 20 when all the switches
are off) with f(v1) = Gbv1 + 0.5(Ga − Gb)(|v1 + Vb| − |v1 − Vb|), through the
following change of variables:

x = v1/V0 y = v2/V0 z = i/I0 t → t/ωn (111)

where V0, I0, and ωn are the arbitrary voltage, current, and frequency scaling
constants, respectively. In this case, in terms of the physical system parameters,
the nondimensional system parameters in Eq. (110) are given by

α =
G

C1ωn
, γ =

G

C2ωn
, η =

RI0

V0
, β =

V0

LωnI0

m0 =
Ga

G
, m1 = 1 +

Gb

G
, B =

Vb

V0
.

(112)

Again, each switch in Fig. 20 is controlled by an external periodic pulsetrain
with a pulsewidth of p0 and a period of T0. When all the switches in Fig. 20
are kept open or at their default positions, we have the original Chua’s circuit.
The nondimensional set of equations for the circuit of Fig. 20 can be given by

dx

dt
=α[y − h(x)]− εxPT,p(t)

dy

dt
=γ[x− y + ηz]

dz

dt
=− βy.

(113)

The relationship between the new parameters of the nondimensional system of
Eq. (113) and those of the physical circuit of Fig. 20 can be given by

p = p0ωn, T = T0ωn

PT,p =
1
p

∞∑

n=0

[u(t− nT )− u(t− nT − p)]

ε =
αRp

R1

(114)

where PT,p(t) is a periodic pulsetrain with a pulsewidth of p and a period of T ,
and ε represent the magnitude of the periodic pulses.
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Figure 42: A non-Hopf limit cycle from PWL Chua’s circuit (ε = 0).

5.3.2 Numerical simulations

We now present some results from our numerical simulations. The autonomous
part of Eq. (113), obtained by setting ε = 0, has a limit cycle, as shown in Fig.
42, for

(α, γ, β, η, m0,m1, B) = (2.0, 1.0, 2.0, 1.12,−0.75,−0.225, 1.0). (115)

This limit cycle is the one that is going to be forced to obtain rank one chaos.
We let

α = 2, γ = 1, η = 1.12, m0 = −0.75, m1 = 0.225, B = 1, p = 0.5 (116)

be fixed throughout and only allow T and ε to vary. Figures 43-45 are examples
of rank one chaos obtained for T = 247.5, ε = 0.5; T = 75, ε = 0.5 and
T = 39, ε = 0.96, respectively. In terms of what each of the plots of Figs.
43-45 represents, the same convention as that of Sec. 5.1 is employed. Once
again, due to the large period of forcing (T = 247.5) the attractor in Fig. 43(a)
appears to be a simple closed curve, but it is, in fact, a chaotic attractor of a
very complicated geometric and dynamical structure, see Fig. 43(b) and (c).
To reveal more of the structure in the radial direction, we reduce T to T = 75
and T = 39 for Figs. 44 and 45, respectively.

85



−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a)

x(kT)

y(
kT

)

0.95 1 1.05 1.1 1.15

0.4

0.45

0.5

0.55

0.6

(b)

x(kT)

y(
kT

)

0 2000 4000 6000 8000

−1

−0.5

0

0.5

1

(c)

k

x(
kT

)

0 1000 2000 3000 4000
0

50

100

150

200

250

300
(d)

k

X
(ω

)

Figure 43: A strange attractor from PWL Chua’s circuit for T = 247.5, ε = 0.5.
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Figure 44: A strange attractor from PWL Chua’s circuit for T = 75, ε = 0.5.
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Figure 45: A strange attractor from PWL Chua’s circuit for T = 39, ε = 0.96.

Remarks: (1) For this specific example, there is no theoretical assurance that
rank one chaos would occur. However, we know that they are more likely to
occur if the periodic solution is weakly stable, and the shearing (see Sec. 4)
around this solution is relatively strong. In the case of a supercritical Hopf
bifurcation, the stability of the Hopf limit cycle can be controlled as desired
and the strength of shearing can be analytically computed. For a stable pe-
riodic solution arbitrarily picked, however, finding weakly stable limit cycles
with strong shearing through analytical computations is usually not a realistic
option. We would have to rely more on trial and error in simulations.

(2) The phase space is divided into three regions (for each segment of the
piecewise linear characteristic) where the original circuit is defined by three
different linear equations. When restricted completely to one of the linear re-
gions, shearing is obviously non-existent so the ultimate reason for the creation
of rank one chaos is the jumps of a solution from one region of linearity to
another. The lack of smoothness seen in Fig. 45 is a reflection of these sudden
jumps.

(3) Nevertheless, the chaos seen in our simulations is the type of chaos
the theory predicts. Once again, the fact that these chaotic attractors are
observable is due to the existence of homoclinic tangles admitting no periodic
sinks.
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6 Concluding Remarks

In this tutorial we systematically presented, at an introductory level, a new
chaos theory for non-uniformly hyperbolic systems developed by the pure math-
ematics side of the dynamical systems community in the recent years. This new
dynamics theory, namely, the theory of rank one chaos, establishes a compre-
hensive understanding of the complicated geometric and dynamical structures
for a class of non-uniformly hyperbolic tangles. Inside of these homoclinic tan-
gles, periodic sinks representing stable equilibrium, and SRB measures repre-
senting certain statistical law for chaos are the two main dynamical phenomena
that are observable in both physical and parameter spaces.

This tutorial also addresses the applications of this new chaos theory. For
certain systems of differential equations, the existence of the indicated class
of homoclinic tangles can be verified through a well-defined computational
process. In particular, switched-controlled Chua’s circuit [Chua, 1994; Madan,
1993] and MLC circuit [Murali et al., 1994a,b; Thamilmaran et al., 2000] were
used as examples to demonstrate how to apply the theory to concrete systems.
Numerical simulations were used throughout to motivate, and to confirm the
predications of the theory.

We started in Sec. 2 with a brief discussion of the well-known theories of
homoclinic tangles and Smale’s horseshoes. We then used a three-parameter
family of 2D maps as an example to demonstrate the existing gap between the
theories discussed and the results of simple numerical simulations. The con-
clusions from the theory of Newhouse sinks [Newhouse, 1974; Palis & Takens,
1993] and the theory of rank one chaos were then introduced to explain the
simulation results. We concluded at the end of this section that, for the three-
parameter family of 2D maps studied, periodic sinks and SRB measures are the
two primary observable phenomena competing in the parameter space.

Section 3 includes a systematic introduction of theory of rank one maps
[Wang & Young, 2001, 2006a,b]. We started with the rigorous definition of ad-
missible 1D maps, and gradually moved to the definitions of admissible families
of rank one maps in higher dimensions. Then the conclusions of the new chaos
theory on rank one maps were stated in precise mathematical terms, and the
significance and implications of these conclusions were discussed in some detail.

With the mathematical setting of Sec. 3 in mind, we moved in Sec. 4
to introduce a general frame work for applications. In Sec. 4.1, we showed,
through detailed computations, that periodically kicked systems around weakly
stable limit cycles induce time-T maps that fit naturally into the settings of
Sec. 3. In Sec. 4.2, we presented the results from the studies of Wang & Young
[2002a,b] on rank one chaos in periodically kicked systems of Hopf bifurcations.

In Sec. 5 we presented in some detail the studies of Wang and Oksasoglu
on rank one attractors in switch-controlled circuits and systems [Oksasoglu &
Wang, 2006; Oksasoglu et al., 2006; Wang & Oksasoglu, 2005, 2007]. Based on
the theory of Sec. 4.2, a step by step algorithm was introduced to verify the
existence of rank one attractors in switch-controlled circuits. Switch-controlled
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Chua’s and MLC circuits were studied carefully following the algorithm out-
lined, and many of the results of numerical simulations were presented to con-
firm the theoretical findings, and to show the usefulness of the theory.

Overall, we have tried to introduce a long and complicated new chaos the-
ory by using a balanced combination of examples, numerical simulations and
theoretical discussions. We hoped to introduce, with this tutorial, the theory
of rank one maps to the circuit and systems community. Although the appli-
cations presented in Sec. 5 are from the field of Electrical Engineering, the
theory is also potentially applicable to other systems whose behavior can be
characterized by Eq. (51). We also aimed at creating a standard reference for
the theory that is hopefully accessible to a more application-oriented audience.
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Math. 133, 73–169.

Benedicks, M. & Young, L.-S. [1993] “Sinai-Bowen-Ruelle measure for certain
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