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Chapter 1

Introduction

1.1 Quantum mechanics

The invention of quantum mechanics was the greatest revolution of modern
science. It explained the properties of everyday matter, from density and
heat capacity to conductivity and color. For the first time it made sense of
chemistry.

On the other hand, the explanations given by quantum mechanics are
based on the mathematics of complex functions of many variables. The
physical interpretation of these functions is mysterious, to say the least. In
fact, the interpretation is so radical that it has led many scientists to deny
the existence of an objective world. (See Nelson’s lectures [N1] for critical
comments.)

Thus quantum mechanics is both practical and mysterious, the ultimate
vindication of a mathematical picture of the world (if it is true). This book
does not resolve the mysteries, but it will give a systematic account of the
mathematics. This is in itself a fascinating story; it turns out that the
possible types of motion of the quantum mechanical waves correspond to
various properties of spectra of operators in Hilbert space.

The book is intended as a self-contained and rigorous introduction to
non-relativistic quantum mechanics and the mathematics behind it. This
is the theory underlying our understanding of matter on the atomic and
molecular scale, and some of the physics will be presented, but the empha-
sis is on the mathematics: linear operator theory and partial differential
equations.

The reader will need a reference on the physics of quantum mechanics.
There are many texts; Messiah [Me] is authoritative. There are also a
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8 CHAPTER 1. INTRODUCTION

number of books on the mathematics of quantum mechanics. The lectures
of Amrein [A] are an elegant introduction. The book of Amrein, Jauch, and
Sinha [AJS] is systematic and rigorous. The multiple volumes of Reed and
Simon [RS1, RS2, RS3, RS4] contain a wealth of information. The text of
Thirring [T] contains useful insights.

The reader should also consult texts on Hilbert space; Weidmann [W]
has a good balance of theory and application. There are also several useful
references on linear operator theory. The lectures of Nelson [N2] contain
the basics. The book of Riesz and Nagy [RN] is a classic. The book of Kato
[K] is a systematic account of perturbation theory.

1.2 The quantum scale

1.2.1 Planck’s constant

Non-relativistic quantum mechanics is a physical theory. We begin with a
deviation from mathematical tradition, actually writing numerical values,
in order to show where this theory should play a role. Of course the an-
swer is atomic and molecular and solid-state physics, but it is worth being
reminded that this is also the study of quite ordinary matter in everyday
experience. For the present we give no derivations or explanations, just
numbers. Precision is not important; factors of 2 are chosen for later con-
venience.

Recall that physical quantities are usually expressed in consistent units
of length L, mass M , and time T . The units of force are ML/T 2 and the
units of energy are ML2/T 2. For example in the meter, kilogram, second
system the unit of force is the newton and the unit of energy is the joule.
In the centimeter, gram, second system the unit of force is the dyne (10−5

newton) and the unit of energy is the erg (10−7 joule).
The characteristic sign of quantum mechanics is the appearance of

Planck’s constant
h̄ = 1.05× 10−27erg sec. (1.1)

This is actually the rationalized Planck’s constant, that is, Planck’s con-
stant h divided by 2π. In general, we shall use the units that go with
measuring radians instead of rotations. Thus we multiply frequencies by
2π to get angular frequencies, and similarly we divide wavelengths by 2π
to get angular wavelengths.

The dimensions of Planck’s constant are ML2/T . This may be inter-
preted in various ways. Perhaps the simplest is M · L2/T , that is, mass
times diffusion constant. Another is ML2/T 2 · T , energy times time. This
allows conversions between energy and frequency. Still another is ML/T ·L,



1.2. THE QUANTUM SCALE 9

momentum times length, which allows conversion between momentum and
wave number.

It is interesting to see how something as small as Planck’s constant
determines properties of the world on the human scale. The article by
Press and Lightman [14] contains a good account. Here are a few of the
ideas.

1.2.2 Diffusion

In ordinary free motion distance is proportional to time, so the relevant
measure is velocity with units L/T . In diffusive motion, the displacement
is random, and on the average the displacement is only proportional to the
square root of the time. Thus natural units for measuring the amount of
diffusion are L2/T . There are analogies between diffusion and quantum
mechanics, so it is not surprising that a diffusion constant plays a role in
quantum mechanics.

In quantum mechanics a particle of mass m has diffusion constant

D =
h̄

2m
. (1.2)

Thus only masses on the molecular scale or smaller have a noticeable diffu-
sion constant. On the atomic scale the typical mass is that of an electron.
Then

m = 9.1× 10−28gm, (1.3)

and so

2D =
h̄

m
= 1.16cm2/sec. (1.4)

This is actually a reasonable number on a human scale.

1.2.3 Speed

We can also use Planck’s constant to associate a speed v with a particle of
charge e by

v =
Ke2

h̄
. (1.5)

Here K is the constant that occurs in the Coulomb electrostatic force law
Ke2/r2. In one system of units it is written as 1/(4πε0); in another it is
just 1. In any case, the units of Ke2 are ML3/T 2, so dividing by Planck’s
constant gives units L/T of velocity.

For an electron Ke2 = 2.3× 10−19erg cm. This gives a velocity

v = 2.19× 108cm/sec. (1.6)



10 CHAPTER 1. INTRODUCTION

The speed of light plays no role in the properties of bulk matter. The
reason is that the speed of light is

c = 3× 1010cm/sec, (1.7)

and so the ratio of speeds is the fine structure constant

α =
v

c
=
e2

h̄c
=

1

137
. (1.8)

Thus the speed v = αc, even for something as small as an electron, is
non-relativistic.

1.2.4 Length

The ratio of these two numbers gives the Bohr radius

a =
2D

v
=

h̄2

mKe2
= 0.53× 10−8cm. (1.9)

Thus the Bohr diameter 2a is about 1.06 × 10−8 cm. A cube with this
diameter has a volume of 1.2 × 10−24 cm. Since the mass of a proton is
about 1.7 × 10−24 gm, the density of matter consisting of one proton for
every such cube is 1.4 gm/ cm3. Planck’s constant is an essential ingredient
in establishing the density of ordinary matter.

1.2.5 Energy

The natural unit of energy on the atomic scale is

R =
1

2
mv2 =

Ke2

2a
=

1

2

mK2e4

h̄2 =
1

2
α2mc2 = 2.18× 10−11erg. (1.10)

Notice that while the energy unit may be written in terms of the fine
structure constant and the speed of light, the factors of c cancel, and this
is a completely non-relativistic expression.

1.2.6 Compressibility

The typical bulk modulus (compressibility) of solid matter is of the order
of its internal binding energy density, which gives a pressure

R

(2a)2
= 1.8× 1013dyne/cm2. (1.11)
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This is another number from everyday experience, at least from the expe-
rience of builders who expect structures to bear heavy compressive loads.
(The typical shear modulus or tensile strength of solid matter is determined
by molecular energies, and so is considerably smaller.)

1.2.7 Frequency

Planck’s constant may also be used to associate an angular frequency ω
with an energy, such as 2R. In this case the result is

ω =
2R

h̄
= 4.15× 1016/sec, (1.12)

the frequency of ultraviolet light.

1.2.8 Other length scales

There are other length scales that arise from comparison with the speed of
light.

The diffusion constant may be compared to the speed of light. This
gives the angular Compton wavelength

6 λ =
2D

c
=

h̄

mc
= αa = 3.86× 10−11cm. (1.13)

Notice that this is considerably smaller than the Bohr radius.
On the other hand, there is an angular wavelength associated with the

atomic units of angular frequency given by

c

ω
=

ch̄

2R
=
a

α
= 7.24× 10−7cm. (1.14)

This is about 1/α = 137 times the Bohr radius, so is a much larger distance.
Light from atomic processes is on a much larger scale than atomic dimen-
sions. This light is in the ultraviolet. Visible light generated by molecular
processes is of even longer wavelength. In a sense, atoms are inherently
invisible.

1.3 The Schrödinger equation

1.3.1 The equation

The idea that Schrödinger brought to quantum mechanics was to describe
matter by a conservative linear wave equation. There is no way to derive
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his equation; it is a physical law. However we shall see that the necessary
presence of Planck’s constant at least partially suggests the form of the
equation.

In the following we shall consider waves moving in ν dimensional space.
Of course in nature ν = 3, but it is very useful to keep the extra generality;
it helps put various formulas in a larger context.

The ingredients for a description of quantum motion are a mass param-
eter m > 0 and a real potential energy function V (x) defined on Rν . What
is desired is a wave equation involving space and time variables. The in-
gredients in a wave equation are the time derivative, which has dimensions
1/T of frequency, and the space derivatives (gradient) ∇x, which have di-
mensions 1/L. The most natural second space derivative is ∇2

x = ∇x · ∇x.
This is the divergence of the gradient, that is, the Laplace operator. Its
dimensions are 1/L2. The equation relates the action of these operators.

Here Planck’s constant comes into play. With a mass m comes a diffu-
sion constant D = h̄/(2m). The corresponding differential operator −D∇2

x

has the dimensions of frequency. Similarly, the potential energy function
V (x) has the dimensions of energy, so V (x)/h̄ also has the dimensions of
frequency.

This suggests a wave equation relating the time derivative to the oper-
ator −D∇2

x + V (x). The obvious equation is the diffusion equation

∂u

∂t
= D∇2

xu−
1

h̄
V (x)u. (1.15)

It is natural to think of the quantity u as being some sort of density or
concentration. This equation describes how the density changes with time.

For the diffusion equation we may define the flux F = −D∇xu. This
gradient vector field represents the flow from regions of high concentration
to low concentration.

If we apply Gauss’s theorem to a region Ω we obtain

d

dt

∫
Ω

u dνx = −
∫
∂Ω

F · dS− 1

h̄

∫
Ω

V (x)u dνx (1.16)

This says that if there is a high concentration in the region, then the amount
in the region decreases, due to the net flow out of the region represented by
the first term, and also possibly due to the rate of destruction in the region
represented by the second term.

The effect of the diffusion equation is to produce solutions that are
increasingly uniform. The predominate effect on whatever initial structure
is present is of damping or decay. This is a dissipative wave equation. Since
structure is lost, it is only feasible to solve this equation forward in time.
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Schrödinger was interested in an equation that described reversible me-
chanics rather than irreversible dissipation. He wanted oscillations instead
of damping. He guessed the equation to be

i
∂ψ

∂t
= −D∇2

xψ +
1

h̄
V (x)ψ. (1.17)

The inspiration was the factor of i. This made it into a conservative wave
equation. The effect of changing the direction of time is simply the effect of
complex conjugation, so this equation is equally good forward and backward
in time.

1.3.2 Density and current

It is not obvious how to interpret the solution of the Schrödinger equation.
The values of the wave function are complex. However the density

ρ = ψ∗ψ = |ψ|2 (1.18)

is real and in fact positive. In the standard interpretation of quantum
mechanics ρ is interpreted as a position probability density. However there
is clearly other information in the wave function.

This information is contained in the current

J = 2D=(ψ∗∇xψ) = −iD(ψ∗∇xψ −∇xψ
∗ψ). (1.19)

This has the dimensions of a probability density times a velocity.
There is an important relation between the density and the current. It

is the conservation law
∂ρ

∂t
= −∇x · J. (1.20)

This is proved by computing

∂ψ∗ψ

∂t
= iD(ψ∗∇2

xψ −∇2
xψ
∗ψ) = iD∇x · (ψ∗∇xψ −∇xψ

∗ψ). (1.21)

If we apply the divergence theorem we obtain

d

dt

∫
Ω

ρ dνx = −
∫
∂Ω

J · dS (1.22)

This says that the increase in probability for the region Ω is the flow into
the region through the boundary ∂Ω. This is a local conservation law.

If we take the limit as Ω approaches the whole space and assume that
the boundary terms vanish, then we obtain

d

dt

∫
ρ dνx = 0. (1.23)

This is a global conservation law for the total probability.
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1.3.3 Osmotic and current velocity

Define the current velocity by

vρ = J (1.24)

and the osmotic velocity by

uρ = D∇xρ. (1.25)

It is easy to check that

−2iD∇xψ/ψ = v − iu. (1.26)

Therefore these velocity variables determine ψ (up to a multiplicative con-
stant).

Note that v changes sign under time reversal, while u keeps the same
sign. This suggests that v resembles a fluid velocity, while u is more like a
drift in a diffusion process.

Now introduce the complex velocity w = v − iu. After some computa-
tion the Schrödinger equation may be written

−2iD
1

ψ

∂ψ

∂t
+

1

2
w2 − iD∇x ·w = − 1

m
V (x). (1.27)

This gives (
∂

∂t
+ w · ∇x − iD∇2

x

)
w = − 1

m
∇xV (x). (1.28)

The imaginary part gives a variant of the current conservation equation(
∂

∂t
+ v · ∇x

)
u +

(
u · ∇x +D∇2

x

)
v = 0. (1.29)

The real part gives the dynamical part of the Schrödinger equation

m

((
∂

∂t
+ v · ∇x

)
v +

(
u · ∇x +D∇2

x

)
u

)
= − 1

m
∇xV (x). (1.30)

This is of the form mass times acceleration equals force. The first term in
the acceleration is the usual acceleration term from fluid dynamics. The
differential operator is the time derivative along the trajectory of the fluid
particle moving with velocity v. The second term is less familiar. The
derivative is a stochastic derivative of the sort that arises when there is
a drift u along with diffusion. This term is the contribution of quantum
mechanics!

This form of writing the equation gives an indication of what to expect
in the classical limit h̄→ 0. Assume that in this limit ρ and v have limiting
values. Then u→ 0 in this limit. So the limiting equation is just Newton’s
law of motion for a fluid particle moving in a gradient force field.
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1.3.4 Momentum

Define the momentum operator by

P = −ih̄∇x. (1.31)

Then
ψ∗Pψ = m(v − iu)ρ. (1.32)

When we integrate this, we obtain∫
ψ∗Pψ dνx =

∫
mvρ dνx =

∫
mJ dνx. (1.33)

In the conventional interpretation of quantum mechanics this is the expected
momentum.

Such quantities are naturally expressed in terms of inner products and
norms. We define the norm ‖ψ‖ by

‖ψ‖2 =

∫
|ψ|2 dνx. (1.34)

(When taking the norm of a vector quantity we take the norm squared of
the vector quantity before doing the integral.) For ψ and φ with finite norm
we define the inner product by

〈ψ, φ〉 =

∫
ψ∗φdνx. (1.35)

Thus for instance in the inner product notation the expression for the ex-
pected momentum is 〈ψ,Pψ〉.

Problems

1. Why is
∫

uρ dνx = 0?

2. Show that (d/dt)
∫

xρ dνx =
∫

vρ dνx.

3. Show that m(d/dt)
∫

vρ dνx = −
∫
∇XV (x)ρ dνx.

1.3.5 Energy

In addition to the conservation law for probability there is a conservation
law for energy. The Schrödinger equation is usually written in energy units
as

ih̄
∂ψ

∂t
= − h̄2

2m
∇2

xψ + V (x)ψ. (1.36)
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This is also written as the operator equation

ih̄
∂ψ

∂t
= Hψ (1.37)

where

H = − h̄2

2m
∇2

x + V (x) =
1

2m
P2 + V (x). (1.38)

By applying the divergence theorem (in conditions in which the bound-
ary terms are zero) we obtain

〈ψ,Hψ〉 =
1

2m
‖Pψ‖2 + 〈ψ, V (x)ψ〉 = 〈Hψ,ψ〉. (1.39)

This is the sum of two terms, corresponding to a kinetic energy and a
potential energy.

We may write the conservation law for the total probability as

ih̄
d‖ψ‖2

dt
= 〈ψ,Hψ〉 − 〈Hψ,ψ〉 = 0. (1.40)

This shows that the normalization ‖ψ‖2 = 1 can be maintained for all time.
The conservation law for the total energy is

ih̄
d〈ψ,Hψ〉

dt
= 〈ψ,H2ψ〉 − 〈Hψ,Hψ〉 = 0. (1.41)

Thus 〈ψ,Hψ〉 is also constant in time.
It is interesting to note that the expression for the energy density may

be written
1

2m
|Pψ|2 = (

1

2
mv2 +

1

2
mu2)ρ. (1.42)

In the conventional interpretation of quantum mechanics the quantity

1

2m
‖Pψ‖2 =

∫
1

2m
|Pψ|2 dνx =

∫
1

2
m(v2 + u2)ρ dνx (1.43)

is the expected kinetic energy. The quantity

〈ψ, V (x)ψ〉 =

∫
V (x)ρ dνx (1.44)

is the expected potential energy. Their sum is of course the expected total
energy. It is this quantity that is conserved.
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1.4 The uncertainty principle

The expectation of the jth component of position is

µXj = 〈ψ,Xjψ〉 =

∫
xjρ d

νx. (1.45)

Its standard deviation is

σXj = ‖(Xj − µXj )2‖ =

(∫
(xj − µXj )2ρ dνx

) 1
2

. (1.46)

Similarly, the expectation of the jth component of momentum is

µPj = 〈ψ, Pjψ〉 =

∫
mvjρ d

νx. (1.47)

The standard deviation of the jth component of momentum is

σPj = ‖(Pj − µPj )2ψ‖ =

(∫
((mvj − µPj )2 + (muj)

2)ρ dνx

) 1
2

. (1.48)

The famous Heisenberg uncertainty principle relates the second moments
of momentum and position.

Proposition 1 For every ψ we have

σXjσPj ≥ h̄/2. (1.49)

Proof: Integrate by parts to see that

h̄/2

∫
ρ dνx = −h̄/2

∫
(xj − µXj )

∂ρ

∂xj
dνx = −

∫
(xj − µXj )muj dνx.

(1.50)
Apply the Schwarz inequality. It is amusing that one gets a bound involving
only the osmotic velocity.

The significance of the Heisenberg uncertainty principle is that it is
impossible to find a ψ so that both the momentum and the position have
small standard deviations. One application of this is to the situation when
the total energy is the sum of a kinetic energy with a potential energy with a
negative singularity. One want to show that the total energy cannot be too
small. The kinetic energy always gives a positive contribution. If the kinetic
energy is small, then the momentum must be small, so the position must
have a large standard deviation. The argument is that the position cannot
be concentrated near the singularity. So the energy cannot have a large
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negative contribution from the potential energy, unless this contribution is
compensated by a large positive contribution from the kinetic energy.

This argument is not valid. It is perfectly possible to have a probability
distribution that has part concentrated close to the singularity, and another
part that gives a large standard deviation. We shall see in the next section
that a valid argument is possible, but it must use a stronger form of the
uncertainty principle.

At this point the reader should be warned that in the orthodox inter-
pretation of quantum mechanics the velocity fields v and u do not play
a major role (nor does the current J = vρ). The fundamental quantities
are the operators, and the interpretation of these operators is through the
spectral theorem.

It could be argued that u is a legitimate part of quantum mechanics,
since it is derived from the density ρ, which in turn is something that can
be obtained from position information. There is even a case to be made
for v, since the expectation of the momentum when the density is concen-
trated near a point x is approximately mv evaluated at x. Nevertheless we
henceforth abandon the use of these quantities.

1.5 Quantum stability

Quantum mechanics does not always resemble classical mechanics. The un-
certainty principle in quantum mechanics makes quantum mechanics more
stable than classical mechanics.

Let us look at the hydrogen atom where

H =
1

2m
P2 − Ke2

r
. (1.51)

The first term is a kinetic energy term involving the mass m > 0 of the
electron. The second term is a potential energy term. It represents the
electrostatic potential energy of a proton with charge e and an electron
with charge −e at a distance r = |x|. (For simplicity we take the proton
at the origin and take its mass to be infinite.) Notice that this potential
energy becomes singular as the electron approaches the proton.

We shall show that in quantum mechanics this singularity is perfectly
harmless. The argument uses a refinement of the Heisenberg uncertainty
principle. Because of its immediate application, we call it the Hydrogen
uncertainty principle. It says that

‖Pψ‖〈ψ, 1

r
ψ〉−1 ≥ ((ν − 1)/2)h̄. (1.52)
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In physics we are of course interested in the case ν = 3, so the factor on
the right is just one.

The quantity

〈ψ, 1

r
ψ〉−1 = (

∫
1

r
ρ dνx)−1 (1.53)

is the harmonic mean of the radius, and is a measure of the spread of the
position from the origin. The principle thus says that a small kinetic energy
makes a large spread in the position, while a small spread in the position
makes a large kinetic energy. The intuition for the hydrogen atom is that
an electron too close to a proton gains a kinetic energy which kicks it away
again.

Take the case ν = 3 of physical interest. We prove that for all ψ with
‖ψ‖2 = 1 the total energy

1

2m
‖Pψ‖2 − 〈ψ, Ke

2

r
ψ〉 ≥ −R = −mK

2e4

h̄2 . (1.54)

We show that this follows from the Hydrogen uncertainty principle. The
principle give a lower bound

h̄2

2m
〈ψ, 1

r
ψ〉2 −Ke2〈ψ, 1

r
ψ〉. (1.55)

This is a polynomial in 〈ψ, (1/r)ψ〉 which assumes its minimum at 1/a,
where a = h̄2/(mKe2) is the Bohr radius. Putting in this value gives the
lower bound.

Now we give the proof of the Hydrogen uncertainty principle. Since
|∂ψ/∂r| ≤ |∇xψ|, it is sufficient to prove the principle with just the radial
derivative. Recall that the unit of volume in ν dimensions in polar coor-
dinates involves the differential rν−1 dr. This factor will come in when we
integrate by parts. Let c be a real constant. Compute

0 ≤ ‖( ∂
∂r

+ c)ψ‖2 = 〈ψ,− 1

rν−1
(
∂

∂r
− c)rν−1(

∂

∂r
+ c)ψ〉. (1.56)

This works out to

〈ψ, (− 1

rν−1

∂

∂r
rν−1 ∂

∂r
− (ν−1)c

1

r
+c2)ψ〉 = ‖ ∂

∂r
ψ‖2− (ν−1)c〈ψ, 1

r
ψ〉+c2.

(1.57)
Thus the right hand side is greater than or equal to zero for all real c. This
is equivalent to the Hydrogen uncertainty principle.

We can also get the bound on the energy directly by taking ν = 3 and
c = 1/a, where a is the Bohr radius. We see as a corollary that the only
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function ψ for which the bound is obtained satisfies(
∂

∂r
+

1

a

)
ψ = 0. (1.58)

The solution is
ψ = C exp(− r

a
). (1.59)

This is in fact the hydrogen ground state wave function.
In the classical limit h̄ → 0 we have also a → 0. The ground state

collapses to a point, and the energy becomes negative infinite. It is im-
portant to have quantum mechanics; otherwise all matter would collapse
under electrostatic attraction.

Problems

1. Show that the harmonic mean is less than the arithmetic mean:
1/〈ψ, (1/r)ψ〉 ≤ 〈ψ, rψ〉.

2. Show that the first moment is less than the second moment: 〈ψ, rψ〉 ≤
〈ψr2ψ〉1/2.

3. Show that the Hydrogen uncertainty principle gives the following ver-
sion of the Heisenberg uncertainty principle in dimension 3:

‖Pψ‖〈ψ, r2ψ〉1/2 ≥ h̄.

4. Define the probability

Pr[r ≤ ε] =

∫
r≤ε

ρ d3x.

Show that h̄Pr[r ≤ ε] ≤ ε‖Pψ‖.

æ



Chapter 2

Hilbert Space

We have seen that the wave functions (regarded as functions of the space
variable) have a natural notion of inner product. Various quantum me-
chanical notions are defined in terms of this inner product. The space of all
wave functions such that the corresponding norm is finite forms a Hilbert
space.

This chapter defines the abstract notion of Hilbert space. It also in-
troduces the concept of operator acting in Hilbert space. Particularly im-
portant are the bounded operators, which are defined on the whole space
and are continuous. Some elementary properties of bounded operators are
presented.

2.1 Definition

The mathematical setting for quantum mechanics is Hilbert space.

Definition 1 A Hilbert space is a vector space with complex scalars and
with an inner product. It must be a complete metric space in the norm
defined by the inner product.

Let us emphasize the elements of this definition. A vector space (or lin-
ear space) is a set of elements (called vectors) together with a definition of
addition of vectors and multiplication of vectors by scalars. These opera-
tions must satisfy the well known vector space axioms. We denote the sum
of two vectors ψ and φ by ψ+ φ and the product of the complex number z
with the vector ψ by zψ.

An inner product is a function defined on ordered pairs of vectors and
with scalar values. Normally the inner product of the vectors ψ and φ is

21
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denoted 〈ψ, φ〉. It must satisfy the Hermitian symmetry condition

〈ψ, φ〉 = 〈φ, ψ〉∗. (2.1)

Here z∗ denotes the complex conjugate of the complex number z. In ad-
dition it must be strictly positive on ordered pairs consisting of the same
non-zero vector twice. The positivity condition is thus

〈ψ,ψ〉 > 0 for ψ 6= 0. (2.2)

Finally it must be linear in one variable and conjugate linear in the other
variable.

There is unfortunately a difference in the conventions of mathematics
and physics about which variable is linear and which is conjugate linear. In
physics the first variable is conjugate linear and the second variable is linear.
In mathematics it is just the opposite. We adopt the physics convention.
Thus

〈zψ, φ〉 = z∗〈ψ, φ〉, (2.3)

〈ψ, zφ〉 = z〈ψ, φ〉. (2.4)

The advantage of this convention is that the function 〈ψ, ·〉 that sends
φ into 〈ψ, φ〉 is linear and takes its argument on the right, in accordance
with usual convention for functions.

The quadratic form associated with the inner product is the function
from vectors to scalars defined by assigning to the vector ψ the value 〈ψ,ψ〉.
This quadratic form is strictly positive except on the zero vector. The
length or norm of a vector ψ is defined by

‖ψ‖ =
√
〈ψ,ψ〉. (2.5)

Thus the quadratic form is the square of the norm.
It is assumed that the reader knows the basic facts about inner products

and norms. Perhaps the most basic computation is

0 ≤ ‖ψ + φ‖2 = ‖ψ‖2 + 2<〈ψ, φ〉+ ‖φ‖2. (2.6)

We say that two vectors ψ and φ are orthogonal (perpendicular) if 〈ψ, φ〉 = 0.
We may also indicate that the vectors are orthogonal by writing ψ⊥φ. Such
vectors satisfy the theorem of Pythagoras ‖ψ + φ‖2 = ‖ψ‖2 + ‖φ‖2.

If ψ and φ are arbitrary unit vectors, so that ‖ψ‖ = 1 and ‖ψ‖ = 1,
then the basic computation gives −<〈ψ, φ〉 ≤ 1. It follows easily by scaling
that for arbitrary vectors ψ and φ we have the Schwarz inequality

〈ψ, φ〉 ≤ ‖ψ‖‖φ‖. (2.7)
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It is a remarkable fact about complex Hilbert space that the inner prod-
uct may be expressed in terms of the quadratic form. The following propo-
sition gives the explicit formula.

Proposition 2 The inner product may be expressed in terms of the quadratic
form by the polarization identity:

4〈ψ, φ〉 = 〈φ+ψ, φ+ψ〉+i〈φ+iψ, φ+iψ〉−〈φ−ψ, φ−ψ〉−i〈φ−iψ, φ−iψ〉.
(2.8)

The distance between two vectors ψ and φ is defined to be ‖ψ − φ‖.
This makes it possible to define the notion of convergence. The requirement
that the Hilbert space H be complete means that every Cauchy sequence of
vectors belonging to H converges to a limiting vector in the same Hilbert
space H .

Definition 2 An isomorphism of Hilbert spaces is a linear transformation
W from one Hilbert space H onto another Hilbert space K that preserves
the inner product:

〈Wψ,Wφ〉 = 〈ψ, φ〉. (2.9)

Such a transformation is also called a unitary operator.

Note that by the polarization identity, if W preserves the Hilbert space
norm, then it automatically preserves the inner product.

The simplest concrete example of a Hilbert space is obtained by taking
a set J and defining `2(J) as the set of all functions f from J to the complex
numbers such that

∑
j |f(j)|2 < ∞. The inner product of f and g in this

Hilbert space is just 〈f, g〉 =
∑
j f(j)∗g(j).

It will be shown that every Hilbert space is isomorphic to some `2(J).
The dimension of the Hilbert space is the number of points in J . Thus all
Hilbert spaces of the same dimension are isomorphic.

In an alternative approach one could dispense with the axioms for vector
spaces and inner products and define a Hilbert space as a space with notions
of sum and scalar multiplication and inner product that satisfy all the
properties that hold true in `2(J). This approach would not be elegant,
but it would give a good idea of the truth.

The Hilbert spaces used in quantum mechanics are either finite dimen-
sional or have countable infinite dimension. In fact most problems are
formulated in a Hilbert space of countable infinite dimension. Up to iso-
morphism there is only one Hilbert space of this dimension!

Here is an important example (or rather counter-example). Assume
for the moment that J is infinite. Consider the linear subspace of `2(J)
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consisting of all f with finite support. This is an example of an inner
product space that is not complete and hence not a Hilbert space. It is
clear that every element of `2(J) is a limit of elements from this subspace,
so this is actually an example of a dense linear subspace of the Hilbert
space.

Problems

1. Say that φj for j in some index set J is is a family of mutually
orthogonal vectors. Prove the theorem of Pythagoras ‖

∑
j φj‖2 =∑

j ‖φj‖2 when J is finite.

2. Prove it when J is infinite. In particular, show that when the numer-
ical sum on the right hand side is finite, then the vector sum

∑
j φj

must converge.

2.2 Self-duality

It is an obvious consequence of the Schwarz inequality that for every ψ
in the Hilbert space H the function 〈ψ, ·〉 is a continuous linear complex
function on H. It is a consequence of completeness that every continuous
linear complex function on H is of this form. A continuous linear complex
function is said to be a member of the dual space, so this says that every
Hilbert space is self-dual.

Theorem 1 Every Hilbert space is self-dual. If L is a continuous linear
complex function on a Hilbert space H, then there exists a vector ψ in H
such that

L(φ) = 〈ψ, φ〉. (2.10)

Proof: Since L is continuous and linear, there is a constant M such that
|L(φ)| ≤M‖φ‖ for all φ in H. Define the complex function I on H by

I(ψ) =
1

2
‖ψ‖2 −<L(ψ). (2.11)

Since

I(ψ) ≥ 1

2
‖ψ‖2 −M‖ψ‖ ≥ −1

2
M2, (2.12)

I is bounded below. Let b be the infimum of I.
The crucial step in the proof is the identity:

I(
ψ + ψ′

2
) +

1

4
‖ψ − ψ′‖2 =

1

2
I(ψ) +

1

2
I(ψ′). (2.13)
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Let ψn be a sequence of vectors in H such that I(ψn) → b. The above
identity shows that

b+
1

4
‖ψn − ψm‖2 ≤

1

2
I(ψn) +

1

2
I(ψm). (2.14)

Thus ψn is a Cauchy sequence and hence converges to some ψ in H. It is
not difficult to see that I(ψ) = b.

The proof is completed by noting that where the minimum is assumed
the differential in any direction φ must be zero. This says that

<〈ψ, φ〉 − <L(φ) = 0. (2.15)

The same argument works for iφ, so the imaginary part is also zero. This
proves the theorem. Q.E.D.

Actually, the statement that the Hilbert space is self-dual is slightly
misleading. For each ψ the function 〈ψ, ·〉 gives an element of the dual
space, and every element is obtained this way. Note however that 〈zψ, ·〉 =
z∗〈ψ, ·〉. Thus the correspondence between vectors and elements of the dual
space is conjugate linear.

On the other hand, for each χ the function 〈·, χ〉 gives an element of the
conjugate dual space. Furthermore 〈·, zχ〉 = z〈·, χ〉. The correspondence
between vectors and elements of the conjugate dual space is linear.

Dirac introduced a notation that is sometimes convenient. The element
of the Hilbert space φ is also denoted | φ〉 and called a “ket.” The element
〈ψ, ·〉 of the dual space corresponding to a vector ψ is denoted 〈ψ | and
called a “bra.” The complex number 〈ψ, φ〉 is written 〈ψ | φ〉 and called
a “bracket.” That a joke this feeble could persist in the physics literature
is truly remarkable. Nevertheless, it is convenient to have a notation for
elements of the dual space, and the Dirac notation does provide this.

Dirac actually used an extended notation in which some of the linear
functionals are not continuous functionals on the Hilbert space and hence
are not represented by vectors in the Hilbert space. We shall look at this
situation during the discussion of generalized bases.

Problems

1. Give an example of a dense linear subspace of a Hilbert space and a
continuous linear functional on this space that is not represented by
a vector in the subspace.

2. Give an example of a dense linear subspace of a Hilbert space and a
linear functional on this space that is not represented by a vector in
the Hilbert space.
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2.3 Projections

If H is a Hilbert space, a linear subspace is a subspace in the vector space
sense. It is not necessarily a Hilbert space with respect to the inner product
of H, since it need not be complete. (However it may be a Hilbert space
with a different inner product!)

It may be shown that a linear subspace M of H is a Hilbert space with
respect to the inner product of H if and only if it is a closed linear subspace.
The following result is the projection theorem for such closed subspaces.

Theorem 2 Let H be a Hilbert space and M be a closed linear subspace.
Let χ be a vector in H. Then there exists a vector ψ in M that is the
orthogonal projection of χ onto M , that is,

〈χ− ψ, φ〉 = 0 (2.16)

for all φ in M .

Proof: Since M is a closed subset of a complete metric space, it is itself
a complete metric space. Thus M is a Hilbert space. Define the linear
function L on M by

L(φ) = 〈χ, φ〉. (2.17)

This is continuous, by the Schwarz inequality. Therefore by the self-duality
of Hilbert space there is a vector ψ in M with

〈χ, φ〉 = 〈ψ, φ〉 (2.18)

for all χ in M . This completes the proof.
Note that the function that is minimized in the proof of the self-duality

theorem is

I(ψ) =
1

2
‖ψ‖2 −<〈χ, ψ〉 =

1

2
‖ψ − χ‖2 − 1

2
‖χ‖2. (2.19)

Thus the orthogonal projection minimizes the distance to the vector χ.

Definition 3 Let M be a linear subspace of H. Then M⊥ is the closed
linear subspace of all vectors in H that are orthogonal to M .

The projection theorem above says that if M is a closed linear subspace,
then every vector may be written as the sum of a vector in M and a vector
in M⊥.

In general if M and N are orthogonal closed subspaces, then we write
M⊕N for the closed subspace consisting of all sums of vectors from the two
subspaces. In this notation the projection theorem says that H = M⊕M⊥.
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Lemma 1 If M is a closed linear subspace of H, then M⊥⊥ = M .

Proof: It is obvious that M is contained in M⊥⊥. On the other hand,
if χ is a vector in M⊥⊥, then χ has a projection ψ onto M . Since χ− ψ is
in M⊥ and also in M⊥⊥, it must be zero. Thus χ = ψ is in M . This shows
that M⊥⊥ is contained in M .

The closure of a linear subspace M is denoted M̄ and is a closed linear
subspace. Note that the closure M̄ satisfies M̄⊥ = M⊥. This gives the
projection theorem in the following form.

Theorem 3 If M is a linear subspace of H, then M⊥⊥ = M̄ .

Corollary 1 If M is a linear subspace of H, then M is dense in H (that
is M̄ = H) if and only if M⊥ = {0}.

Problems

1. Give an example of a linear subspace of a Hilbert space that is dense
but not the whole space.

2. Give an example of two such linear spaces that have only the zero
vector in common. (Hint: Let g be in `2(N). For 0 < ε < 1 let
f ε(n) = (1− ε)

∑
m≤n ε

mg(n−m). Show that f ε → g in the `2 norm
as ε→ 0. Show that f ε = 0 implies g = 0.)

2.4 Operators

Additional structure is needed to make Hilbert space interesting. An oper-
ator A acting in H is a linear transformation from a linear subspace D(A)
of H to H.

Two operators, A acting in H and B acting in K, are isomorphic if
there is a unitary operator W from H to K such that W takes D(A) onto
D(B) and WAψ = BWψ for all ψ in D(A). Then A = W−1BW is just
a disguised form of B. We shall see that isomorphism of operators is an
valuable concept.

A densely defined operator A is an operator such that D(A) is dense in
H. Let A be a densely defined operator. The adjoint A∗ is the operator
consisting of all ψ in H such that there is a vector A∗ψ in H with

〈A∗ψ, φ〉 = 〈ψ,Aφ〉 (2.20)

for all φ in D(A).
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It follows from the fact that D(A) is dense in H that the vector A∗ψ is
uniquely determined by A and ψ.

If A is an operator, then its domain may be given the domain inner
product

〈ψ, φ〉D(A) = 〈ψ, φ〉+ 〈Aψ,Aφ〉. (2.21)

The associated norm is

‖ψ‖2D(A) = ‖ψ‖2 + ‖Aψ‖2. (2.22)

Notice that ‖Aψ‖ ≤ ‖ψ‖D(A), so the operator A is continuous from D(A)
to H, provided that D(A) is given the domain norm instead of the norm
inherited from H.

A closed operator is an operator such that D(A) with the domain inner
product is a Hilbert space.

The closed densely defined operators are a reasonable class of operators.
The reason is the following (proofs to come later). If A is densely defined,
then A∗ is a closed operator. If A is a closed operator, then A∗ is densely
defined. If A is a closed densely defined operator, then A∗∗ = A.

In Dirac’s notation the action of an operator A on a ket | φ〉 is written
A | φ〉 and is defined to be | Aφ〉. The action on a bra 〈ψ| is written
〈ψ | A and is 〈A∗ψ |. Thus it is consistent to write 〈ψ | A | φ〉 for
〈A∗ψ, φ〉 = 〈ψ,Aφ〉.

2.5 Bounded operators

A linear transformation A from a Hilbert space H to itself is said to be
a bounded operator if there exists a constant M such that ‖Aψ‖ ≤ M‖ψ‖
for all ψ in H. The least such M is called the uniform norm of A and is
written ‖A‖∞. This norm is used so often that it is written as ‖A‖ when
the context is clear. Notice that the∞ refers to the fact that this is a bound
on the maximum size of the operator, and does not refer to the space on
which the operator is acting, which could of course be `2.

A bounded operator is closed and densely defined. It is not difficult to
see that a linear operator defined on the Hilbert space is bounded if and
only if it is continuous.

One special property of the norm is that it is related to multiplication
(composition) of operators in a pleasant way. In fact, the general inequality
that holds is ‖AB‖ ≤ ‖A‖‖B‖.

It is important to realize that there is more than one natural notion
of convergence for bounded operators. A sequence An is said to converge
in norm (or uniformly) to A if ‖An − A‖ → 0 as n → ∞. It is said to
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converge strongly (or pointwise) if for every ψ in H Anψ → Aψ in the H
norm as n→∞. Since ‖Anψ −Aψ‖ ≤ ‖An −A‖ |ψ‖, it is clear that norm
convergence implies strong convergence. Norm convergence is clearly more
desirable; we will usually have only strong convergence.

Self-duality plays an important role in Hilbert space theory. One exam-
ple is with respect to the notion of adjoint operator of a bounded operator.

Proposition 3 Let A be a bounded operator acting in H. Then the adjoint
operator A∗ is also bounded. For all ψ and φ in H we have

〈ψ,Aφ〉 = 〈A∗ψ, φ〉. (2.23)

Proof: Fix ψ. Then the function that sends φ to 〈ψ,Aφ〉 is continuous.
Therefore there is a vector A∗ψ given by the self-duality theorem.

We can see that ‖A∗‖ ≤ ‖A‖ from the calculation

‖A∗ψ‖2 = 〈ψ,AA∗ψ〉 ≤ ‖ψ‖‖AA∗ψ‖ ≤ ‖ψ‖‖A‖‖A∗ψ‖. (2.24)

For bounded operators it is not hard to check that A∗∗ = A. It follows
easily from this that ‖A∗‖ = ‖A‖.

The notion of adjoint of an operator is related to the notion of orthogonal
complement of a subspace.

Proposition 4 Let M be a linear subspace of H that is invariant under a
bounded operator A. Then M⊥ is invariant under A∗.

Proof: Assume that for every ψ in M we have also Aψ in M . Let φ be
in M⊥. Then for every ψ in M we have 〈A∗φ, ψ〉 = 〈φ,Aψ〉 = 0. Thus A∗φ
must be in M⊥.

Corollary 2 Let M be a linear subspace of H that is invariant under a
bounded operator A and its adjoint A∗. Then M⊥ is invariant under A
and A∗.

How is this used? Assume that M is a closed linear subspace of H.
By the projection theorem H = M ⊕M⊥, where M⊥ is the orthogonal
complement of M in H. Both M and M⊥ are Hilbert spaces. If A leaves
both M and M⊥ invariant, then the study of A in the Hilbert space H can
be reduced to the study of two operators: the restriction of A to M and
the restriction of A to M⊥.

Thus if χ is in H, we may compute Aχ by writing χ = ψ+φ, with ψ in
M and φ in M⊥. Then Aψ is in M and Aφ is in M⊥ and from these we
recover Aχ = Aψ +Aφ.

Problems
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1. Show that if A and B are bounded, then (AB)∗ = B∗A∗.

2. Show that A∗A is its own adjoint. (Assume A is bounded.)

3. Show that ‖A‖2 = ‖A∗A‖.

4. Let M be a closed subspace. Define an operator E by setting Eχ = ψ,
where ψ is the orthogonal projection of χ onto M . Show that E2 = E.

5. Show that E is bounded. What is its norm?

6. Show that E∗ = E.

7. Express the projection onto M⊥ in terms of E.

8. Let A be a bounded operator. Then M is invariant under A if and
only if AE = EAE.

9. Let A be a bounded operator. Then M is invariant under A and A∗

if and only if AE = EA.

æ



Chapter 3

Function Spaces

This chapter introduces the standard concrete realization of a Hilbert space
as an L2 space. It also gives criteria for recognizing integral operators as
bounded operators. This gives the world of reality that corresponds to the
Platonic world of the chapter on Hilbert space.

3.1 Integration

Let X be a set. We say that X is a measurable space if there is given a
vector space of real functions on X with the following properties. The space
should contain the constant functions. If f is in the space, then so is |f |.
If fn is a sequence of functions in the space, and fn → f pointwise, then
f is in the space. The functions in this space are called real measurable
functions.

Example: Let J be a set. Take all functions to be measurable.

Example: Let X be Rν . Consider the smallest set of functions that
contain the continuous functions and is closed under pointwise convergence.
This is called the space of Borel measurable functions.

The notion of measurable set is a special case of the notion of measurable
function. Let f = 1S be the indicator function of a subset S of X. The
subset S is said to be measurable if the function 1S is measurable.

The definition of a space of measurable functions ensures that the space
is closed under numerous nonlinear operations beside the absolute value.

For example, if f and g are measurable, then so are the maximum
max(f, g) and the minimum min(f, g). This is because max(f, g) = (f +
g + |f − g|)/2 and min(f, g) = (f + g − |f − g|)/2.

31
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In particular, if f be a real measurable function then its positive and
negative parts f+ = max(f, 0) and f− = −min(f, 0) are also measurable.

Also, if f is measurable, then for each real a the set where f > a is
measurable. It is sufficient to prove this when a = 0. However the pointwise
limit as n → ∞ of min(nf+, 1) is the indicator function of the set where
f > 0.

An easy consequence is that for each real a and b with a < b the set
where a < f ≤ b is measurable. (Subtract the indicator function of b < f
from that of a < f .)

If follows easily from this that if f is measurable and φ is continuous,
then the function φ(f) (the composition) is measurable. The reason is that
for each n the function

∑
k φ(k/n)1{k/n<f≤(k+1)/n} is measurable. If φ is

continuous, then for the limit as n → ∞ of these functions is φ(f). (For
each x the value of k/n that is relevant is within 1/n of f(x), so the value
of φ(k/n) is correspondingly close to φ(f(x)).)

The conclusion of this line of reasoning is the following proposition.

Proposition 5 If f is a measurable function and φ is a Borel measurable
function, then the composition φ(f) is a measurable function.

The proof is to note that Borel measurable functions may be obtained from
continuous functions by repeated limits.

Finally, we note that the product of measurable functions is measurable.
This follows from the fact that fg = ((f + g)2 − (f − g)2)/4.

An integral (or measure ) is a mapping that associates to every measur-
able function f ≥ 0 a number

∫
f dµ with

0 ≤
∫
f dµ ≤ ∞. (3.1)

It must satisfy the properties∫
(f + g) dµ =

∫
f dµ+

∫
g dµ (3.2)

and ∫
af dµ = a

∫
f dµ (3.3)

for a ≥ 0. It must also satisfy the monotone convergence property that if
0 ≤ fn ↑ f pointwise, then ∫

fn dµ ↑
∫
f dµ. (3.4)
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The usual notion of measure is a special case of the notion of integral.
Let f = 1S be the indicator function of a subset S of X. The subset S is
measurable if the function 1S is measurable. The measure of the set is then
µ(S) =

∫
1S dµ.

Let f be a real measurable function. Then its positive and negative
parts f+ and f− are also measurable and since f+ ≥ 0 and f− ≥ 0, their
integrals are defined. If at least one of these integrals is finite, then we may
define ∫

f dµ =

∫
f+ dµ−

∫
f− dµ. (3.5)

If both these integrals are ∞, then we have the indeterminate expression
∞−∞, and the integral is not defined. (Notice that this definition is ruling
out all “improper” integrals that are not absolutely convergent.)

It is a consequence of the axioms that the integral is order preserving,
that is, if f ≤ g, then ∫

f dµ ≤
∫
g dµ. (3.6)

Furthermore the more general monotone convergence theorem holds.

Theorem 4 Assume that fn ↑ f pointwise and −∞ <
∫
f1 dµ. Then∫

fn dµ ↑
∫
f dµ. Similarly, assume that gn ↓ g and

∫
g1 dµ < +∞. Then∫

gn dµ ↓
∫
g dµ.

There is one special class of integrals with particular significance. If∫
c dµ = c for each constant c, then the integral is called an expectation.

The measurable functions are called random variables and the measurable
sets are called events. The points of the space X are called outcomes. The
measure of a measurable set of outcomes is called the probability of the
event. Usually when we have this situation we refer to the integral or the
measure as a probability measure.

A complex function is said to be measurable if its real and imaginary
parts are measurable. The absolute value of a complex measurable function
is a real measurable function.

If the real and imaginary parts of a complex measurable function have
finite integrals, then the integral of the function is defined in the obvious
way. It may also be shown that

|
∫
f dµ| ≤

∫
|f | dµ. (3.7)

The standard example of an integral is when the measurable functions
are Borel functions on Rν and the integral of a measurable function f is
the usual

∫
f(x) dνx. This is usually called Lebesgue measure.
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Here is another example of an integral. Let ρ ≥ 0 be a measurable
function with

∫
ρ(x) dνx = 1. Then the integral

∫
f dµ =

∫
f(x)ρ(x) dνx

is the expectation with respect to the probability measure ρ(x) dνx. The
function ρ is called the density of the probability measure (with respect to
Lebesgue measure).

Summation is a special case of integration. We can take a set J and
take the space of all functions on J as the space of measurable function. In
this case the integral is just

∑
j∈J f(j). The measure in this case is called

counting measure.
Again this leads to other interesting integrals. Let p be a function on

J such that
∑
j p(j) = 1. Then

∫
f dµ =

∑
j∈J f(j)p(j) is an expectation.

The probability measure µ is determined by the discrete density function
p.

Problems

1. Find an example that shows that monotone convergence alone does
not imply the integral of the limit is the limit of the integrals. (Hint:
Some integrals will have to be infinite.)

3.2 Function spaces

We now introduce spaces of complex measurable functions.
The space L1(X,µ) consists all complex measurable functions such that

‖f‖1 =

∫
|f | dµ <∞. (3.8)

The space L2(X,µ) consists all complex measurable functions such that

‖f‖22 =

∫
|f |2 dµ <∞. (3.9)

The space L∞(X,µ) consists of all complex measurable functions such
that there exists a bound M with

|f | ≤M <∞ (3.10)

except on a set of measure zero. The norm ‖f‖∞ is defined as the smallest
such bound.

It may be shown that if f is measurable, then the following three con-
ditions are equivalent:

∫
|f | dµ = 0,

∫
|f |2 dµ = 0, f = 0 except possibly on

a set of measure zero. Such a function is called a null function.
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In many situations there are functions that are not the zero function
but are null functions. This can be a minor technical problem in Hilbert
space reasoning, since it is awkward to have non-zero vectors of zero norm.

It is customary to get around this problem by a redefinition. Instead
of considering these spaces as spaces of functions, consider abstract spaces.
Two functions that differ by a null function determine the same element of
this abstract space.

One case when this is not necessary is when the measure space is count-
ing measure on some index set J . In this case, the spaces are written as
`1(J), `2(J), and `∞(J).

Here is an example which is at the other extreme. Choose a set of points
xj in Rν and a sequence of weights pj > 0. For each Borel measurable
function f define the integral by

∫
f dµ =

∑
j pjf(xj). Then every f such

that f(xj) = 0 for all j is a null function. All these null functions determine
the same zero vector in the Hilbert space. The values of f at other points
are completely irrelevant.

We are mainly interested in L2, because it is a Hilbert space, but it has
important relations with the other spaces. The first obvious remark is that
a function that is in both L1 and L∞ is in L2.

The interaction of these spaces in partly due to the following elementary
product rules. The first is that the product of an L∞ function with an L2

is in L2. The second is that the product of two L2 functions is in L1, which
a consequence of the Schwarz inequality.

There are two special cases when there are inclusions. On a discrete
measure space `1 ⊂ `2 ⊂ `∞. This is due to the fact that a convergent
sequence is bounded. It goes the other way on a finite measure space, in
that case L∞ ⊂ L2 ⊂ L1. This follows from applying the product rules
with one of the functions being the function that is 1 on the set of finite
measure.

For our purposes the most important thing about L2(X,µ) is that it is
a Hilbert space. The inner product is

〈f, g〉 =

∫
f∗g dµ. (3.11)

Here f∗ denotes the function complex conjugate to f .
The completeness of `2(J) is not difficult to verify directly. However in

general the completeness of L2(X,µ) is not obvious. The difficulty arises
from the fact that evaluation of a function at a point need not be a con-
tinuous function on the Hilbert space. A sequence of functions that is
convergent in the sense of the norm need not converge at any fixed point of
X. The completeness is a major theorem that is one of the most remarkable
consequences of the theory of the Lebesgue integral.
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The Hilbert space of greatest concern will be L2(Rν , dνx), where x =
(x1, . . . , xν) are Cartesian coordinates on the Euclidean space Rν and dνx =
dx1 · · · dxν . The elements of this space are the wave functions ψ = f(x)
with ∫

|ψ|2dνx <∞. (3.12)

It will be easy to fall into the habit of calling this space by the abbreviation
L2.

Another Hilbert space that will occur is gotten by taking a countable
index set J , such as the natural numbers. This Hilbert space is usually
referred to simply as `2.

Problems

1. Give an example of a discontinuous function that differs from a con-
tinuous function by a null function.

2. Give an example of a discontinuous function that does not differ from
a continuous function by a null function.

3. Give an example of a function that is in L1 but not in L2.

4. Give an example of a function that is in L2 but not in L1.

5. Give an example of a bounded function that is not in L2.

6. Give an example of a function that is zero outside of a bounded set
and which is not in L2.

7. Give an example of a sequence of fn of functions in L2 that converges
pointwise but not in L2.

8. Give an example of a sequence of fn of functions in L2 that converges
in L2 but not pointwise.

9. Consider a space L2(X,µ) and a measurable subset S of X. Show
that the subspace of functions in L2(X,µ) that vanish off X form a
closed subspace. What is the orthogonal complement? What is the
decomposition given by the projection theorem?

3.3 Convergence

The main theorem is about integration of complex functions is the domi-
nated convergence theorem.
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Theorem 5 Assume that fn → f pointwise and and |fn| ≤ g for some
g ∈ L1. Then

∫
fn dµ→

∫
f dµ.

Proof: First we give the proof in the case when the functions fn are real
functions. We have −g ≤ fn ≤ g. Define the lower and upper functions
ln = infm≥n fm and un = supm≥n fm. Then −g ≤ ln ≤ fn ≤ un ≤ g.
Furthermore ln ↑ f and un ↓ f . By monotone convergence

∫
ln dµ→

∫
f dµ

and
∫
un dµ →

∫
f dµ. Since

∫
ln dµ ≤

∫
fn dµ ≤

∫
un dµ, it follows that∫

fn dµ→
∫
f dµ.

When the functions fn are complex functions, then we can apply the
previous argument to the real and imaginary parts.

Corollary 3 Assume that fn → f pointwise and and |fn| ≤ g for some
g ∈ L1. Then

∫
|fn − f | dµ→ 0, that is, fn → f in L1.

Proof: Since |fn| ≤ g and |f | ≤ g, we have |fn − f | ≤ 2g. Therefore we
may apply the dominated convergence theorem.

Corollary 4 Assume that fn → f pointwise and and |fn| ≤ g for some
g ∈ L2. Then

∫
|fn − f |2 dµ→ 0, that is, fn → f in L2.

Proof: Since |fn| ≤ g and |f | ≤ g, we have |fn − f |2 ≤ 4g2. Therefore
we may apply the dominated convergence theorem.

Problems

1. Let fn(x) = exp(−(x− n)2). Is the limit of the integrals the integral
of the limit? Discuss.

2. Let gn(x) = n2|x| exp(−nx2). Same question.

3. Let hn(x) = n−1/2 exp(−x2/(2n)). Same question.

4. Let f be in L2 and assume that φn are bounded in L∞. Assume that
φn → φ pointwise as n → ∞. Show that φnf → φf in L2. What
does this say about strong convergence of multiplication operators?

3.4 Integral operators

How does one recognize a bounded operator? Consider a Hilbert space
L2(X,µ). The most obvious operators are integral operators

Tf(x) =

∫
t(x, y)f(y) dµ(y). (3.13)
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Of course when the Hilbert space is `2(J) these are actually matrix opera-
tors.

One can manipulate bounded integral operators much like one manipu-
lates matrices. For instance, for a bounded integral operator

Tf(x) =

∫
t(x, y)f(y) dµ(y), (3.14)

the adjoint is

T ∗f(x) =

∫
t(y, x)∗f(y) dµ(y). (3.15)

This is a kind of conjugate transpose.
A Hilbert-Schmidt integral operator is an integral operator for which the

double integral

‖T‖22 =

∫
|t(x, y)|2 dµ(x)dµ(y) <∞. (3.16)

Proposition 6 If an integral operator T is Hilbert-Schmidt, then it is
bounded from L2 to L2, and ‖T‖∞ ≤ ‖T‖2.

Proof: Apply the Schwarz inequality to
∫
|t(x, y)| · |f(y)| dµ(y).

We may also consider integral operators acting on L1 or L∞. If∫
|t(x, y)| dµ(x) ≤ K1 <∞ (3.17)

for all y, then T is bounded as an operator from L1 to L1. If∫
|t(x, y)| dµ(y) ≤ K∞ <∞ (3.18)

for all x, then T is bounded as an operator from L∞ to L∞. The following
is a result using the idea of interpolation. It says that if T is bounded on
L1 and on L∞ then T is bounded on L2. The interpolated bound is the
geometric mean of the two extreme bounds.

Proposition 7 If T is an integral operator satisfying both of the above
conditions, then T is a bounded operator from L2 to L2, and ‖T‖∞ ≤√
K1K∞.

Proof: Apply the Schwarz inequality to
∫
|t(x, y)|1/2·|t(x, y)|1/2|f(y)| dµ(y).

Problems
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1. Consider the Hilbert space `2({1, 2}) and the operator with matrix

A =

(
2 1
1 2

)
.

Find its Hilbert-Schmidt norm.

2. Find its uniform norm.

3. Consider the Hilbert space `2({1, 2}) and the operator with matrix

A =

(
0 1
0 0

)
.

Find its Hilbert-Schmidt norm.

4. Find its uniform norm.

5. Consider the Hilbert space L2([0, 1], dx) and the integral operator
V f(x) =

∫ x
0
f(y) dy. Find its Hilbert-Schmidt norm.

6. Find its uniform norm.

7. Is the range of this operator equal to L2? Is it dense in L2?

8. Consider the Hilbert space L2(R, dx) and the integral operatorAf(x) =
(1/2)

∫∞
−∞ exp(−|x− y|)f(y) dy. Find its Hilbert-Schmidt norm.

9. Show that it is bounded.

10. Find its uniform norm.

11. Give an example of an operator with ‖A‖ > 1 but ‖A2‖ < 1.

Problems

1. Assume that An → A and Bn → B in norm. Show that AnBn → AB
in norm.

2. Assume that An → A in norm. Show that A∗n → A∗ in norm.

3. Assume that An → A and Bn → B strongly. Assume in addition
that ‖An‖ ≤M for all n. Show that AnBn → AB strongly.

4. Assume that An → A strongly. Must it follow that A∗n → A∗

strongly?
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5. Assume that An → A strongly. Must it follow that ‖An‖ → ‖A‖?

6. Is the norm limit of unitary operators necessarily unitary?

7. Is the strong limit of unitary operators necessarily unitary?

æ



Chapter 4

Bases

This chapter is about the structure of an isomorphism of a Hilbert space
with an L2 space. There is a special case when this is particularly simple:
Every isomorphism of a Hilbert space with an `2 space is obtained from an
an orthonormal basis. In the general case the isomorphism may be thought
of as arising from a sort of continuous basis.

While the material of this chapter may be illuminating, it will not play
a major role in the following. The natural Hilbert space notion is that of
isomorphism; the basis concept is secondary.

4.1 Discrete bases

Definition 4 A (discrete) basis of a Hilbert space H is an isomorphism
W from H to `2(S) for some index set S.

Theorem 6 Let W be a basis. Then there are vectors φj for j in S such
that Wψ(j) = 〈φj , ψ〉. Furthermore ψ =

∑
j〈φj , ψ〉φj.

Proof: The existence of φj follows from the self-duality. In fact |Wψ(j)| ≤√∑
j |Wψj |2 = ‖ψ‖.

Let χ =
∑
j〈φj , ψ〉φj . Then Wψ = Wχ, so since W is an isomorphism,

ψ = χ.

Theorem 7 Every Hilbert space has a basis.

Proof: Consider families φj of unit vectors that are mutually orthogonal
indexed by some set J . Take a maximal such family.

41
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Let M be the closed linear subspace of consisting of all vectors φ =∑
j f(j)φj with

∑
j |f(j)|2 <∞.

We observe that M = H. If this were not the case, then by the projec-
tion theorem the would be a unit vector φ orthogonal to M . This would
contradict the maximality.

For ψ in H define Wψj = 〈φj , ψ〉. Then Wψ is in `2(J). It is not
difficult to see that W is an isomorphism.

In Dirac’s notation the value of the function Wψ on j is written 〈j | ψ〉
instead of 〈φj , ψ〉. This amounts to denoting the continuous linear func-
tional 〈φj , ·〉 by 〈j | in Dirac’s scheme. Note that the notation suppresses
the isomorphism and the basis vectors; only the index set survives.

If we also denote 〈χ, φj〉 by 〈χ | j〉, then we get the traditional Dirac
formula

〈χ | ψ〉 =
∑
j

〈χ | j〉〈j | ψ〉. (4.1)

4.2 Continuous bases

Continuous bases play an important role in many expositions of quantum
mechanics. There are relatively few rigorous presentations. We give one
possible formulation More information on may be found in the books by
Berezanskii [B] and Van Eijndhoven and De Graaf [EG]. The paper [F]
contains a useful summary.

Definition 5 A continuous basis of a Hilbert space H is an isomorphism
W from H to L2(X,µ) for some measure space.

Proposition 8 Consider a bounded operator T from L2 to L2. Let W be an
isomorphism to another L2 space and set S = WTW−1 be the isomorphic
operator. Then T is a Hilbert-Schmidt integral operator if and only if S is
a Hilbert-Schmidt integral operator.

Proof: It is sufficient to prove this proposition when one of the L2 spaces
is `2. So assume that S is an operator acting in `2.

Let the isomorphism of L2 with `2 be given by the basis vectors φj in
L2. It is easy to check that the relation between the integral kernel t and
the matrix s is

t(x, y) =
∑
ij

sijφi(x)φj(y)∗. (4.2)

and

sij =

∫ ∫
φi(x)∗t(x, y)φj(y) dµ(x)dµ(y). (4.3)
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This is of the form of the isomorphism between the L2 space of functions
t(x, y) of two variables and the `2 space of matrices sij given by the doubly
indexed basis φi(x)φj(y)∗. Thus∫ ∫

|t(x, y)|2 dµ(x)dµ(y) =
∑
i

∑
j

|sij |2. (4.4)

Q.E.D.
In general we may define a Hilbert-Schmidt operator as an operator that

is isomorphic to a Hilbert-Schmidt integral operator on some L2 space. In
view of the preceding result, every Hilbert-Schmidt operator on an L2 space
is automatically a Hilbert-Schmidt integral operator on the same L2 space.
Hilbert-Schmidt operators are easy to recognize!

Let T be a bounded operator with zero nullspace and dense range. Let
K be the range of T and define ‖ψ‖K = ‖T−1ψ‖. Then K is a Hilbert space.

Let K∗ be the space of continuous linear functionals on K. If φ is in H,
then the function that sends ψ to the inner product 〈ψ, φ〉 is continuous in
the norm of K. This is because

|〈ψ, φ〉| = |〈T ∗ψ, T−1φ〉| ≤ ‖T ∗ψ‖‖T−1φ‖ = ‖T ∗ψ‖‖φ‖K. (4.5)

Thus ψ defines an element of K∗. Since K is dense in H, this element is
uniquely determined by φ. Thus one is allowed to think of elements of K∗
as generalized elements of H. Of course the norm is different; it is easily
seen that the norm of ψ as an element of K is just ‖T ∗ψ‖.

Theorem 8 Let W be a continuous basis. Let T be a bounded operator
with zero nullspace and dense range. Assume that T is Hilbert-Schmidt.
Then for almost every x there is a vector φx in K∗ such that for all ψ ∈ K
we have

Wψ(x) = 〈φx, ψ〉. (4.6)

Proof: Write

Wψ(x) = WTW−1WT−1ψ(x) =

∫
s(x, y)WT−1ψ(y) dµ(y). (4.7)

Then WTW−1 is Hilbert-Schmidt. Hence

|ρ(x)Wψ(x)| ≤
(∫
|s(x, y)|2 dµ(y)

)1/2(∫
|Wψ(y)|2 dµ(y)

)1/2

= ‖sx‖2‖T−1ψ‖.

(4.8)
Now ‖sx‖ is finite for almost every x, by Fubini’s theorem. Therefore

for almost every x the value Wψ(x) is continuous for ψ in K. Q.E.D.
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Example: Take the Hilbert space to be H = L2. Take T to be a suitable
Hilbert-Schmidt operator. If f is in H, then the K∗ norm of f is given by

‖f‖2K∗ = ‖T ∗f‖2 =

∫ ∫
f(x)∗k(x, y)f(y) dµ(x)dµ(y) (4.9)

where

k(x, y) =

∫
t(x, z)t(y, z)∗ dµ(z). (4.10)

Note that

|k(x, y)|2 ≤
∫
|t(x, z)|2 dµ(z)

∫
|t(y, z)|2 dµ(z) (4.11)

is finite for almost every x and y.
Now take W to be the identity operator. Then Wf(x) = 〈δx, f〉 = f(x)

for almost all x. Thus we should expect that δx should be in K∗ for almost
all x. If we compute the norm using the above formula we see that

‖δx‖2K∗ = k(x, x) <∞ (4.12)

for almost every x.
Example: For a more concrete example take the Hilbert space to be

H = L2(Rν , dνx). Let g and h be in L2 and define

Tf(x) =

∫
g(x)h(x− y) dν(y). (4.13)

Thus T is a convolution followed by a multiplication. If f is in H, then the
K∗ norm of f is given by

‖f‖2K∗ =

∫ ∫
f(x)∗g(x)r(x− y)g(y)∗f(y) dνxdνy, (4.14)

where

r(x) =

∫
h(x− z)h(−z) dνz. (4.15)

Note that the function r is continuous and bounded. It is clear from this
that the function of the r convolution operator is to smooth the elements
of K∗, while the function of the g multiplication operator is to produce
decrease at infinity.

This norm works for all isomorphisms! Therefore the space may be
larger than is needed for a particular isomorphism. The theorem has a
useful generalization in which the norm is adapted to the isomorphism.
This allows smaller spaces that give more accurate information about the
nature of the vectors giving the isomorphism.
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Theorem 9 Let W be a continuous basis. Let T be a bounded operator
with zero nullspace and dense range. Let R be a bounded operator such that
WRW−1 is multiplication by a measurable function ρ on X that is never
zero. Assume that RT is Hilbert-Schmidt. Then for almost every x there
is a vector φx in K∗ such that for all ψ ∈ K we have

Wψ(x) = 〈φx, ψ〉. (4.16)

One could take R to be the identity operator, but in practice one wants
to make a cleverer choice. The R should combine with the T in such a
way that product is Hilbert-Schmidt even though the individual factors are
not. (For instance, R could be a convolution operator and T could be a
multiplication operator.)

Proof: Write

ρ(x)Wψ(x) = WRTW−1WT−1ψ(x) =

∫
s(x, y)WT−1ψ(y) dµ(y).

(4.17)
Then WRTW−1 is Hilbert-Schmidt. Hence

|ρ(x)Wψ(x)| ≤
(∫
|s(x, y)|2 dµ(y)

)1/2(∫
|WT−1ψ(y)|2 dµ(y)

)1/2

= ‖sx‖2‖T−1ψ‖.

(4.18)
Now ‖sx‖ is finite for almost every x, by Fubini’s theorem. Therefore

for almost every x the value Wψ(x) is continuous for ψ in K.
Example: Take the Hilbert space to be H = L2(Rν , dνx). Let g be

in L2 and L∞ and such that g never vanishes. Let R be multiplication
by g. Let h be in L2 and L1 and assume that its Fourier transform never
vanishes. Let T to be the convolution operator

Tf(x) =

∫
h(x− y) dν(y). (4.19)

If f is in H, then the K∗ norm of f is

‖f‖2K∗ ==

∫ ∫
f(x)∗r(x− y)f(y) dνxdνy, (4.20)

where

r(x) =

∫
h(x− z)h(−z) dνz. (4.21)

Note that the function r is continuous and in L∞ and in L1.
Now take W to be the identity operator. Then Wf(x) = 〈δx, f〉 = f(x)

for almost all x. Thus we should expect that δx should be in K∗ for almost
all x. If we compute the norm using the above formula we see that

‖δx‖2K∗ = r(x). (4.22)
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for every x.

Example: Take the Hilbert space to be H = L2(Rν , dνx). Let g be in
L2 and L∞ and and never vanishing. let T be multiplication by g. Let h
be in L2 and L1 and with Fourier transform never vanishing. Let R to be
the convolution operator

Rf(x) =

∫
h(x− y) dν(y). (4.23)

If f is in H, then the K∗ norm of f is

‖f‖2K∗ ==

∫ ∫
|f(x)|2 |g(x)|2dνx. (4.24)

This is just a weighted L2 space. Note that |g|2 is in L1.

Now assume that W is such that WRW−1 is a multiplication operator,
as in the theorem. The correct choice of W is of course the Fourier trans-
form. Then Wf(k) = 〈φk, f〉 for almost all k. We should expect that φk
should be in K∗ for almost all k. Therefore they must be functions!

In fact for the Fourier transform the φk are bounded functions given by
φk(x) = exp(ik · x). If we compute the norm using the above formula we
see that

‖φk‖2K∗ =

∫
|φk(x)|2 |g(x)|2dνx (4.25)

is finite.

In order to verify the hypotheses of the theorem in more complicated
situations, the following result is useful.

Proposition 9 Let S be a Hilbert-Schmidt operator and B be a bounded
operator. Then SB and BS are Hilbert-Schmidt operators.

The way this is used is to take an operator R0 for which it is easy
to prove that R0T is Hilbert-Schmidt. (The R0 might be a convolution
operator and T a multiplication operator.) If one can write the operator R
of actual interest as R = BR0, where B is bounded, then it follows that RT
is Hilbert-Schmidt. (In applications R can be the resolvent of the operator
of interest, and R0 is the resolvent of a simpler operator.)

Finally, here is the Dirac notation. Again it suppresses part of the
information. In Dirac’s notation the value of the function Wψ on k is
written 〈k | ψ〉 instead of 〈φk, ψ〉. This amounts to denoting the linear
functional φk by 〈k | in the Dirac scheme. This is an example of a bra
functional that does not come from a vector in the Hilbert space. The
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corresponding conjugate linear functional | k〉 is given on χ by 〈χ | k〉 =
〈k | χ〉∗. This gives the Dirac formula

〈χ | ψ〉 =

∫
〈χ | k〉〈k | ψ〉 dµ(k). (4.26)

Problems

1. Let H = L2(Rν , dνx). Let R be a convolution operator acting in H,
so Rf(x) =

∫
h(x − y)f(y) dνy. Let T be a multiplication operator

Tf(x) = g(x)f(x). Find conditions on these operators that make
RT Hilbert-Schmidt. Find conditions on these operators that make
R and T bounded. What are the resulting spaces K and K∗?

2. In the context of the previous problem the Fourier transform is an
isomorphism W from H to a (different) L2 space. Show that the
convolution operator on H is isomorphic to a multiplication operator
on L2.

3. In this same context, find the elements of K∗ that give the isomor-
phism.

æ



48 CHAPTER 4. BASES



Chapter 5

Spectral Representations

In this chapter we look at the situation when an operator acting in a Hilbert
space is isomorphic to a multiplication operator acting in an L2 space.
The classical example is translation invariant operators; the isomorphism
is given by the Fourier transform. The Fourier transform is particularly
important in quantum mechanics, because it permits an analysis of the
solution of the free Schrödinger equation.

5.1 Multiplication operators

Definition 6 Consider the situation when the Hilbert space is L2(X,µ).
A multiplication operator is an operator defined by a complex measurable
function α defined on X. The domain consists of all f in L2 such that
αf is also in L2. The operator is the transformation that sends f to the
product αf .

Notice that in the special case when the Hilbert space is `2(J), a mul-
tiplication operator is just an operator given by a diagonal matrix. So
one should think of a multiplication operator as being diagonal, perhaps in
some continuous sense.

Proposition 10 A multiplication operator is densely defined and closed.
Its adjoint is the operator of multiplication by the complex conjugate α∗.

Proof: Let α define a multiplication operator. Let f be in L2(X,µ). Let
Xn be the set on which |α| ≤ n. Let fn = f on Xn and 0 elsewhere. Then
for each n the function fn is in the domain of α, and fn → f as n → ∞.
This proves that the operator is densely defined.

49
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The domain of the operator of multiplication by α with the graph norm
is just L2(X, (1 + |α|2)µ). This is a Hilbert space, so the operator is closed.

In order to prove the statement about the adjoint, consider a pair (u, v)
in the graph of the adjoint. Then 〈v, f〉 = 〈u, αf〉 for all f in L2 such that
α f is in L2. Let Xn be the set on which |α| ≤ n. Then for all f in L2

supported on Xn we have 〈v−α∗u, f〉 = 0. Thus v−αu = 0 on Xn. Since
the union of the Xn is all of X, it follows that v − αu = 0. Q.E.D.

A multiplication operator is self-adjoint if and only if α = α∗, that is,
the function is real. A multiplication operator is unitary if and only if
|α| = 1.

One special case is when the function α is in L∞. Then the corre-
sponding multiplication operator is a bounded operator, and hence defines
a continuous linear transformation defined on all of L2.

For a sequence of bounded multiplication operators convergence of the
functions in L∞ implies norm convergence of the corresponding operators.

The following proposition is fundamental.

Proposition 11 Assume that there is a bound |αn| ≤ M for all n and
that αn → α pointwise as n → ∞. Then the corresponding multiplication
operators converge strongly.

The proof is obvious: Apply the L2 dominated convergence theorem.

Problems

1. Show that the norm of multiplication by α is the L∞ norm of α.
(Make the reasonable assumption that every set of infinite measure
contains a subset of non-zero finite measure. This rules out certain
peculiar situations that should not arise in practice.)

5.2 Spectral representations

Definition 7 Let A be an operator from D(A) ⊂ H to H. Then A has
a spectral representation if there exists a measure space L2(X,µ) and an
isomorphism W from H to L2 and a function α such that A is related to
the corresponding multiplication operator by A = W−1αW .

Notice that this definition means in particular that the domain D(A)
must consist of all ψ in H such that αWψ is in L2. For such ψ we have
Aψ = W−1αWψ, which is in H.

Let A be an self-adjoint operator that has a spectral representation.
Then the function α is a real function. Define the unitary group generated
by A to be Ut = W−1 exp(−itα)W .
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Notice that for each t the multiplication operator exp(−itα) is mul-
tiplication by a function with absolute value one. Thus it is a unitary
multiplication operator. Therefore for each t the operator Ut is unitary.

Proposition 12 Let A have a spectral representation by a real function.
Then the corresponding unitary group is strongly continuous: For each ψ
in H the function Utψ with values in H is continuous in t.

Proof: Utψ = W−1 exp(−itα)Wψ. Since Wψ is in L2, we see from the
L2 dominated convergence theorem that exp(−itα)Wψ is continuous as a
function from the reals to L2.

Proposition 13 Let A have a spectral representation by a real function.
Then the abstract Schrödinger equation is satisfied: For each ψ in D(A) we
have

i
dUtψ

dt
= AUtψ. (5.1)

Proof: Fix t and consider the difference quotients

i(exp(−i(t+ h)α)− exp(−itα))/hWψ. (5.2)

It is easy to see that the absolute value of the difference quotient is bounded
by |αWψ| which is in L2. Therefore by the L2 dominated convergence
theorem the difference quotients converge in L2 to

α exp(−itα)Wψ. (5.3)

Example: One important example is when the spectral representation
is an isomorphism with `2 given by a basis. Then

(Wψ)j = 〈φj , ψ〉 = cj . (5.4)

The inverse W−1 takes the coefficients and restores the vector ψ by

ψ =
∑
j

cjφj . (5.5)

The equation Aψ = W−1αWψ takes the form

Aψ =
∑
j

αjcjφj . (5.6)

Thus the solution of the Schrödinger equation is obtained by multiplying
the coefficients by the exponentiated values

Utψ =
∑
j

exp(−itαj)cjφj . (5.7)
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We now record how the spectral representation condition appears in the
Dirac notation. Let ψ be in the domain of A. The condition 〈χ,Aψ〉 =
〈Wχ,αWψ〉 may be written out in detail as

〈χ,Aψ〉 =

∫
Wχ(k)∗α(k)Wψ(k) dµ(k). (5.8)

The Dirac version of this is

〈χ | A | ψ〉 =

∫
〈χ | k〉α(k)〈k | ψ〉 dµ(k). (5.9)

In the discrete case it would be

〈χ | A | ψ〉 =
∑
j

〈χ | j〉αj〈j | ψ〉. (5.10)

Problems

1. Consider the example above when the isomorphism is given by an
orthonormal basis. Develop a generalization in which the basis con-
sists of orthogonal vectors in H, not necessarily normalized to have
length one. The `2 space should be given by a discrete measure, but
not necessarily counting measure. (This measure can be specified by
specifying a positive weight for each point.)

5.3 Translation

One fundamental example of of a unitary operator is translation. Consider
the Hilbert space L2(Rν , dxν). For each vector a define translation by a
according to

Uag(x) = g(x− a). (5.11)

One of the fundamental properties of L2 is that translation is strongly
continuous. That is, for each f in L2 the function that sends a to Uaf is
continuous from Rν to L2.

This may be proved by noting that it is true when f is a function that
is the indicator function of a rectangle. Since such functions are dense in
L2, it follows that it is true in general.

Translation has several important extensions and generalizations. The
notion of convolution is one of them.
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Definition 8 Let f be in L1 and g be in L1 or in L2. The convolution of
f and g is the function f ∗ g defined by

f ∗ g(x) =

∫
f(y)Uyg(x) dy =

∫
f(y)g(x− y) dy. (5.12)

Notice that the convolution is simply the average of the translates of the
one of the functions with the other function. If one thinks of the integral as
a sort of generalized sum, then it is plausible (and true) that the convolution
satisfies

‖f ∗ g‖ ≤
∫
|f(y)|‖Uyg‖ dy =

∫
|f(y)| dy ‖g‖. (5.13)

(This works with either the L1 or the L2 norm.)
Another extension of translation is differentiation. Differentiation is

defined by a limiting operation. The directional derivative along a is defined
by

dUtag
dt

== −a · ∇xg (5.14)

for all g in L2 for which the limit exists.

Problems

1. Show that translation is not norm continuous.

2. Show that if f and g are in L1, then convolution is commutative:
f ∗ g = g ∗ f .

5.4 Approximate delta functions

The next useful tool is the approximate δ function. This is a family of
functions δε(x) indexed by ε > 0. Each such function has integral one.
Furthermore, we assume the homogeneity property δε(x) = ε−νδ1(x/ε).

Proposition 14 δε ∗ f → f in L1 and in L2 as ε→ 0.

Proof: We have

δε ∗ f =

∫
δε(y)Uyf dy

ν =

∫
δ1(z)Uεzf d

νz. (5.15)

It follows that

‖δε ∗ f − f‖ ≤
∫
δ1(z)‖Uεzf − f‖ dνz. (5.16)
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The integrand goes to zero pointwise by the continuity of translation.
Therefore the integral goes to zero by the dominated convergence theorem.
Q.E.D.

One suitable choice is the Gauss kernel

δε(x) = (2πε2)−ν/2 exp(− x2

2ε2
). (5.17)

Another choice is the Poisson kernel

δε(x) = cν
ε

(ε2 + x2)(ν+1)/2
(5.18)

where cν is the normalizing constant Γ((ν+1)/2)/π(ν+1)/2. In this following
we shall often use the Poisson kernel in dimension ν = 1. This case has a
particularly convenient partial fraction decomposition

δε(x) =
1

π

ε

(ε2 + x2)
=

1

2πi

(
1

x− iε
− 1

x+ iε

)
. (5.19)

5.5 The Fourier transform

Definition 9 Let f be in L1(Rν , dνx). Its Fourier transform is defined by

f̂(k) =

∫
exp(−ik · x)f(x) dνx. (5.20)

From the Hilbert space point of view we would like to view the Fourier
transform as a sort of inner product of exp(ik ·x) with f(x). Of course the
exponential is not in L2. The traditional way is to think of the exponential
as being in L∞ and f as being in L1, and this is correct. However these
spaces are not Hilbert spaces.

One way of getting Hilbert spaces has been explored in the last chapter.
Let g be a bounded function in L2 that never vanishes. Let K be the Hilbert
space L2(Rν , |g(x)|−2dνx) and K∗ be the dual space L2(Rν , |g(x)|2dνx).
The ordinary L2(Rν , dνx) inner product gives a pairing between K and K∗.
It follows from the Schwarz inequality that K is contained in L1, and it is
also clear that L∞ is contained in K∗. So we may also think of the Fourier
transform as a sort of inner product of exp(ik · x) in K∗ with with f(x) in
K.

What we would like in the end is an inversion formula of the form

f(x) =

∫
exp(ik · x)f̂(k)

dνk

(2π)ν
. (5.21)
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Unfortunately it is not true in general that f̂ is in L1, so this integral need
not converge absolutely. We would nevertheless like to recover f from f̂ .

This is accomplished by using an approximate delta function. In the
presence of the homogeneity property the Fourier transform of such a func-
tion satisfies δ̂ε(k) = δ̂1(εk). We also require that the Fourier transform

be in L1 and satisfy δ̂ε(k) ≥ 0. The Gauss and Poisson kernels are both
suitable. The Gauss kernel has Fourier transform

δ̂ε(k) = exp(−ε2k2/2). (5.22)

The Poisson kernel has Fourier transform

δ̂ε(k) = exp(−ε|k|). (5.23)

Notice that these Fourier transforms are remarkably simple and memorable.
Let f be in L1 and in L2. Then it is easy to compute that

〈f, δε ∗ f〉 =

∫
δ̂ε(k)|f̂(k)|2 dνk

(2π)ν
. (5.24)

Let ε→ 0. Then the L2 convergence of the convolution by the approximate
delta function shows that the left hand side converges to the square of the
norm of f . The monotone convergence theorem shows that the right hand
side converges to the square of the norm of f̂ . The conclusion is that for f
in L1 and L2 we have

‖f‖2 =

∫
|f(x)|2 dνx =

∫
|f̂(k)|2 dνk

(2π)ν
. (5.25)

This shows that ‖f‖2 = ‖f̂‖2 for f in L1 and L2. Since such functions
are dense in L2, we may extend the definition of the Fourier transform to
L2 by continuity.

One way to do this is to take a sequence of functions un in L2 with
|un| ≤ 1 and un → 1 as n → ∞. Then for f in L2 we observe that
unf is in L1 for each n. Furthermore, unf → f in L2 as n → ∞, by
the L2 dominated convergence theorem. Therefore the Fourier transform
of unf converges to the Fourier transform of f . The following definition
summarizes the situation.

Definition 10 The Fourier transform gives an operator F from L2 to L2

satisfying ‖Ff‖ = ‖f‖. It is defined for f in L1 and L2 by

Ff(k) =

∫
exp(−ik · x)f(x) dνx (5.26)

and extended to L2 by continuity.
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In the same way, we may define an inverse Fourier transform from L2

to L2 satisfying ‖F−1g‖ = ‖g‖. It is defined for g in L1 and L2 by

F−1g(x) =

∫
exp(ik · x)g(k)

dνk

(2π)ν
. (5.27)

In order to see that these are indeed inverses of each other, one can
check that

δε ∗ f(x) =

∫
exp(ik · x)δ̂ε(k)Ff(k)

dνk

(2π)ν
. (5.28)

Let ε → 0. We obtain f = F−1Ff . We can also check in a similar way
that g = FF−1g. We have proved the fundamental Plancherel theorem.

Theorem 10 The Fourier transform F defines an isomorphism of L2(Rν , dνx)
with L2(Rν , dνk/(2π)ν).

The importance of the Fourier transform is that it gives a spectral rep-
resentation for the unitary group of translations. Fix a vector a. Then the
spectral representation is

Uag = F−1 exp(−ia · k)Fg. (5.29)

As a consequence, the Fourier transform also gives a spectral represen-
tation for convolution operators. Averaging the formula above with f gives
the result

f ∗ g = F−1f̂(k)Fg. (5.30)

The Fourier transform also gives a spectral representation for differ-
entiation. The usual limiting operation on the translation representation
gives

a · ∇xg = F−1ia · kFg. (5.31)

For the important case of the Laplace operator we differentiate twice and
obtain

∇2
xg = F−1(−k2)Fg. (5.32)

Problems

1. Evaluate
∫∞
−∞ sin2(k)/k2 dk by using the fact that the Fourier trans-

form preserves the L2 norm.

2. Let f(x) = 1/(x− i). Find f̂ .

3. Show that if f is in L1, then f̂ is continuous.
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4. Give an example of a function in L2 whose Fourier transform is not
continuous.

5. Give an example of a function in L1 ∩ L2 whose Fourier transform is
not in L1.

6. Assume that f is in L2 and f̂ is never zero. Show that the linear
span of the translates fa is dense in L2. (You may use the fact that
a function in L1 whose Fourier transform is zero is a null function.)

7. Describe the class of f in L2 such that both f and f̂ have compact
support.

8. Show that if f and g are in L2 and f ′ = g almost everywhere, then f
need not have a Hilbert space derivative.

9. Give a practical sufficient condition on f in L2 that ensures that f̂ is
in L1. Illustrate with an example.

5.6 Free motion

5.6.1 Diffusion

Now it is time to solve the Schrödinger equation. The most basic situation
is that of free motion.

First let us treat the diffusion equation

∂ψ

∂t
= D∇2

xψ. (5.33)

The Fourier transform gives an representation of ∇2
x as multiplication by

−k2.
The solution of the initial value problem is given in the Fourier transform

representation by multiplication by exp(−Dtk2). This is bounded by one
for all t ≥ 0. The solution may be written

f(x, t) =

∫
exp(ik · x) exp(−Dtk2)f̂(k)

dνk

(2π)ν
(5.34)

When t > 0 it is given back in the original representation by convolution
with the Gaussian kernel

f(x, t) = δ√2Dt ∗ f(x) =

∫ (
1√

4πDt

)ν
exp(−|x− y|2

4Dt
)f(y) dνy. (5.35)

Notice that as t → 0 the kernel gets small everywhere except where it
becomes concentrated near x. On the other hand, as t→∞ it spreads out.
It represents a dissipation that takes place forward in time.
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5.6.2 Oscillation

Now we may turn to the Schrödinger equation. The corresponding solu-
tion is obtained by replacing D by iD. The solution of the initial value
problem is given in the Fourier transform representation by multiplication
by exp(iDtk2). This has absolute value one for all t. The solution may be
written

f(x, t) = Utf(x) =

∫
exp(ik · x) exp(iDtk2)f̂(k)

dνk

(2π)ν
(5.36)

This solution is of the form

Ut = F−1 exp(iDtk2)F. (5.37)

This is the composition of three unitary transformations. The first impor-
tant conclusion is that Ut is unitary.

When t 6= 0 it is given back in the original representation by convolution
with the complex Gaussian kernel

δ√2iDt(x) =

(
1√

4πiDt

)ν
exp(i

x2

4Dt
). (5.38)

Notice that this is not in L1. As t → 0 it becomes wildly oscillatory
everywhere except near the origin.

For t 6= 0 we may write the solution as

f(x, t) =

∫ (
1√

4πiDt

)ν
exp(i

|x− y|2

4Dt
)f(y) dνy (5.39)

and this makes sense for f in L1 and L2. Again it approaches f(x) as t→ 0.
However notice that the reason is quite different. As t→ 0 the oscillations
produce cancellations in the integral everywhere except near x.

This equation differs from the diffusion equation in another way, in that
reversing the direction of time is simply equivalent to taking a complex
conjugate. The solution can run either forward or backward in time.

We can actually compute the large t behavior of the solution.

Theorem 11 Let Ut be the unitary operators giving the solution of the
free Schrödinger equation. Define the unitary operators Vt in terms of the
Fourier transform by

Vtf(x) =

(
1√

4πiDt

)ν
exp(i

x2

4Dt
)f̂(

x

2Dt
). (5.40)
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Then for each initial condition f

‖Utf − Vtf‖ → 0 (5.41)

as t→ ±∞.

Proof: This uses the explicit solution of the free Schrödinger equation.
Expand the quadratic term in the exponent. Use the fact that the expo-
nential of the sum is the product of the exponentials. Define

Wtf(y) = exp(i
y2

4Dt
)f(y). (5.42)

Then we have
Utf = VtWtf. (5.43)

For each f the function Wtf approaches f as t→ ±∞, by the L2 dominated
convergence theorem. Therefore

‖Utf − Vtf‖ = ‖VtWtf − Vtf‖ = ‖Wtf − f‖ → 0 (5.44)

as t→ ±∞. Q.E.D.
This theorem shows that for large time the solution is concentrated

where x/(2Dt) = mx/(h̄t) is in the support of the Fourier transform. Thus
the waves move with a velocity profile determined by this function. Since
the parts of the wave with different wave numbers move at different veloci-
ties and are consequently separated in space, the free Schrödinger equation
acts as a kind of filter.

In quantum mechanics it is customary to redefine the Fourier transform
in terms of the momentum variable p = h̄k by f̃(p) = f̂(k). With this
convention we can write the density for large time as

|f(x, t)|2 ∼
(

1

4πDt

)ν
|f̂(

x

2Dt
)|2 ∼

( m

2πh̄t

)ν
|f̃(

mx

t
)|2. (5.45)

This is exactly the kind of spreading that one would expect in a free ex-
panding gas, perhaps the aftermath of an explosion.

Let Σ be a region in momentum space. Consider the moving region
Ωt = {x | mx/t ∈ Σ} of position space. Then∫

Ωt

|f(x, t)|2 dνx ∼
∫

Σ

|f̃(p)|2 dνp

(2πh̄)ν
. (5.46)

The amount of the wave function in the moving region is given by the
corresponding amount of the Fourier transform of the wave function in
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momentum region. This justifies an interpretation of the absolute square
of the Fourier transform of the wave function as momentum density, at
least for the case of free motion.

Problems

1. Take ν = 1 and consider H0 = −(h̄2/(2m))d2/dx2. Let c > 0. Use
the representation (H0+c2)−1f = F−1(p2/(2m)+c2)−1Ff to express
the action of this operator as a convolution. (Recall that p = h̄k.)

2. Take ν = 3 and H0 = −(h̄2/(2m))∇2
x. Compute the same inverse as

in the previous problem.

æ



Chapter 6

The Harmonic Oscillator

This section deals with the harmonic oscillator. For this special system the
dynamics of classical and quantum mechanical systems are very close, and it
is easy to do explicit computations. For this reason the harmonic oscillator
may give a misleading picture of quantum mechanics. The symmetry does
not persist in more general systems.

The harmonic oscillator is an important example in its own right. How-
ever the isotropic harmonic oscillator in several dimensions is useful for
another reason; it gives a convenient way of introducing spherical harmon-
ics. These are important for all rotationally invariant systems.

6.1 The classical harmonic oscillator

The classical harmonic oscillator has equations of motion dx/dt = p/m and
dp/dt = −mω2x. Here m > 0 is the mass and the angular frequency ω is
defined in such a way that mω2 > 0 is the spring constant. The energy

H =
1

2m
p2 +

mω2

2
x2 (6.1)

satisfies dH/dt = 0. Thus the orbits are ellipses in phase space with fixed
energy H = E. The solutions are linear combinations of x = x(0) cos(ωt)+
p(0)/(mω) sin(ωt) and p = −mωx(0) sin(ωt) + p(0) cos(ωt). This may also
be written in terms of the energy and phase as x =

√
2E/(mω2) cos(ωt−θ)

and p = −
√

2mE sin(ωt− θ).
There is another type of solution of the classical oscillator that is time

invariant. However it is a random solution. Fix the energy E and consider
the ellipse H = E. Take the probability measure on this ellipse that is
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proportional to dt = mdx/p. This is obviously time invariant. Such a
solution is an oscillator of fixed energy but random phase.

6.2 The one dimensional quantum harmonic
oscillator

The harmonic oscillator Hamiltonian is

H =
1

2m
P 2 +

mω2

2
x2 = − h̄2

2m

d2

dx2
+
mω2

2
x2. (6.2)

We think of the operator as acting in the space of L2 functions of position;
we sometimes refer to this as the Schrödinger representation.

It is convenient to introduce a dimensionless variable s =
√

(mω/h̄)x.
In this variable the Hamiltonian is

H = h̄ω

(
−1

2

d2

ds2
+

1

2
s2

)
(6.3)

acting in L2(R, ds). We think of this as a variant of the Schrödinger rep-
resentation.

The key to the problem is the following clever factorization. Define the
annihilation operator

A = 1/
√

2

(
s+

d

ds

)
(6.4)

and the creation operator

A∗ = 1/
√

2

(
s− d

ds

)
(6.5)

and the number operator

N = A∗A = −1

2

d2

ds2
+

1

2
s2 − 1

2
. (6.6)

Then H = h̄ω(N + 1/2), and so it is sufficient to study N . It is easy to
check that N has the Hermitian symmetry property 〈Nψ, φ〉 = 〈ψ,Nφ〉.

We look for eigenvectors of N . Let φ0(s) = 1/
√
π exp(−s2/2). Then

Aφ0 = 0 and hence Nφ0 = A∗Aφ0 = 0. So φ0 is an eigenvector of N with
eigenvalue 0.

We have the commutation relation

AA∗ = A∗A+ 1. (6.7)
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It follows that
NA∗ = A∗(N + 1). (6.8)

Define φn = A∗nφ0. Then by induction

Nφn = nφn. (6.9)

It is also easy to check that Aφn = nφn−1 for n ≥ 1.
Since N is Hermitian, these eigenvectors are mutually orthogonal. In

order to see what they look like, it is convenient to change to another
representation, in which the Hilbert space is L2(R, (1/π) exp(−s2) ds). The
operator of multiplication by 1/

√
π exp(−s2/2) is an isomorphism from

this space to L2(R, ds). This new representation is called the Gaussian
representation.

In this new representation the operators become

A = 1/
√

2
d

ds
(6.10)

and

A∗ = 1/
√

2

(
2s− d

ds

)
(6.11)

and

N = A∗A = −1

2

d2

ds2
+ s

d

ds
. (6.12)

The vector φ0(s) = 1. Therefore in this representation

φn = A∗nφ0 (6.13)

is a polynomial hn(s) of degree n. We call this a Hermite polynomial of
degree n.

Back in the original representation the eigenvectors are Hermite poly-
nomials times the Gaussian, that is hn(s)1/

√
π exp(−s2/2). We call these

Hermite basis functions.
We would like to show that these eigenvectors form a basis. It is easy to

see that every polynomial of degree ≤ n is a sum of Hermite polynomials
of degree ≤ n. So this reduces to show that the functions p(s) exp(−s2/2),
where p(s) is a polynomial in s, are dense in L2. This follows from the
density theorems of a later section.

It is easy to check by induction that the norms of these basis vectors
are given by ‖φn‖2 = n!. Most treatments replace these by vectors of norm
one, but we will not bother to do that. The price we pay is that the discrete
measure is not counting measure, but instead weights each point by 1/n!.
Thus the square of the norm on `2 must be taken to be

∑
|cn|2/n!. The

corresponding vector in H is given by f =
∑
n cn/n!φn where cn = 〈φn, f〉.

We summarize with the following theorem.
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Theorem 12 Let H be the harmonic oscillator Hamiltonian acting in H.
Then the Hermite basis functions provide an isomorphism W from H to
`2(N, 1/n!) such that the action of H is isomorphic to multiplication by
h̄ω(n+ 1/2), where n = 0, 1, 2, 3, . . ..

Now we look at some special solutions of the Schrödinger equation for
the harmonic oscillator. We begin with analogs of the time-dependent so-
lutions. Let z = (a + ib)/

√
2 be a complex number. Define the coherent

state φz to be proportional to exp(ibs) exp(−(s−a)2/2) in the Schrödinger
representation. This is proportional to exp((a+ ib)s) in the Gaussian rep-
resentation. It is obviously an eigenvector of A with eigenvalue z. If we
expand this eigenvector in terms of Hermite basis functions as

∑
n cn/n!φn,

we obtain from Aψ = zψ the recursion
∑
n cn/(n−1)!φn−1 =

∑
n zcn/n!φn.

Thus cn+1 = zcn and finally cn = znc0. We can arrange that the coherent
state vector has norm one by taking c0 = exp(−|z|2/2). Thus the coeffi-
cients in the number representation are cn = zn exp(−|z|2/2). Note that
the numbers |cn|2/n! = |z|2n/n! exp(−|z|2) are a Poisson distribution with
mean |z|2. The expected energy is thus h̄ω(|z|2 + 1/2).

Proposition 15 The time evolution of a coherent state is given by

Utφz = exp(−iωt/2)φz exp(−iωt). (6.14)

Proof: The time evolution in terms of the coefficients is

exp(−iωt(n+ 1/2))cn = exp(−iωt/2)(z exp(−iωt))nc0. (6.15)

The first factor has no physical effect, since it is independent of n. Thus
the effect of the time evolution is to replace z by z exp(−itω). This replaces
a+ib by (cos(ωt)−i sin(ωt))(a+ib). In particular a is replaced by a cos(ωt)+
b sin(ωt) and b is replaced by −a sin(ωt)+b cos(ωt). These special solutions
thus have a dynamics that is completely determined by the corresponding
classical dynamics. If we use

√
h̄ωz = (

√
mω2x0+i/

√
mp0)/

√
2 to translate

back into physical variables we see that this is precisely the classical time
evolution. Notice that h̄ω|z|2 is the clasical energy.

There are also analogs of the time-independent solutions. However in
quantum mechanics these are not random mixtures of other states. For
each n the Hermite basis function constructed above provides a solution
of the form exp(−iωt(n+ 1/2))φn. These are solutions of constant energy
E = h̄ω(n+ 1/2). The only time dependence is a scalar multiple, and this
does not enter into physical calculations. So from a physical point of view
this is a constant solution. Such solutions are the analogs of the random
phase solutions of the classical oscillator.
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This interpretation may be understood by looking at the form of the
wave function. This is a polynomial of degree n times a Gaussian, so
it has n zeros. These zeros are difficult to interpret in terms of a clas-
sical picture. However one may average out the effect of the zeros by
taking the inner product with a coherent state. This gives |〈φn, φz〉|2/n! =
|z|2n/n! exp(−|z|2). As a function of |z|2 this rises to a maximum at |z|2 = n
and falls off rapidly after that. If we take z real with h̄ω|z|2 = mω2x2

0,
we see that the wave function is essentially confined to the region where
mω2x2

0 ≤ h̄ωn. For large n the constraint h̄ωn has the same asymptotics
as the energy h̄ω(n+ 1/2). So this is very close to the classical restriction.

6.3 The Fourier transform

The harmonic oscillator casts new light on the Fourier transform. We work
in the Schrödinger representation with the dimensionless variables s. The
Fourier transform variable is denoted t. The Fourier transform of d/ds
is it. Similarly, the Fourier transform of multiplication by s is id/dt. It
follows that the Fourier transform of the annihilation operator s+ d/ds is
i(t+ d/dt) and the Fourier transform of the creation operator (s− d/ds) is
−i(t− d/dt). This immediately leads to the following fundamental result.

Theorem 13 The Fourier transform of the Hermite basis function given
by hn(s)1/

√
π exp(−s2/2) is equal to (−i)nhn(t)

√
2 exp(−t2/2).

Thus by using this sort of basis both in the position space and in the
wave number space, the action of the Fourier transform reduces to intro-
ducing a coefficient (−i)n.

6.4 Density theorems

In showing that the Hermite basis functions are indeed a basis, we used a
density theorem for polynomials. In this section we give the details of this
and related results. The results are valid in the ν dimensional case, so we
may as well present them in this generality.

If f is in L1, then its Fourier transform need not be in L1, nor need
it be in L2. However it is in L∞. This is enough so that the formulas in
the following proposition make sense. Recall that the approximate delta
function δε is chosen so that both δε and its Fourier transform δ̂ε are in L1

for each ε > 0.
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Proposition 16 Let f be in L1. Then f may be recovered from its Fourier
transform by computing

δε ∗ f(x) =

∫
exp(ik · x)δ̂ε(k)f̂(k) dνk/(2π)ν (6.16)

and taking the L1 limit δε ∗ f → f as ε→ 0.

Notice that it follows from this proposition that if f in L1 has a Fourier
transform f̂ = 0, then f is a null function.

The basic density result is given in the following proposition.

Proposition 17 Let f be a function in L2 that never vanishes. Then the
linear space spanned by exp(−ik · x)f(x) for all k is dense in L2.

Proof: Let g(x) in L2 be orthogonal to all the exp(−ik · x)f(x). Then
by the preceeding result the L1 function g(x)f(x) is zero.

Here is a corollary.

Corollary 5 Let f be a function in L2 that never vanishes and such that
for each k the function exp(|k · x)|)f(x) is in L2. Then the linear space
consisting of p(x)f(x) for all polynomials is dense in L2.

Proof: Expand the exponential in exp(ik · x)f(x). The partial sums
converge in L2, by the dominated convergence theorem.

The proposition also has the following L2 Wiener theorem as a corollary.

Corollary 6 Let f be a function in L2 such that its Fourier transform f̂
never vanishes. Then the linear space spanned by the translates fa for all
a is dense in L2.

Proof: This is the Fourier transform of the situation in the proposition.

6.5 The isotropic quantum harmonic oscilla-
tor

The remainder of this chapter is devoted to the isotropic harmonic oscilla-
tor. The only purpose for this is that it gives an efficient way of developing
the theory of spherical harmonics. The reader who is content with the
summary of this theory in the following chapter may omit or postpone the
following material.

In this section we describe the quantum harmonic oscillator in ν dimen-
sions. We confine the treatment to the rotationally symmetric isotropic
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oscillator, since we are mainly interested in the results for their applica-
tion to spherical harmonics. The results are parallel to the one-dimensional
results, since the basis functions in ν dimensions are obtained by taking
products of the one-dimensional basis functions.

The isotropic harmonic oscillator Hamiltonian in ν dimensions is

H =
1

2m
P2 +

mω2

2
x2 = − h̄2

2m
∇2

x +
mω2

2
x2. (6.17)

Introduce dimensionless vector variables s =
√

(mω/h̄)x. In these variables
the Hamiltonian is

H = h̄ω

(
−1

2
∇2

s +
1

2
s2

)
. (6.18)

Define operator vectors

A = 1/
√

2 (s +∇s) (6.19)

and
A∗ = 1/

√
2 (s−∇s) (6.20)

and the operator

N = A∗ ·A = −1

2
∇2

s +
1

2
s2 − ν

2
. (6.21)

Then H = h̄ω(N + ν/2), and so it is sufficient to study N .
We look for eigenvectors of N . Let φ0(s) = (1/

√
π)ν exp(−s2/2). Then

Aφ0 = 0 and hence Nφ0 = A∗ · Aφ0 = 0. So φ0 is an eigenvector of N
with eigenvalue 0.

Let Aj and A∗j be the j components of A and A∗ and define Nj = A∗jAj .
Then N =

∑
j Nj . Furthermore we have the commutation relation

AjA
∗
j = A∗jAj + 1. (6.22)

It follows that
NjA

∗
j = A∗j (Nj + 1). (6.23)

Hence by induction
NjA

∗n
j φ0 = nA∗nj φ0. (6.24)

It follows easily that if n =
∑
j nj , then

NA∗n1
1 · · ·A∗nνν φ0 = nA∗n1

1 · · ·A∗nνν φ0. (6.25)

Again there is a Gaussian representation in which the Hilbert space
is defined with a weighted measure by L2(Rν , (1/π)ν exp(−s2) dνs). The
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operator of multiplication by (1/
√
π)ν exp(−s2/2) is an isomorphism from

this space to L2(Rν , dνs).
In this new representation the operators become

A = 1/
√

2∇s (6.26)

and
A∗ = 1/

√
2 (2s−∇s) (6.27)

and

N = A∗ ·A = −1

2
∇2

s + s · ∇s. (6.28)

Notice that N is the sum of −1/2 times the Laplace operator with the
Euler operator r∂/∂r, where r2 = s2 is the radius. The vector φ0(s) = 1.
Therefore in this representation

A∗n1
1 · · ·A∗nνν φ0 (6.29)

is a polynomial of degree n =
∑
j nj in ν variables. We continue to call

this a Hermite polynomial in ν variables of degree n.
Thus back in the original representation the eigenvectors are Hermite

polynomials times a multiple of exp(−s2/2).

Proposition 18 The dimension of the space Hn of Hermite polynomials
in ν variables of degree n is dνn =

(
n+ν−1
ν−1

)
.

Proof: The dimension is the number of ways of writing n = n1 + · · ·+nν
with each nj ≥ 0. This is the number of occupation numbers when one maps
an n element set into a ν element set.

It can also be thought of as the number of ways of writing n+ ν − 1 =
n1 +1+n2 +1+ · · ·+nν−1 +1+nν . This is the number of ways of choosing
ν − 1 places (where the 1s occur) from n+ ν − 1 places.

Proposition 19 The dimension of the space Hn of Hermite polynomials
in ν variables of degree n is related to the dimension of the space in ν − 1
variables by the sum rule dνn =

∑n
m=0 d

ν−1
m .

Proof: For each m with n1+· · ·+nν−1 = m, there is a unique nν = n−m
with n1 + · · ·+ nν = n.

6.6 Spherical harmonics

The spherical harmonics now appear as special cases of Hermite polynomi-
als. We compute systematically with the operators A2 and A∗2. The point
is that these are rotation invariant by construction.
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Definition 11 The space An of solid spherical harmonics of degree n is
defined to be the space of solutions to A2y = 0 and Ny = ny in the Gaussian
representation.

Thus according to this definition the space of solid spherical harmonics
An of degree n is a subspace of the space of Hermite polynomials Hn of
degree n.

In the Gaussian representation the operators

A2 =
1

2
∇2

s (6.30)

and

N = −1

2
∇2

s + s · ∇s. (6.31)

So the condition for a solid spherical harmonic y of degree n is that
∇2

sy = 0 and s ·∇sy = ny. In other words, it must be harmonic and homo-
geneous of degree n. Notice that everything in this definition is invariant
under rotation.

The condition for being homogeneous of degree n may also be written
r(∂/∂r)y = ny, where r2 = s2. It follows that y = rnY , where Y is the
restriction of the solid spherical harmonic to the sphere r2 = 1. This leads
to the definition of a surface spherical harmonic as the restriction of a solid
spherical harmonic to the unit sphere. The surface spherical harmonic may
be thought of a a function of the angular variables alone.

Proposition 20 Let Hn be the space of Hermite polynomials of degree n in
ν dimensions. Let An be the subspace of solid spherical harmonics. Then
Hn = An ⊕ A∗2Hn−2. Furthermore, A∗2 is one-to-one from Hn−2 into
Hn.

Proof: We know that A2 sends Hn into Hn−2 and the adjoint A∗2 sends
Hn−2 into Hn. Therefore this is just the statement that Hn is the sum of
the nullspace of A2 with the range of its adjoint.

The last statement follows from the commutation relation A2A∗2 =
A∗2A2 + 2(2N + ν). It follows that

〈A∗2y,A∗2y〉 = 〈A2y,A2y〉+ 2〈y, (2N + ν)y〉. (6.32)

. Thus if A∗2y = 0, then 〈y, (2N + ν)y〉 = 0 and so y = 0.

Proposition 21 The dimension of the space An of spherical harmonics in
ν variables of degree n is aνn =

(
n+ν−2
n

)
+
(
n+ν−3
n−1

)
.



70 CHAPTER 6. THE HARMONIC OSCILLATOR

Proof: From the previous result dνn = aνn+dνn−2. Using Pascal’s triangle
we obtain

aνn =

(
n+ ν − 1

n

)
−
(
n+ ν − 3

n− 2

)
(6.33)

=

(
n+ ν − 2

n

)
+

(
n+ ν − 2

n− 1

)
−
(
n+ ν − 3

n− 2

)
(6.34)

=

(
n+ ν − 2

n

)
+

(
n+ ν − 3

n− 1

)
. (6.35)

Let us look at the first few values of ν. For ν = 1 the result is d1
p =(

p−1
p

)
+
(
p−2
p−1

)
which is 1 when p = 0 or p = 1, due to the curious fact

that
(−1

0

)
= 1. For ν = 2 the result is d2

m =
(
m
m

)
+
(
m−1
m−1

)
. This is 1 for

m = 0 and 2 for all m ≥ 1. The most famous special case is the result for
dimension three that a3

` = (`+ 1) + ` = 2`+ 1. It is worth remarking that
for dimension four we have a4

k = (k + 1)2.

Proposition 22 The dimension of the space An of spherical harmonics in
ν variables of degree n is related to the dimension of the space in ν − 1
variables by the sum rule aνn =

∑n
m=0 a

ν−1
m .

Proof: Since aνn = dνn− dνn−2 this follows from the sum rule for Hermite
polynomials.

Definition 12 The `th angular momentum subspace M` is defined to be
the direct sum of the spaces A∗2mA` for m = 0, 1, 2, 3 . . ..

The angular momentum subspaces are also defined in terms of rota-
tion invariant quantities. According to the following theorem they give a
decomposition of the Hilbert space.

Theorem 14 The Hilbert space is a direct sum of the angular momentum
subspaces: H = ⊕∞`=0M`.

Proof: We know that the Hilbert space is the direct sum of the number
subspaces: H = ⊕∞n=0Hn. On the other hand, each number subspace
Hn = ⊕`+2m=nA∗2mA`. Therefore Hn = ⊕∞`=0 ⊕m A∗2mA` = ⊕∞`=0M`.

We can look more closely at the structure of the angular momentum
spaces by looking at the summands A∗2mA`.

Proposition 23 For each dimension ν and degree ` there are polynomials
fm(r) of degree 2m in the radius r such that the space A∗2mA` consists of
fm(r)y with y in A`. These radial polynomials satisfy the relation

fm+1(r) = 2r2fm(r)− r ∂fm(r)

∂r
+ (2m+ 2`+ ν)fm(r). (6.36)
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Proof: We work in the Gaussian representation. Let y be a solid spher-
ical harmonic of degree `. The operator A∗2 is given in the Gaussian
representation by

A∗2 = 2r2 − (r
∂

∂r
+N + ν), (6.37)

where r2 = s2. The solid spherical harmonic is homogeneous of degree `,
so it is of the form y = r`Y , where Y has only angular dependence. We
proceed inductively. Let fm(r) be the radial polynomial of degree 2m. The

action of A∗2 on fm(r)y is 2r2fm(r)y− r ∂fm(r)
∂r y+ (`+ `+ 2m+ ν)fm(r)y

which is fm+1(r)y. Q.E.D.
We see from this result that the angular momentum subspaces M`

consist of radial functions times spherical harmonics of degree `. The basis
functions for the radial functions are given by the polynomials discussed in
the proposition; these are closely related to Laguerre polynomials.

6.7 Fourier transforms involving spherical har-
monics

One useful consequence of the above results is the theory of Fourier trans-
forms of the angular momentum subspaces. These consist of radial func-
tions times solid spherical harmonic of degree ` for some ` = 0, 1, 2, 3, . . ..

When ` = 0 we have radial functions. The Fourier transform of a radial
function is radial. We call this the radial Fourier transform. This transform
may be expressed in terms of Bessel functions by a formula depending on
the dimension. The explicit expression is given in standard references [SW].
The most important special cases are dimension ν = 1 and ν = 3. The
formulas for ν = 1 is

f̂(t) =

∫ ∞
0

2 cos(tr)f(r) dr. (6.38)

The formula for ν = 3 is

f̂(t) = 4π

∫ ∞
0

sin(tr)

t
f(r)r dr. (6.39)

This leads to a useful trick for reducing the three dimensional radial Fourier
transform to a one dimensional transform. Extend the radial functions
f(r) and f̂(t) to be even functions on the line. Then the three dimensional
formula becomes

tf̂(t) = 2πi

∫ ∞
−∞

e−itrrf(r) dr. (6.40)
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Each function in the subspace of A∗2mA` is taken by the Fourier trans-
form into (−i)(2m+`) times the same function. If we fix the spherical har-
monic in A` and build the radial function by summing over m, we see that
the Fourier transform of a radial function times a spherical harmonic is
another radial function times the same spherical harmonic. In particular,
the Fourier transform takes the angular momentum space into the corre-
sponding angular momentum space.

Theorem 15 The ν dimensional Fourier transform of a radial function
times a solid spherical harmonic of degree ` is (2πi)−` times the radial
Fourier transform in dimension ν + 2` times the same solid spherical har-
monic.

Proof: We work in the Schrödinger representation. It is sufficient to
check this for functions of the form fm(r)y exp(−r2/2) where fm(r) is the
radial polynomial of degree 2m. The Fourier transform is (−i)2m+` times
the same radial polynomial of degree 2m times y times exp(−r2/2) times
(2π)ν/2. On the other hand, the Fourier transform of fm(r) exp(−r2/2)
in dimension ν + 2` is (−i)2m times the same radial polynomial times
exp(−r2/2) times (2π)(ν+2`)/2. The first result is obtained from the second
result by multiplying by (2πi)−` and by y.

Example: The special case ν = 1 and ` = 1 is instructive. Let f(r)
be an even function. The solid spherical harmonic of degree one is just r.
Therefore the Fourier transform of rf(r) is obtained by taking the three

dimensional radial Fourier f̂(t) of f(r) and multiplying by t and dividing
by 2πi. This is precisely the relation between one dimensional Fourier
transforms of odd functions and three dimensional radial Fourier transforms
given above.

æ



Chapter 7

The Hydrogen Atom

7.1 The Kepler problem

In classical mechanics the Kepler problem is

dx

dt
=

p

m
(7.1)

dp

dt
= − k

r2

x

r
, (7.2)

where r = |x|. The constant m > 0 is the mass and the parameter k > 0 is
the proportionality constant in the force law. The energy is

H =
1

2m
p2 − k

r
. (7.3)

It is easy to check that dH/dt = 0.
The first step toward a solution is to use the rotational symmetry of the

problem. Consider a constant vector h that is orthogonal to x and p at
some time. Then since dx/dt is proportional to p and dp/dt is proportional
to x, it is easy to check that it remains orthogonal for all future time. It
follows that x and p always lie in the same plane.

Since the motion lies in a plane, we may introduce polar coordinates
r and θ in this plane. Write x = rn, where n is the unit vector in the
direction of x. Then the first equation gives

p = m

(
dr

dt
n + r

dθ

dt
t

)
, (7.4)

where t = dn/dθ is a unit vector in the plane which is orthogonal to n.
Note that dt/dθ = −n.

73
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Define the planar angular momentum h as the area x ∧ p of the plane
determined by x and p. Then since dx/dt is proportional to p and dp/dt
is proportional to x, it follows that h is constant. If one works out what
h is in polar coordinates the result is h = mr2dθ/dt. Therefore the second
equation may be written

dp

dθ
= −mk

h
n. (7.5)

This integrates to

p =
mk

h
t + c, (7.6)

where c is a constant vector. We may characterize the orbit by the equation

(p− c)2 = (mk/h)2. (7.7)

The momentum vector lies in a circle with center c in the plane of the
motion!

The angular momentum x ∧ p may be recomputed using this solution.
Measure the angle θ of t from the direction of c. The calculation gives
h = r(mk/h + n ∧ c) = r(mk/h + t · c) = r(mk/h + |c| cos θ). This is the
equation of a conic section.

We can now compute the energy E. It is simplest to compute the energy
at the point of the orbit when x is in the direction of c, so that c · t = 0.
Then

2mE = p2 − 2mk/r = (mk/h)2 + c2 − 2(mk/h)2 = c2 − (mk/h)2. (7.8)

It is easy to see that the conic section is an ellipse, parabola, hyperbola
depending on whether E < 0, E = 0, or E > 0. We have obtained the
following result.

Theorem 16 Fix the energy E. The allowed orbits of the Kepler problem
in momentum space are circles

(p− c)2 = c2 − 2mE (7.9)

lying in angular momentum planes h · p = 0.

Assume that E < 0. We may express the momentum circle in terms of
the energy as

p2 − 2c · p + 2mE = 0. (7.10)

Change variables by setting z = p/
√
−2mE. The equation becomes

z2 − 2a · z− 1 = 0, (7.11)
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where a is the center of the circle in the z space. Each orbit in momentum
space with fixed negative energy corresponds to such a circle (lying in the
plane determined by the angular momentum).

What do these circles have in common? The way to see is to linearize
this equation by a change of variable. The equation determining the plane
is h · z = 0 which is already linear, so we want to leave this alone.

Place the momentum plane in a space of one more dimension (say four
instead of three). Let e be the unit basis vector in the new dimension.
Then the change of variable z = z̄ + e gives the equation in the form

z̄2 − 2(a− e) · z̄ = 0, (7.12)

Now make the non-linear change of variable by the inversion z̄ = 2w̄/|w̄|2.
We get the linear equation

1− (a− e) · w̄ = 0, (7.13)

Finally, introduce a new variable w by w̄ = w−e. The final form is (a−e) ·
w = 0. This is the equation of a ν dimensional subspace passing through
through the origin in ν+ 1 dimensional space. This may be combined with
the equations h · w = 0 which determine a three dimensional subspace
passing through the origin. The intersection of these two subspaces is a
plane passing through the origin. Everything up to this point is linear.

The only trouble is that we must see the effect of the constraint e·z = 0.
Since e · z = (w2− 1)/|w̄|2, this works out to w2 = 1. This is the equation
of the ν dimensional sphere in ν + 1 dimensional space. Each solution
corresponds to a plane passing through the origin intersecting this sphere,
that is, to a great circle on the sphere.

The geometry of this change of variables is just a stereographic projec-
tion from the north pole e. The variable z̄ = z − e is proportional to the
variable w̄ = w− e, but z lies in the equatorial plane e · z = 0 while w lies
in the sphere w2 = 1.

Theorem 17 Fix a negative value of the energy. Consider z in the space
Rν of normalized momenta. Introduce a unit vector in a new dimension, so
that e·z = 0. Consider the Kepler momentum circles given by the equations
(z − a)2 = a2 + 1 and h · z = 0. Then the change of variable given by the
stereographic projection transforms them to the great circles on the three
sphere w2 = 1 in Rν+1. The corresponding equations are (a − e) ·w = 0
and h ·w = 0.

This shows that there is a remarkable ν + 1 dimensional symmetry to
the Kepler problem. There is a beautiful discussion of this in an article
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by Milnor [12]. (There is also an amusing connection between the Kepler
problem and the harmonic oscillator problem [11].) We shall see that the
higher dimensional symmetry persists in the quantum mechanical treatment
of the hydrogen atom problem.

7.2 Spherical harmonics

Spherical harmonics play a role when there is rotational symmetry. Here
we review the theory, relying on the results of the chapter on the isotropic
harmonic oscillator for most of the proofs.

The solid spherical harmonics of degree n are the polynomials y in ν
variables that are solutions of the Laplace equation ∇2

xy = 0 and of the
Euler equation x · ∇xy = ny.

The surface spherical harmonics of degree n are the restrictions Y of the
solid spherical harmonics of degree n to the sphere x2 = 1. We think of the
surface spherical harmonics as functions of the angular variables. One can
always recover the corresponding solid spherical harmonics by y = rnY ,
where r = |x| is the radius.

The dimension of the space of spherical harmonics of degree n in ν di-
mensions is denoted aνn. This quantity satisfies the sum rule aνn =

∑n
m=0 a

ν−1
m .

We now march through the first few cases, beginning with ν = 1. The
only solid spherical harmonics in one variable are multiples of 1 and x, in
degrees 0 and 1 respectively. Thus d1

0 = d1
1 = 1 and d1

n = 0 for n ≥ 2. The
surface spherical harmonics are 1 and ±1. They correspond to the notions
of even and odd parity.

For ν = 2 the solid spherical harmonics of degree m are linear combi-
nations of (x + iy)m and (x − iy)m. Thus d2

0 = 1 while d2
m = 2 for all

m ≥ 1. The surface spherical harmonics of degree m are linear combina-
tions of exp(imφ) and exp(−imφ). An alternate description is as linear
combinations of the even parity cos(mφ) and the odd parity sin(mφ). In
quantum mechanics ±m is called the magnetic quantum number.

For ν = 3 the story is more complicated. The dimension of the space of
spherical harmonics of degree ` is d3

` = 2`+ 1. For ` = 0 the solid spherical
harmonics are multiples of 1. For ` = 1 they are linear combinations of
z, (x + iy), (x − iy), or alternatively of x, y, z. For ` = 2 they are spanned
by 3z2 − r2, z(x + iy), z(x − iy), (x + iy)2, (x − iy)2. Another basis would
be 2z2 − x2 − y2, zx, zy, x2 − y2, 2xy. For ` = 3 the basis vectors may be
taken to be 5z3−3zr2, (5z2− r2)(x+ iy), (5z2− r2)(x− iy), z(x+ iy)2z(x−
iy)2, and(x + iy)3. . Notice how they are built up out of polynomials in z
and r2 times spherical harmonics in x and y. (This is the reason for the
sum rule.) One can go on this way systematically building basis vectors.
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The corresponding surface spherical harmonics are obtained by restricting
to r2 = x2 + y2 + z2 = 1 and making the substitutions z = cos θ and
x + iy = sin θ exp(iφ). There are beautiful pictures of these in chemistry
books. In quantum mechanics ` is called the azimuthal quantum number.

For ν = 4 the dimension of the space of spherical harmonics of degree
k is given by the sum rule. Since

∑k
`=0(2` + 1) = (k + 1)2 this gives the

result d4
k = (k + 1)2. We shall see that for the Hydrogen problem k + 1 is

the principal quantum number.
The fundamental result about spherical harmonics is the following.

Theorem 18 Consider the space L2(Sν−1) of functions on the ν − 1 unit
sphere in ν dimensions. Let A` be the finite dimensional subspace of surface
spherical harmonics of degree `. Then each subspace A` is rotation invari-
ant, and there is a direct sum decomposition L2(Sν−1) = ⊕`A` representing
every L2 function on the sphere as a sum of spherical harmonics.

We may write the Laplace operator in polar form as

∇2
x =

1

rν−1

∂

∂r
rν−1 ∂

∂r
+

1

r2
∆S , (7.14)

where ∆S is the Laplacian on the sphere. We have the following fundamen-
tal result.

Proposition 24 Let Y be a surface spherical harmonic of degree `. Then
Y is an eigenfunction for the angular Laplacian with

∆SY = −`(`+ ν − 2)Y. (7.15)

Proof: Let y = r`Y be the corresponding solid spherical harmonic.
Then ∇2

xy = 0 gives `(`+ ν − 2)Y + ∆SY = 0. Q.E.D.
This result is applicable to the problem of finding eigenfunctions for

Schrödinger operators of
H = ∇2

x + v(r) (7.16)

with rotational symmetry. Write the eigenfunction φ as f(r)Y , where Y is
a spherical harmonic of degree `. Then the equation Hφ = Eφ gives the
radial equation

1

rν−1

∂

∂r
rν−1 ∂

∂r
f(r) +

`(`+ ν − 2)

r2
f(r) + v(r)f(r) = Ef(r). (7.17)

Thus every eigenfunction f(r) of this radial equation gives rise to a dν`
dimensional space of eigenfunctions φ = f(r)Y of the original problem.
This multiplicity of eigenvalues is called the degeneracy associated with
rotational symmetry. Thus when ν = 3 the rotational degeneracy is 2`+ 1.
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7.3 The quantum hydrogen atom

The Hamiltonian for the Hydrogen atom is

H =
1

2m
P2 − Ke2

r
. (7.18)

Here r = |x| is the distance from the fixed proton with charge e. The
electron has mass m and charge −e. The potential energy is thus −Ke2/r,
where K is the proportionality constant in the electrostatic force law. (The
value of K depends on the system of units.)

We let the dimension ν > 1 of space be variable, but we are of course
most interested in the case ν = 3. This problem is spherically symmetric,
so it is not surprising that the spherical harmonics in dimension ν would
play a role. The surprise is that the analysis involves spherical harmonics
in dimension ν + 1.

Fix E < 0. We wish to solve the eigenvalue equation Hψ = Eψ. The
first task is to transform this to momentum variables.

Lemma 2 The Fourier transform of 1/|x| is γ/|k|ν−1, where the constant
gamma is given by γ = 1/π · (2π)ν/ων−2 = 2/(ν − 1) · (2π)ν/ων .

In this expression ων is the volume of the unit sphere Sν contained in
ν + 1 dimensional space. Thus for instance ω0 = 2, ω1 = 2π, ω2 = 4π,
ω3 = 2π2, and ω4 = 8π2/3. There is a general recursion relation ων =
2π/(ν − 1) · ων−2. (Do not confuse the volume of the sphere with the
volume Ων = ων−1/ν of the ν dimensional ball.)

Proof: Since 1/|x| is a function of radius, by rotational symmetry its
Fourier transform is also a function of radius. Since 1/|x| transforms under
a scale change of 1/a by a factor of a, its Fourier transform transforms
under a scale change of a by a factor of a/aν . Thus the Fourier transform
is identified as a multiple of 1/|k|ν−1.

It remains to find the multiple γ. Take the inner product of 1/|x| with
(2π)−ν/2 exp(−x2/2). By the Plancherel theorem this is the same as the
inner product of γ/|k|ν−1 with the Fourier transform exp(−k2/2). One
can evaluate these integrals in polar coordinates and thus obtain the stated
value of γ. Q.E.D.

It follows from this lemma and the change of variable p = h̄k that in the
Fourier transform representation the Hydrogen atom eigenvalue equation is

p2

2m
f(p)−Ke2γ

∫
h̄ν−1

|p− p′|ν−1
f(p′)

dνp′

(2πh̄)ν
= Ef(p). (7.19)
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Let z = p/
√
−2mE. The equation may be written

(z2 + 1)g(z) =
4η

ων(ν − 1)

∫
1

|z− z′|ν−1
g(z′) dνz′, (7.20)

where η = h̄/a0(−2mE)−1/2 and a0 = h̄2/(mKe2) is the Bohr radius.
Now introduce the extra dimension and make the variable changes. First

is the shift z = z̄ + e, where e in the unit vector in this new dimension.
This gives

z̄2h(z̄) =
4η

ων(ν − 1)

∫
1

|z̄− z̄′|ν−1
g(z̄′) dν z̄′. (7.21)

This says that the left hand side is a harmonic function in ν+1 dimensions.
Next comes the inversion z̄ = 2w̄/|w̄|2. It is not difficult to compute

that that distances are distorted according to the formula |z− z′| = 2|w−
w′|/(|w̄||w̄′|). Thus the ν dimensional volume element is distorted by a
factor of 2ν/|w̄|2ν .

Let ψ(w̄) = h(z̄)/|w̄|ν+1. This Kelvin transform of the left hand side is
also a harmonic function! The equation becomes

ψ(w̄) =
2η

ων(ν − 1)

∫
1

|w̄ − w̄′|ν−1
ψ(w̄′) dw̄′. (7.22)

Finally, let w̄ = w − e. We get the final integral equation

φ(w) =
2η

ων(ν − 1)

∫
Sν

1

|w −w′|ν−1
φ(w′) dw′. (7.23)

This is an equation for a function on the unit sphere in Rν+1.
The preceding equation defines an entension of the function φ(w) to the

unit ball in Rν+1. This extended function is harmonic in the interior of the
ball.

Now let p(w,w′) = (1−w2)/|w−w′|ν+1 be the Poisson kernel for the
unit ball in Rν+1.

Lemma 3 The Greens’s function and the Poisson kernel are related by(
w · ∇w +

ν − 1

2

)
1

|w −w′|ν−1
=
ν − 1

2
p(w,w′). (7.24)

This converts our equation to the form(
w · ∇w +

ν − 1

2

)
φ(w) =

η

ων

∫
Sν

p(w,w′)φ(w′) dw′ (7.25)

valid for |w| < 1. The next lemma shows how to pass to the limit |w| = 1.
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Lemma 4 Consider a function φ defined on the unit sphere. Define a
function in the interior of the unit ball by

φ(w) =

∫
Sν

p(w,w′)φ(w′) dw′/ων . (7.26)

Then φ is the harmonic function in the interior of the unit ball |w| < 1
that has boundary value φ on the unit sphere |w| = 1.

Proof: It is clear that p(w,w′) ≥ 0 and approaches zero rapidly when
w approaches a point on the sphere other than w′. Thus to show that it
acts like an approximate delta function, we must show that the integral∫

Sν

p(w,w′) dw′/ων = 1 (7.27)

for |w| < 1.
The integral may be calculated by the following trick. Take w and w′

on the unit sphere. Let r < 1. By the mean value property for harmonic
functions [SW] ∫

Sν

p(rw′,w) dw′/ων = p(0,w′) = 1. (7.28)

Then note that p(rw′,w) = p(rw,w′). Q.E.D.
Now let φ be the solution of the eigenvalue equation. We see that(

w · ∇w +
ν − 1

2

)
φ(w) = ηφ(w). (7.29)

This φ is not only harmonic but homogeneous of degree k = η− (ν − 1)/2.
It follows that φ is a spherical harmonic. Since k = 0, 1, 2, 3, . . . are the
only possible values, we obtain that η = k + (ν − 1)/2 is an eigenvalue of
the operator on the left hand side with multiplicity aν+1

k , the dimension of
the space of spherical harmonics.

Notice that when ν = 3 this says that η = k + 1 is an eigenvalue of
the operator on the left hand side with multiplicity (k + 1)2. The number
n = k + 1 is the principle quantum number.

Now recall that η = h̄/a0(−2mE)−1/2. Thus η = n gives

E = − h̄2

2ma2
0

1

n2
= −mK

2e4

2h̄2

1

n2
. (7.30)

This is the famous formula for the Hydrogen energy levels.
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The treatment of the quantum mechanical Hydrogen atom with higher
dimensional symmetry goes back to V. Fock in 1935. Much more is known
about the symmetry of the hydrogen atom; the positive part of the spec-
trum may also be treated this way [1]. (There is also an interesting direct
connection with the quantum harmonic oscillator [3].)

Problems

1. Let E be the Euler operator and ∆ be the Laplace operator. Show
that ∆E − E∆ = 2∆.

2. Show that if g is harmonic, then Eg is harmonic.

7.4 The Hydrogen degeneracy

Now we fix the physical dimension ν = 3. For a spherical symmetric prob-
lem in three dimensions one expects a multiplicity or degeneracy of eigen-
values of a3

` = 2` + 1. This ` is the azimuthal quantum number. Recall

that a3
` =

∑`
m=0 a

2
m where m is the magnetic quantum number.

Due to spherical symmetry in four dimensions get a4
k = (k + 1)2 = n2

degeneracy, where n = k+ 1 is the principal quantum number. Recall that
a4
k =

∑k
`=0 a

3
` =

∑k
`=0(2`+ 1) where ` is the azimuthal quantum number.

We have seen that the eigenvalue is −R 1
(k+1)2 = −R 1

n2 where R =

mK2e4/(2h̄2).
The actual situation is complicated by the fact that the electron has

spin. For our present purposes this simply means that the Hilbert space
comes in two identical copies, so that all eigenvalues have a multiplicity
two due to spin. Thus in the presence of spin a general spherically sym-
metric problem will have eigenvalues with degeneracies 2(2`+ 1), while the
Hydrogen atom problem with its extra symmetry will have degeneracies
2n2.

Here is a table of (n, `) states for the Hydrogen atom. Each entry in a
column with angular momentum ` corresponds to 2(2` + 1) states. Thus
the numbers corresponding to an entry in the first four columns are 2, 6,
10, 14. Each row corresponds to a state of degeneracy 2n2. Thus the sum
for the first four rows are 2, 8, 18, and 32. This is displayed in Table 1.

7.5 The periodic table

The Hydrogen atom problem is the beginning of an understanding of the
entire periodic table of the elements. The elements are numbered by a
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(1,0)
(2,0) (2,1)
(3,0) (3,1) (3,2)
(4,0) (4,1) (4,2) (4,3)
(5,0) (5,1) (5,2) (5,3) (5,4)
(6,0) (6,1) (6,2) (6,3) (6,4) (6,5)

Table 7.1: (n,`) table of Hydrogen states.
Each entry represents 2(2`+ 1) states.
Each row has 2n2 states of energy −R/n2.

variable Z called atomic number. An neutral atom of element Z consists
of a nucleus with charge Ze (which we take to be fixed) and Z electrons,
each of charge −e. So we need to understand the behavior of a system of Z
particles (the electrons). The correct procedure is to take a wave function
that depends on the coordinates (position and spin) of all the electrons.

The most important new effect in such a multi-electron system is Fermi
statistics. This says that the wave functions must be anti-symmetric with
respect to exchange of the coordinates of a pair of particles.

One consequence of the Fermi statistics is the Pauli exclusion principle.
This says that a basis for the multi-electron system may be obtained from
one-electron wave functions for the individual electrons; however no one-
electron basis function can appear twice. (The reason is that the multi-
electron wave functions are anti-symmetrized products, so that a repeated
factor must be equal to its negative.)

In particular, for a system of Z electrons with no mutual interaction
the lowest energy eigenfunction is obtained from the first Z one-electron
energy eigenfunctions by anti-symmetrization.

There are two kinds of electrostatic forces, an attractive force between
each electron and the nucleus and a repulsive force between each pair of
electrons. If we neglect the repulsive force, then we have Z one-electron
problems, each of which is essentially the same problem as the Hydrogen
atom. Thus by the Pauli exclusion principle the multi-electron ground state
should correspond to the first Z Hydrogen states. Recall that these states
come in groups of 2 · n2 states with the same energy. The states fill up in
order of increasing n.

In fact there is electron-electron repulsion, and this makes the problem
very difficult. However one can make some heuristic guesses about the
electronic configurations based on the following remarks.

The first remark is one can approximate the problem by a problem in
which one outer electron experiences the force due to the nucleus and an
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average force due the the other electrons. The nucleus has charge Ze and
the other Z−1 electrons have total charge −(Z−1)e, so the outer electron
should find itself in orbit about a spread-out positive charge of e. So in this
approximation the situation is very much like the Hydrogen problem. The
state of lowest n compatible with the exclusion principle should determine
the ground state of the atom.

There is however, an important difference. For the Hydrogen problem
the energy level depends only on the principal quantum number n. For
the present problem it also depends on the angular momentum quantum
number `. The reason is that when ` is small, the wave function has a
significant part that is concentrated near the nucleus, inside the orbits of the
other electrons. Thus the effect of the nuclear charge Ze is not completely
compensated by the the charge −(Z − 1)e of the other electrons. The
outermost electron with small ` experiences a stronger attractive force and
has a lower energy. Thus the lowest energy state of the atom should come
when the n and ` for the outer electron are both small.

What combination of n and ` should be minimized? The empirical facts
are fairly well summarized in the n+` rule. (Recall that 0 ≤ ` ≤ n−1.) This
rule says that to find the next one-electron state that is filled in building
up the ground state of the multi-electron atom, first minimize n+ `. Then
minimize n.

This rule allows a prediction of the properties of the outer electrons
in the periodic table. In the first version the table is listed by increasing
Z. Each entry is characterized by listing the values of n and of `. The Z
that have a given value of n and ` are grouped in one entry. The number
of elements that correspond to an entry in one of the columns is given by
2(2`+ 1), that is, by 14, 10, 6, 2 for angular momentum 3,2,1,0. These are
listed in Table 2. Notice that in this arrangement each row has decreasing

(1,0)
(2,0)

(2,1) (3,0)
(3,1) (4,0)

(3,2) (4,1) (5,0)
(4,2) (5,1) (6,0)

(4,3) (5,2) (6,1) (7,0)

Table 7.2: (n,`) table of elements from n+ ` rule.
Each entry represents 2(2`+ 1) elements.

` values.
In the conventional periodic table the final ` = 0 values are grouped
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with the following decreasing sequence of values of ` ≥ 1. Thus the number
of elements that goes with an entry in one of the columns is 2, 14,10, 6.
The totals that go with the first six rows are thus 2, 8, 8, 18, 18, 32. This
is shown in Table 3.

(1,0)
(2,0) (2,1)
(3,0) (3,1)
(4,0) (3,2) (4,1)
(5,0) (4,2) (5,1)
(6,0) (4,3) (5,2) (6,1)
(7,0) (5,3)

Table 7.3: (n, `) values in periodic table of elements.
Each entry represents 2(2`+ 1) elements.
Arrangement is ` = 0, 3, 2, 1.

If we put in the atomic numbers in this order we get something very
close to the periodic table from chemistry. The first two columns are the
2 ` = 0 states. The next column replaces the 14 columns corresponding
to ` = 3. The next 10 columns are the ` = 2 states. The final 6 columns
are the ` = 1 states. One should compare this ideal table with the actual
periodic table; they are almost the the same. With careful inspection one
can see the patterns of three and even four dimensional spherical harmonics
in the properties of the chemical elements. The full glory is seen in Table 4.

1 2
3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57–70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
87 88 89–102

Table 7.4: Z values in ideal periodic table of elements.
Arrangement is ` = 0, 3, 2, 1.

There is another terminology for the angular momentum values ` =
0, 1, 2, 3 that came from spectrographic history and is now standard in
chemistry. The numbers are replaced by the letters s, p, d, f. (The first
three letters are not in any particular sequence, but come from empirical
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classifications of of spectral lines as sharp, principal, and diffuse.) Thus an
s state is spherically symmetric, a p state transforms under rotation like an
ordinary vector, and d and f states are more complex spherical harmonics.

The actual names of the elements are of course also determined by his-
tory. Cultured individuals are not expected to know the entire table by
heart, but they should perhaps memorize the first 18 entries: Hydrogen,
Helium; Lithium, Beryllium; Boron, Carbon, Nitrogen, Oxygen, Fluorine,
Neon; Sodium, Magnesium; Aluminum, Silicon, Phosphorus, Sulfur, Chlo-
rine, Argon. The first 54 entries are listed in Table 5.

H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca SC Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Table 7.5: First 54 elements in the periodic table of elements.
Arrangement is ` = 0, 2, 1.

In summary, the rich patterns of chemistry are determined by numbers
arising in the mathematics of spherical harmonics.

1. The dimension of the space of one-dimensional spherical harmonics
of degree p is 1 when p = 0 and 1 when p = 1 and 0 for p ≥ 2.

2. The dimension of the space of two-dimensional spherical harmonics
of degree m is 1 when m = 0 and 1 + 1 = 2 for m ≥ 1.

3. The dimension of the space of three-dimensional spherical harmonics
of degree ` is 1 +

∑`
m=1 2 = 2`+ 1.

4. The dimension of the space of four-dimensional spherical harmonics
of degree k is

∑k
`=0(2`+ 1) = (k + 1)2.

All of these numbers are doubled due to spin. In the Hydrogen problem
the symmetry is four dimensional, so the multiplicity of eigenvalues is 2(k+
1)2. The four dimensional symmetry comes from a steoregraphic projection
that relates the three-dimensional momentum space to a three dimensional
sphere in four dimension space. By a miracle the problem turns out to be
rotation invariant in four dimensions.

In more complicated atoms the symmetry is only three dimensional, so
the multiplicities that are most apparent are 2(2` + 1). However enough
of the four dimensional symmetry remains that the pattern can still be
detected in the periodic table.æ
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Part II

Self-adjoint Operators

87





Chapter 8

The spectral theorem

This chapter is devoted to the spectral theorem. We first prove the theorem
for unitary operators and then deduce the theorem for self-adjoint operators
as a consequence. The first result is that a unitary operator is isomorphic
to a multiplication operator acting in L2, where the multiplication is by a
function of absolute value one. The second result says that a self-adjoint
operator is isomorphic to multiplication by a real function. The passage
from the first to the second result is obtained by observing that a self-adjoint
operator may always be expressed as a function of a unitary operator.

There are many proofs of the spectral theorem. All of them require
some sort of approximation argument. However there are many variants
to the argument and many stages at which the argument can be applied.
One can work directly with the self-adjoint operator [K, 9], one can work
with the resolvent [N2], one can work with the unitary Cayley transform
[vN] (as we do), or one can work with the unitary group. There is a very
interesting approach using the resolvent and contour integration [L].

8.1 Difference approximations

Our main interest is the spectral theorem for self-adjoint operators. How-
ever we begin with some remarks meant to motivate the approach in terms
of unitary operators.

The first thing to notice is that when a self-adjoint operator A has a
spectral representation, then the Schrödinger equation has a nice solution
in terms of unitary operators. However even if there is a spectral represen-
tation, one may not know very explicitly what it is. Therefore it would be
desirable to get at a solution without using the spectral representation.

89
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One such strategy for solving the Schrödinger equation is by the use of
difference methods. We shall assume that there is a spectral representation
and explore the convergence of the difference methods.

Let ψ(t) = Utψ be the solution of the abstract Schrödinger equation

i
dψ(t)

dt
= Aψ(t). (8.1)

Assume that we want to solve the equation by a finite difference method.
One can approximate the equation by the forward difference approximation

i(ψ(t+ h)− ψ(t)) = hAψ(t). (8.2)

This has solution
ψ(t+ h) = (1− ihA)ψ(t). (8.3)

The obvious attempt to find a solution of the differential equation is

Utψ = lim
n→∞

((1− i(t/n)A))
n
ψ. (8.4)

However the conditions for convergence are going to be very delicate when
A is unbounded. Even though Ut is unitary, the approximating operators
are not even continuous. This method is thus delicate theoretically and
useless in practice.

One can do much better with the backward difference approximation

i(ψ(t+ h)− ψ(t)) = hAψ(t+ h). (8.5)

This has solution
ψ(t+ h) = (1 + ihA)−1ψ(t). (8.6)

which is expressed in terms of a bounded operator It is not difficult to verify
that the solution of the differential equation is

Utψ = lim
n→∞

(
(1 + i(t/n)A)−1

)n
ψ. (8.7)

However it is irritating that one is trying to approximate a unitary operator
by operators that are not unitary.

Perhaps best of all is the forward-backward difference approximation

i(ψ(t+ h)− ψ(t)) = hA(ψ(t+ h) + ψ(t))/2. (8.8)

This has solution

ψ(t+ h) = (1− (i/2)hA)(1 + (i/2)hA)−1ψ(t). (8.9)
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which is continuous. We have

Utψ = lim
n→∞

(
(1− (i/2)(t/n)A)(1 + (i/2)(t/n)A)−1

)n
ψ. (8.10)

This time the approximating operators are unitary.
We thus see that there are several operators that are related to the

abstract Schrödinger equation. There is the operator A that defines the
equation. There is the unitary group Ut = exp(−itA) that gives the solu-
tion. The unitary group may be approximated by the backward difference
method. This uses bounded operators of the form (1 − ihA)−1, where h
is real. Such an operator are called a resolvent operator of A. Finally the
unitary group may be approximated by the forward-backward difference
method. This uses unitary operators of the form U = (1 − i(h/2)A)(1 +
i(h/2)A)−1, where h is real. Such an operator is called a Cayley transform
of A.

The strategy for proving the spectral theorem is now clear. Start with
a self-adjoint operator A. Consider its Cayley transform U . The integer
powers Un define an unitary dynamics that approximate the dynamics of
the Schrödinger equation. Work with this dynamics to prove a spectral
theorem for the unitary operator. Then recover the spectral theorem for
the self-adjoint operator by the inverse of the Cayley transform.

One could also attempt to use the true Schrödinger dynamics to prove
the spectral theorem. The trouble with this is that one then has to solve
the Schrödinger equation without use of a spectral representation. This
can be done by showing directly that the approximate dynamics converge
to the true dynamics, but this approach is slightly more technical.

8.2 Spectral theorem for unitary operators

We now investigate the structure of unitary operators from a Hilbert space
to itself. This is the sort of operator we expect to encounter in quantum
mechanical time evolution. The fundamental result is the spectral theorem.

The strategy may be understood by looking at the case when there is a
basis of eigenvectors, so that the unitary operator U satisfies Uφj = eiθjφj .
Let ψ =

∑
j cjφj be an arbitrary vector. Then

〈ψ,Unψ〉 =
∑
j

exp(inθj)|cj |2 =

∫ 2π

0

einθ dµ(θ), (8.11)

where dµ(θ) =
∑
j |cj |2δ(θ − θj) dθ. In this case the measure associated

with the operator U and the vector ψ is concentrated on those eigenvalues
such that ψ has a non-zero component in the eigenvector direction.
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Not every unitary operator has a basis of eigenvectors in the Hilbert
space. Correspondingly, not every spectral measure µ is discrete. However
the above example suggests that one attempt to get at the measure µ by
expressing its integral with trigonometric functions einθ directly in terms
of Hilbert space quantities. The following proposition shows that this can
be accomplished in general. The proof of the proposition will follow from
the two lemmas immediately below.

Proposition 25 Let U be a unitary operator from H to itself. Let ψ be a
(unit) vector in H. Then there exists a (probability) measure µ on the unit
circle such that

〈ψ,Unψ〉 =

∫ 2π

0

einθ dµ(θ). (8.12)

In order to prove this result we must first characterize the functions
of the form un = 〈ψ,Unψ〉. Let u be a function from the integers to the
complex numbers. Then u is said to be of positive type if for every sequence
a of complex numbers with finite support∑

m

∑
n

a∗mun−man ≥ 0. (8.13)

Notice that if u is of positive type, then in particular for each n the 2
by 2 matrix (

u0 un
u−n u0

)
(8.14)

is positive. As a consequence u0 ≥ 0, u−n = u∗n, and |un| ≤ u0.

Lemma 5 Let U be a unitary operator and ψ be a vector in H. Then
un = 〈ψ,Unψ〉 is a positive type function of the integer variable n.

Proof: Let U be a unitary operator and ψ be a vector in H. Then
U∗ = U−1 and so

〈Umψ,Unψ〉 = 〈ψ,Um
∗
Unψ〉 = 〈ψ,Un−mψ〉. (8.15)

Then

0 ≤ ‖
∑
n

anU
nψ‖2 = 〈

∑
m

amU
mψ,

∑
n

anU
nψ〉 =

∑
m

∑
n

a∗m〈ψ,Un−mψ〉an.

(8.16)

Lemma 6 Let u be a function of positive type. Then there exists a unique
measure µ on the unit circle such that

un =

∫ 2π

0

einθ dµ(θ). (8.17)
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Proof: A trigonometric polynomial is a function of the form p(eiθ) =∑
cne

inθ, a polynomial in positive and negative powers of eiθ. It is a
function on the unit circle. We associate to each such polynomial the
complex number L(p) =

∑
cnun. This is clearly linear.

If the polynomial is real, then c−n = c∗n. Since also u−n = u∗n, it follows
that L(p) is real.

A lemma of Fejér and Riesz (see below) says that if a trigonometric
polynomial satisfies p(eiθ) ≥ 0, then there exists another trigonometric
polynomial q(eiθ) such that p(eiθ) = |q(eiθ)|2. Set q(eiθ) =

∑
n ane

inθ.
It then follows from the positive type condition that L(p) = L(|q|2) =∑
m

∑
n a
∗
manun−m ≥ 0.

To each trigonometric polynomial p(eiθ) we have associated the number
L(p). This assigns positive numbers to positive polynomials. It follows
that the operation preserves order. It also send constant polynomials to
the corresponding constant times u0. In particular, if −c ≤ p(eiθ) ≤ c, then
−cu0 ≤ L(p) ≤ cu0. In other words this is a continuous linear functional on
trigonometric polynomials, with the norm of uniform convergence. It is well
known (for example from the Stone-Weierstrass approximation theorem)
that trigonometric polynomials on the circle are dense in the continuous
functions on the circle. It follows that this is a continuous linear functional
on the continuous functions. It is a well-known theorem of Riesz that every
such functional determines a measure (that is, an integral in the sense we

have discussed). So we have L(p) =
∫ 2π

0
p(eiθ) dµ(θ), where the integration

is over the circle. Q.E.D.

Remark: The claim is that the integral satisfies all the properties of
the integral, including the monotone convergence theorem. In particular,
the original functional L defined on the continuous functions must satisfy
the monotone convergence theorem. It is natural to ask why this should
always be so. This is explained by Dini’s theorem, a result about con-
tinuous functions on a compact space. The theorem says that monotone
pointwise convergence of continuous functions to a continuous function im-
plies uniform convergence. Of course this in turn implies convergence of
the functionals.

In the above proof we used the lemma of Fejér and Riesz.

Lemma 7 If the trigonometric polynomial p(eiθ) is positive, then there ex-
ists another trigonometric polynomial polynomial q(eiθ) such that p(eiθ) =
|q(eiθ)|2.

Proof: This is a result about trigonometric polynomials, which may
be thought of as ordinary polynomials in z and z−1, where the complex
number z is restricted to the unit circle |z| = 1. We may as well assume
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in the proof that p(z) > 0 for |z| = 1, since the hypothesis as stated is a
limiting case.

We now look at these polynomials without the restriction that |z| = 1.
The reality condition translates to the condition p(z) = p(1/z∗)∗. Now
assume that p(z) is of degree k in z and 1/z. Then r(z) = zkp(z) is of
degree 2k in z. Furthermore r(z) = z2kr(1/z∗)∗. From this it is clear that
for every root a of r(z), there is a corresponding root 1/a∗. Since p(z) has
no roots on the unit circle, neither does r(z). Hence the roots of r(z) occur
in pairs. This gives the representation

r(z) = b
∏
i

(z − ai)(z − 1/a∗i ). (8.18)

This converts into a representation

p(z) = c
∏
i

(z − ai)(1/z − a∗i ). (8.19)

In order to have p(z) > 0 for |z| = 1 we must have c > 0. Therefore we may
take q(z) =

√
c
∏
i(z− ai). When we restrict to the unit circle, we may use

1/z = z∗, and so p(z) = q(z)q(z)∗ = |q(z)|2. Q.E.D.

Theorem 19 Let U be a unitary operator from H to itself. Then there
exists a measure space and associated Hilbert space L2(X,µ) of square-
integrable functions, an isomorphism W from H to L2, and a measurable
function υ with |υ| = 1 such that U = W−1υW . Every unitary operator is
isomorphic to a multiplication operator (multiplication by a function with
modulus one).

Proof: For a unit vector ψ in H let Hψ be the closed linear subspace
generated by Unψ for integer n. Then U restricted to Hψ is a unitary
operator. The first part of the proof is to prove a spectral representation
for this restricted operator.

Since U is unitary, for every trigonometric polynomial q(eiθ) with p(eiθ) =
q(eiθ)∗q(eiθ) we have p(U) = q(U)∗q(U). Therefore for every trigonometric
polynomial q(eiθ) we have

‖q(U)ψ‖2 = 〈ψ, q(U)∗q(U)ψ〉 =

∫ 2π

0

q(eiθ)∗q(eiθ) dµ(θ) =

∫ 2π

0

|q(eiθ)|2 dµ(θ).

(8.20)
Therefore if q(U)ψ = 0, then q(eiθ) = 0 for all θ except for a set of µ
measure zero. Therefore q(eiθ) is a nul function and may be identified with
zero in the space L2(S, µ) of square-integrable functions on the circle.
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It follows that we may define an unitary operator Wψ from Hψ to
 L2(S, dµ) by Wψq(U)ψ = q(eiθ). (Note that in particular Wψψ = 1.)
Furthermore it is easy to check that WψUq(U)ψ = eiθWψq(U)ψ. It follows
by continuity that WψUχ = eiθWψχ for all χ in Hψ. That is, we have a
spectral representation for the part of U in the subspace Hψ.

The second part of the proof is to piece together these spectral repre-
sentations for subspaces into a spectral representation for the entire space.
Consider families ψj of vectors such that Hψj are mutually orthogonal.
Take a maximal such family.

Let M be the closed linear subspace of consisting of all vectors φ =∑
j φj where φj is in Hψj .

Lemma 8 Let U be a unitary operator from H to itself. Let M be a closed
linear subspace of H that is invariant under U and U−1. Then M⊥ is
invariant under U and U−1.

By use of the lemma we see that M = H. If this were not the case,
then by the projection theorem there would be a unit vector ψ orthogonal
to M . Then we could construct another closed linear subspace Hψ. This
would contradict the maximality.

Now take as many copies Sj of the unit circle as there are vectors ψj .
Let X be the disjoint union of the Sj . Each point x in X is determined by
a pair (θ, j). For each j the measure µj is the measure determined by U
and ψj . Define the measure µ to be the measure that restricts to µj on the
jth circle. Define the function υ by υ(x) = υ(θ, j) = eiθ.

Now for every φ in H we define

Wφ(x) = Wφ(θ, j) = Wψjφj(θ). (8.21)

It is easy to check that for each x = (θ, j) in X we have

WUφ(x) = WψjUφj(θ) = eiθWψjφj(θ) = υ(x)Wφ(x). (8.22)

Thus we have found the required spectral representation. Q.E.D.
The construction in the proof of the theorem gives a measure, but does

not tell much about whether the measure is point or continuous. It is
important to note that in either case certain functions that are are very
different may define the same member of L2. In particular, when the mea-
sure consists only of masses at certain points, then the values of functions
matter only at these points. In this case one is essentially dealing with a
space `2, even though the construction might not immediately suggest it.

Our construction gave the space X as a disjoint union of circles, but
the nature of the L2 spaces obtained depend very much on the measures
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on these circles. It is essential to realize that the actual nature of the space
X depends on the particular proof method and is largely irrelevant. On
the other hand, the fact that the range of the multiplication operator is
contained in the unit circle is essential for it to be unitary.

Problems

1. Let U be a unitary operator such that U has a basis of eigenvectors.
Take the ψj in the proof of the spectral theorem to be the correspond-
ing eigenvectors. Describe the measure µ and function υ given by the
proof of the spectral theorem.

2. Let U be a unitary operator such that U has a countable basis of
eigenvectors φj . Assume that each eigenvalue has multiplicity one.
Take the ψ in the proof of the spectral theorem to be ψ =

∑
j cjφj

where all the coefficients are non-zero. Describe the measure µ and
function υ given by the proof of the spectral theorem.

3. Let the Hilbert space be L2(S, dθ), where S is the unit circle, and let
Ua be rotation by the angle a. In order to stay within the framework
of the previous problem, take a to be an irrational multiple of 2π.
Let ψ be a function whose Fourier coefficients never vanish. Find the
measure µ and function υ given by the proof of the spectral theorem.

4. Let the Hilbert space be L2(R, dx) and let Ua be translation by a.
Let ψ be a function whose Fourier transform never vanishes. Find the
measure µ and function υ given by the proof of the spectral theorem.

8.3 Graphs

In this section we use the Pauli matrices to manipulate linear graphs. The
first Pauli matrix is just an interchange.

σ1 =

(
0 1
1 0

)
(8.23)

The second one involves a change of sign and an interchange. There is
also a conventional factor of i, which serves to make its square equal to
one. (This factor will play no role in our considerations, since we will be
applying the matrix only to subspaces.)

σ2 = i

(
0 −1
1 0

)
(8.24)
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The third one involves only a change of sign.

σ3 =

(
1 0
0 −1

)
(8.25)

Consider the direct sum Hilbert spaceH⊕H. This consists of all ordered
pairs (ψ, φ) with the obvious vector space operations. The inner product is

〈(ψ, φ), (ψ′, φ′)〉 = 〈ψ,ψ′〉+ 〈φ, φ′〉. (8.26)

The Pauli matrices act on the direct sum Hilbert space in a natural way.
They each define a unitary operator whose square is one.

Definition 13 A graph is a linear subspace of H⊕H.

If A is a graph, then we may apply the Pauli matrices to the pairs in
the graph to get a new graph. Thus we define the inverse A−1 as σ1A. The
negative inverse −A−1 is σ2A. Finally the negative −A is σ3A.

Notice that taking the closure of a graph commutes with each of these
three operations, for instance Ā−1 = (A−1)̄ .

If A is a graph, then its domain D(A) consists of all ψ in H such that
there exists a φ in H with (ψ, φ) in A. Its range R(A) consists of all φ in
H such that there exists a ψ in H with (ψ, φ) in A.

If A is a graph, then its nullspace N(A) consists of all ψ in H such
that (ψ, 0) is in A. This is obviously a subset of the domain D(A). The
corresponding subset of R(A) = D(A−1) is N(A−1).

It is worth noting that if A is closed as a subspace of H⊕H, then N(A)
and N(A−1) are also closed as subspaces of H.

Definition 14 An operator is a graph such that the only pair of the form
(0, φ) in the graph is (0, 0). When a pair (ψ, φ) is in a graph A that is an
operator, then we write Aψ = φ.

Notice that A is an operator if and only if N(A−1) consists only of the
zero vector.

Problems

1. Show that an operator has a closed graph if and only if its domain
with the graph norm is a Hilbert space.

2. Must the closure of the graph of an operator be the graph of an
operator?
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8.4 Adjoints

Definition 15 The adjoint graph A∗ is defined to be (σ2A)⊥ = σ2A
⊥.

Notice that it does not matter whether we take the orthogonal complement
before or after applying the unitary operator.

It is easy to check that (σ1A)⊥ is −A∗ = (−A)∗. Also (σ3A)⊥ is A∗−1 =
A−1∗.

Theorem 20 The closure of the graph and the adjoint are related by Ā∗ =
A∗ and Ā = A∗∗.

Proof: Since Ā⊥ = A⊥, we have Ā∗ = A∗. Similarly, from the projection
theorem we have Ā = A⊥⊥. This gives Ā = A∗∗. Q.E.D.

One main reason for the introduction of the adjoint concept is that it
gives information about ranges, that is about finding solutions of equations.

Proposition 26 We have the relations N(A∗) = R(A)⊥ and N(Ā) =
R(A)∗⊥.

There is a dual result for domains.

Proposition 27 We have the relations N(A∗−1) = D(A)⊥ and N(Ā−1) =
D(A∗)⊥.

Notice that A is an operator if and only if N(A−1) consists only of
the zero vector. Therefore A∗ is an operator if and only if D(A) is dense.
Similarly Ā is an operator if and only if D(A∗) is dense.

From this it is easy to see that the class of densely defined closed oper-
ators is a particularly nice class. If A is densely defined and closed, then so
is A∗, and A∗∗ = A.

The most important classes of graphs are skew-adjoint, self-adjoint, and
unitary. It is amusing that these correspond exactly to the Pauli matrices
σ1, σ2, and σ3.

Definition 16 We define a graph A to be skew-adjoint if (σ1A)⊥ = −A∗ =
A.

Definition 17 We define a graph A to be self-adjoint if (σ2A)⊥ = A∗ = A.

Definition 18 We define a graph U to be unitary if (σ3A)⊥ = A−1∗ = A.

Proposition 28 A unitary graph is an operator.
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Proof: Let U be a unitary graph. Assume that (0, φ) is in U . Then
(0, φ) is orthogonal to σ3(0, φ) = (0,−φ), so φ is orthogonal to φ, and φ
must be zero. Q.E.D.

It is not difficult to check that a unitary operator as defined here is the
same notion as before: an isomorphism of the Hilbert space onto itself.

Problems

1. Show that a self-adjoint graph that is an operator is the same as a
self-adjoint operator as previously defined.

8.5 Spectral theorem for self-adjoint opera-
tors

The Pauli matrices are two-by-two unitary matrices with eigenvalues ±1.
Therefore they are all unitarily equivalent. Thus, for instance, we may find
a unitary operator τ such that

τσ2 = σ3τ. (8.27)

Let A be a self-adjoint graph, and define U = τA. It follows that

U = τA = τA∗ = τσ2A
⊥ = σ3τA

⊥ = σ3U
⊥ = U∗−1. (8.28)

Let us look more explicitly at the form of this relation. Take for instance

τ =
1√
2

(
1 i
1 −i

)
(8.29)

Then if (ψ, φ) is in the graph of A, the corresponding element of the graph
of U is a multiple of (ψ+ iφ, ψ− iφ). In other words, U(ψ+ iφ) = (ψ− iφ).

We may solve this equation by (1− U)ψ = i(1 + U)φ. We see that the
self-adjoint graph A is an operator if and only if U has no eigenvectors with
eigenvalue −1.

The spectral theorem for unitary operators now immediately gives the
spectral theorem for self-adjoint operators.

Theorem 21 Let A be a self-adjoint operator from H to itself. Then there
exists a measure space L2(X,µ) and an isomorphism W from H to L2 and
a real measurable function α such that A = W−1αW . Every self-adjoint
operator is isomorphic to a multiplication operator (multiplication by a real
function).
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Proof: Define the unitary operator U by

U(ψ + iAψ) = ψ − iAψ (8.30)

as above. Since A is an operator, −1 is not an eigenvalue of U . Then

Aψ = −i(1 + U)−1(1− U)ψ. (8.31)

By the spectral theorem for unitary operators, U is isomorphic to mul-
tiplication by some υ with |υ| = 1. It follows that A is isomorphic to
multiplication by α given by α = −i(1 + υ)−1(1− υ). Q.E.D.

Notice that all this proof amounts to is to note that if A is a self-adjoint
operator, then the Cayley transform U = (1 − i(h/2)A)(1 + i(h/2)A)−1 is
unitary, and so the spectral theorem for unitary operators applies. As long
as h 6= 0 one can solve for A in terms of U .

One immediate consequence is that the unitary group Ut = exp(−itA)
giving the Schrödinger time evolution is defined. Furthermore, it is also easy
to see (now that the spectral theorem is available) that the approximate
unitary dynamics Un given by the Cayley transform converges strongly to
the exact dynamics Ut as n→∞ and h→ 0 with nh→ t.

Problems

1. Show that the Cayley transform U = (1 − iA)(1 + iA)−1 may be
expressed in terms of the resolvent as U = 2(1 + iA)−1 − 1.

2. Let A be a self-adjoint operator such that A has a basis of eigen-
vectors. Take the ψj in the proof of the spectral theorem to be the
corresponding eigenvectors. Describe the measure µ and function α
given by the proof of the spectral theorem.

3. Let A be a self-adjoint operator such that A has a countable basis
of eigenvectors φj . Assume that each eigenvalue has multiplicity one.
Take the ψ in the proof of the spectral theorem to be ψ =

∑
j cjφj

where all the coefficients are non-zero. Describe the measure µ and
function α given by the proof of the spectral theorem.

4. Let H = L2(R, dx) and A = −id/dx. Find the Cayley transform U
as an integral operator.

5. Let A be a self-adjoint operator. Define U = (1 − i(h/2)A)(1 +
i(h/2)A)−1. Let Ut = exp(−itA). Show that for each ψ the vectors
Unψ converge to Utψ as n→∞ and h→ 0 with nh→ t.

6. State and prove a spectral theorem for self-adjoint graphs.

æ



Chapter 9

Functions of self-adjoint
operators

This chapter is devoted to complex functions of a self-adjoint operator.
The most important are the resolvent and the unitary group. By the spec-
tral theorem, these are families of operators isomorphic to multiplication
operators on L2.

One important application is to the energy operator H of quantum
mechanics. If this is a self-adjoint operator, then the corresponding unitary
group exp(−itH/h̄) solves the Schrödinger equation.

The spectral theorem plays an important role in the interpretation of
quantum mechanics. For an arbitrary unit vector and self-adjoint operator,
it gives a realization of the operator as a random variable on a probability
space determined by the operator and by the vector.

In the case of the energy operator, the realization as a random variable
is independent of time. This random variable specifies for the solution how
much probability is associated with each set of energies.

9.1 Functional calculus

The spectral theorem says that a self-adjoint operator has the representa-
tion

A = W−1αW. (9.1)

(As usual we write α both for the function and the corresponding multi-
plication operator.) Consider a complex Borel function f defined on the
line (or at least on the range of α). It is natural to attempt to define an

101
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arbitrary complex Borel function f(A) of a self-adjoint operator A by

f(A) = W−1f(α)W. (9.2)

This turns out to be a good definition. It is not immediately obvious that
it is independent of the spectral representation, but that is in fact the case
[N2]. We shall see why this is so in the discussion below.

One of the most important functions is the resolvent (A − z)−1. This
is certainly defined for all z that are not real, and in this case it is obvious
that this is a bounded operator with bound ‖(A − z)−1‖ ≤ 1/|=z|. The
resolvent is obviously well defined independent of the spectral resolution.

The complement of the set where the resolvent is defined as a bounded
operator is called the spectrum. The spectrum is always a closed set. We
have seen that the spectrum of a self-adjoint operator A is real. It is clear
from the spectral theorem that the spectrum is the essential range of the
representing function α. Therefore in defining functions f(A) we only need
to worry about f being defined on the spectrum. In particular, the resolvent
(A− z)−1 is defined whenever z is not in the spectrum of A and it satisfies
the bound ‖(A−z)−1‖ ≤ 1/d(z), where d(z) is the distance to the spectrum.
Notice that d(z) ≤ |=z|, so this is a generalization of the bound given in
the preceding paragraph.

The Cayley transform that we have been considering is closely related
to the resolvent; in fact for each real h 6= 0

U = (1− i(h/2)A)(1 + i(h/2)A)−1 = −1 + (4i/h)(A− 2i/h)−1. (9.3)

If f is a complex Borel function defined on the spectrum of A, then
f(A) = h(U), where h(u) = f((2i/h)(1− u)/(1 + u)). So in order to show
that f(A) is independent of the spectral representation, it is enough to
show that h(U) is independent of the spectral representation.

This is certainly true for polynomials in positive and negative powers
of U . Now observe that if hn is a sequence of functions bounded by a fixed
constant for which hn(U) is uniquely defined, and hn → h pointwise, then
hn(U) → h(U) strongly, and so h(U) is uniquely defined. By repeated
limiting operations we may obtain in this way all bounded complex Borel
functions h on the circle.

This shows the uniqueness of the definition of f(A), at least for bounded
functions f . However if f is not bounded, but f(A)ψ is defined, then there
is a sequence of bounded functions fn that converges to f pointwise and
such that fn(A)ψ converges to f(A)ψ. This shows that even in this case
f(A) is uniquely defined.

One useful class of functions of A consists of the functions that have
values 0 or 1. Let 1S be the function that is 1 on the Borel set S (a
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subset of the real line) and 0 on its complement. Then 1S(A) is called
the spectral projection of A corresponding to the set S. It is an orthogonal
projection onto a closed subspace of the Hilbert space. This subspace should
be thought of as the part of the Hilbert space where A has values in S.

Problems

1. What is the spectrum of 1S(A)? Consider all cases.

2. Consider the restriction of A to the range of 1S(A). Show that the
spectrum of this restricted operator is contained in the closure of S.

3. Give an example where it is not contained in S.

9.2 Some useful functions

It is nice to be able to define arbitrary functions of a self-adjoint operator,
but certain functions are particularly important. Perhaps the most impor-
tant are the resolvent and the unitary group. From the resolvent one can
construct approximate delta functions, and with these one can approximate
a wide class of functions.

If A is a self-adjoint operator, then we may define the approximate delta
function operator for ε > 0 by

δε(A− a) =
1

π

ε

(A− a)2 + ε2
=

1

2πi

(
(A− a− iε)−1 − (A− a+ iε)−1

)
.

(9.4)

The last equation is important because it says that the approximate
delta function is defined by the resolvent (A− z)−1 for z not real.

Proposition 29 If f is bounded and continuous, then f(A) is determined
by ∫

f(A)ψ = lim
ε→0

∫
f(a)δε(A− a)ψ da. (9.5)

Proof: If f is bounded and continuous, then∫
f(a)δε(α(x)− a) da→ f(α(x)) (9.6)

as ε→ 0 pointwise. The result follows from the L2 dominated convergence
theorem.
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Corollary 7 The unitary group is expressed in terms of the resolvent by∫
exp(−itA)ψ = lim

ε→0

∫
exp(−ita)δε(A− a)ψ da. (9.7)

It is also possible to go from the resolvent to the unitary group. The
resolvent is given by a time integral. The integral goes over positive time or
negative time depending on whether z is in the upper or lower half plane.

Proposition 30 The resolvent is given in terms of the unitary group by

(A− z)−1ψ =

∫ ±∞
0

i exp(itz) exp(−itA)ψ dt (9.8)

for ±z > 0.

The delta function is given by the jump in the resolvent between the
lower and upper half plane. Thus in order to get the delta function we need
to integrate over all time.

Corollary 8

δε(A− a)ψ =

∫ ∞
−∞

exp(iat) exp(−ε|t|) exp(−itA)ψ
dt

2π
. (9.9)

Problems

1. Let f be a bounded piecewise continuous function with right and left
hand limits at the points of discontinuity. How must f be defined at
the points of discontinuity so the formula for f(A) in terms of the
approximate delta function remains valid?

2. Under what circumstances does the result of the previous problem
give a formula for spectral projections in terms of the approximate
delta function?

3. Show that the strong limit as ε → 0 of πεδε(A − a) is the projection
onto the eigenspace where A = a.

9.3 Random variables

Let A be a self-adjoint operator. Then by the spectral theorem there is
an isomorphism W from H to L2(X,µ). Under this isomorphism A is
isomorphic to multiplication by a real function α.
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Let ψ be a unit vector in the Hilbert space H. Then Wψ is a function
on X such that ∫

|Wψ(x)|2 dµ(x) = 1. (9.10)

Thus |Wψ(x)|2 dµ(x) is a probability measure. A measurable function on
a space with a probability measure is called a random variable. Thus α is
a random variable.

Take f to be a bounded Borel measurable function. Then f(α) is a
bounded random variable. The expectation of this random variable is

〈ψ, f(A)ψ〉 =

∫
f(α(x))|Wψ(x)|2 dµ(x). (9.11)

This last equation is a remarkable correspondence between Hilbert space
and probability expressions.

These considerations show that a unit vector and an arbitrary self-
adjoint operator gives rise to a random variable. Of course, two non-
commuting random variables will not give rise to random variables defined
on the same probability space.

In quantum mechanics some self-adjoint operators may give rise to ran-
dom variables having physical significance. One example is the energy op-
erator H. Since the time development of ψ is given by the energy operator
as exp(−itH/h̄)ψ, the probability measure does not depend on time. The
distribution of H gives the amount of probability corresponding to each set
of energy values, and this amount does not change with time.

We may write the expectation of a function of a random variable in
terms of a measure on the reals, the distribution of the random variable. If
f is bounded and measurable, then we obtain

〈ψ, f(A)ψ〉 =

∫
f(a) dν(a). (9.12)

The measure ν is uniquely determined by the unit vector and the self-adjoint
operator. It is supported on the spectrum of the operator. A special case
of the above formula is

〈ψ, 1S(A)ψ〉 = ν(S). (9.13)

This is interpreted as the probability that A is in S. It is clear that calcu-
lating the distribution ν must be one of the fundamental goals of quantum
mechanics.

It is perhaps useful at this point to summarize the basic principles of
quantum mechanics. A state of a system is determined by a unit vector ψ
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in the Hilbert space H. Two vectors determine the same state if they are
multiples of each other. (Thus what is important is not the vector, but the
one dimensional subspace, or ray, determined by the vector. The collection
of all these subspaces is actually a projective space rather than a vector
space.)

An observable is determined by a self-adjoint operator. The fundamen-
tal equation is that the expectation of a real measurable function of the
operator is given (when the relevant integral converges absolutely) by

〈ψ, f(A)ψ〉. (9.14)

In particular, when f has values only zero or one, this is the probability
that A has value in the set where f is one.

We may summarize this as follows.

Dogma 1 States are determined by unit vectors in Hilbert space. Observ-
ables are given by self-adjoint operators. In every state each observable has
a well-defined probability distribution.

It is not clear how seriously to take the preceding dogma. Certainly
the mathematics is correct; in every state a self-adjoint operator has an
associated probability distribution. On the other hand, there is a bewil-
dering variety of self-adjoint operators, most of which correspond to no
conceivable physical experiment. Which ones should be taken seriously?
This requires a serious analysis of actual measurement procedures, which
will not be attempted here.

It may be that the only observables of interest are the momentum ob-
servables, and possibly the energy. In an electron scattering experiment
counters are set up at various angles, and these measure the momenta of
the outcoming electrons. The details of the interaction are not directly
observed, but are inferred from the results of the scattering experiment. In
observing the emission of light from electrons passing from one bound state
to another, the spectral lines are predicted from the eigenvalues of the en-
ergy operator. The probability predictions give by the dogma of quantum
mechanics seem to be relevant. However ultimately what is measured is the
momentum of the emitted light.

9.4 Constructing spectral representations

Now that we have the spectral theorem for self-adjoint operators, we may
construct spectral representations in a somewhat more convenient manner.
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Theorem 22 Let A be a self-adjoint operator from H to itself. Then there
exists a measure space L2(X,µ) and an isomorphism W from H to L2 and
a real function α such that U = W−1αW . The space X may be taken to be
a disjoint union of copies of the reals. The measure µ may be taken so as
to restrict to a probability measure on each copy. The function α may be
taken to be the identity function on each copy.

Remark: The probability measure νj on the jth copy is the distribution
of the A with respect to a vector ψj . Once we have constructed these
distribution measures the proof can go almost exactly as for the unitary
case.

Proof: For a unit vector ψ in H let Hψ be the closed linear subspace
generated by the exp(−itA)ψ. This linear subspace is invariant also in-
variant under the resolvents of A and hence under f(A) for each bounded
continuous function of A.

Let ν be the distribution of A with respect to the unit vector ψ. Note
that

〈ψ, f(A)ψ〉 =

∫
f(a) dν(a). (9.15)

In particular

〈ψ, |f(A)|2ψ〉 =

∫
|f(a)|2 dν(a). (9.16)

Therefore if f(A)ψ = 0, then f(a) = 0 for all z except for a set of ν measure
zero. Therefore f(a) may be identified with zero in the space L2(R, ν).

It follows that we may define a unitary operatorWψ fromHψ to  L2(R, ν)
by Wψf(A)ψ = f . Furthermore it is easy to check that Wψf(A)φ =
f(a)Wψψ.

Now consider families ψj of vectors such that Hψj are mutually or-
thogonal. Take a maximal such family. Let M be the closed subspace of
consisting of all vectors φ =

∑
j φj where φj is in Hψj . By use of essen-

tially the same argument as for the construction used for a single unitary
operator we see that M = H.

Now take as many copies Rj of the real line as there are are vectors ψj .
Let X be the disjoint union of the Rj . Each point x in X is a pair (a, j)
with a real. Define the function α by α(x) = a.

Now for every φ in H we define

Wφ(x) = Wψjφj(a). (9.17)

It is easy to check that

Wf(A)φ(x) = Wψjf(A)φj(a) = f(a)Wψjφj(a) = f(α(x))Wφ(x). (9.18)
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This completes the proof.
This result says that the points of X may be labeled by the a that are

in the spectrum of A and by an extra parameter j. The extra parameter is
always necessary when the A is an operator with multiplicity.

In general the points in the space X used for a spectral representation
may be labeled by a sequence of numbers belonging to the spectra of a
commuting family of self-adjoint operators. This fact is heavily exploited
in the Dirac formalism.

Problems

1. Let A be a self-adjoint operator such that A has a basis of eigen-
vectors. Take the ψj in the proof of the spectral theorem to be the
corresponding eigenvectors. Describe the measure µ and function α
given by the proof of the spectral theorem.

2. Let A be a self-adjoint operator such that A has a countable basis
of eigenvectors φj . Assume that each eigenvalue has multiplicity one.
Take the ψ in the proof of the spectral theorem to be ψ =

∑
j cjφj

where all the coefficients are non-zero. Describe the measure µ and
function α given by the proof of the spectral theorem.

3. Let A = −d2/dx2 acting in L2 of the line. Find a spectral representa-
tion (as in the proof of the spectral theorem) that uses precisely two
vectors ψ.

æ



Chapter 10

The Heisenberg
Commutation Relations

This chapter is devoted to the analysis of the non-commuting operators
that characterize quantum mechanics.

These operators may be analyzed in terms of the unitary groups (Weyl
relations) or in terms of the self-adjoint operators (Heisenberg relations).
We shall take the former course. The analysis in terms of the unbounded
self-adjoint operators is more delicate but is certainly possible [4, 13, Pu].

10.1 Quantum automorphisms

There is another basic principle of quantum mechanics that describes the
mechanism of transformation (in space or in time). Let A be a self-adjoint
operator, representing an observable. (It may of course be a function of
another self-adjoint operator.) Let ψ be a unit vector representing a state.
Assume that the integral representing 〈ψ,Aψ〉 is absolutely convergent.
Then

〈ψ,Aψ〉 (10.1)

is the expectation of A in the state ψ. (When A has values zero or one,
this is of course a probability.) We wish to see how this expression is
transformed.

Let U be a unitary operator, representing the transformation. Then as
a mathematical identity

〈Uψ,AUψ〉 = 〈ψ,U∗AUψ〉. (10.2)

109
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This fundamental equation shows that there are two ways to interpret the
change. In the Schrödinger picture the state is changed from ψ to Uψ. In
the Heisenberg picture the observable is changed from A to U∗AU−1. In
either picture the change is given by specifying the unitary operator.

There is one amendment to this story. Recall that the state determines
the vector ψ only up to a scalar multiple. Thus the automorphisms of the
states may be somewhat more general than the unitary operators that give
automorphisms of the vectors. In fact, it turns out that sometimes it is use-
ful to take operators U that are anti-unitary rather than unitary. These are
operators that satisfy U(zψ) = z∗U(ψ), with a complex conjugate on the
scalar multiple. The most important example of such an operator is time re-
versal in quantum mechanics. For the simple case of the scalar Schrödinger
equation this is given by complex conjugation of the wave function. Notice
that this operation gives a solution of the equation that is obtained from
the Schrödinger equation by reversing the direction of time.

This story on the automorphisms of quantum mechanics has been the
subject of extensive study, and there is a useful survery by Simon [15].

Thus we have another dogma of quantum mechanics.

Dogma 2 The transformations in quantum mechanics are given by unitary
(or anti-unitary) operators. They may be thought of in the Schrödinger pic-
ture as transforming the states or in the Heisenberg picture as transforming
the observables.

The transformations are often embedded in a one-parameter group of
unitary transformations. This allows the transformations to be written
in infinitesimal form. Consider for instance the time translation given by
Ut = exp(−itH/h̄). We have the Schrödinger equation

ih̄
dUtψ

dt
= HUtψ. (10.3)

If we compute the time derivative of the expectation of A we obtain

d

dt
〈Utψ,AUtψ〉 =

i

h̄
〈Utψ, [H,A]Utψ〉, (10.4)

where [H,A] = HA−AH is the commutator ofH andA. The interpretation
of such formulas involve delicate considerations of domains of unbounded
operators, but they provide an important way of thinking about quantum
mechanics.
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10.2 Heisenberg and Weyl relations

We now understand the action of a single self-adjoint operator or of a
commuting family of such operators. But this is not enough to charactize
quantum mechanics.

We would like to find an operator theory characterization of the Hilbert
space framework that is used for the Schrödinger equation. For this we
shall need non-commuting operators. For simplicity we begin with the case
ν = 1 of one dimensional space.

We have the momentum operator

P = −ih̄ d

dx
(10.5)

and the position operator

Q = x. (10.6)

The relation between these two operators may be expressed in intrinsic
Hilbert space terms by the famous Heisenberg commutation relation

[P,Q] = PQ−QP = −ih̄. (10.7)

Unfortunately, both P and Q are unbounded operators with domains that
are not the entire Hilbert space. Therefore it is a delicate matter to interpret
the expressions in this commutation in a rigorous way.

Fortunately, there are other formulations of the commutation relations,
obtained by taking functions of each of these operators. In particular, they
generate unitary groups. One is the translation group

exp(−iaP/h̄)f(x) = f(x− a), (10.8)

and the other is the boost group consisting of multiplication operators

exp(−ibQ/h̄)f(x) = exp(−ibx/h̄)f(x). (10.9)

Notice that the translation group acts on functions of position Q by

exp(iaP/h̄)g(Q) exp(−iaP/h̄) = g(Q+ a). (10.10)

This is simply saying that the translation group acts in a reasonable way
on position.

Similarly, the boost group acts on functions of momentum by

exp(ibQ/h̄)g(P ) exp(−ibQ/h̄) = g(P + b). (10.11)
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Notice that this says that the momentum is increased (boosted) by the
appropriated amount.

It may be that the formuation in terms of the boost transformations is
more fundamental. The fundamental symmetries of non-relativistic quan-
tum mechanics come from Galilean transformations. These are translations
in space, translations in time, rotations in space, and boosts in space-time.
The amount of a boost is given by a velocity change v. We may write the
above equation as

exp(ivmQ/h̄)g(P ) exp(−ivmQ/h̄) = g(P +mv). (10.12)

From this we see that the generator of boosts is actually mQ. The relation
between the generators of translations and boosts is given by a variant of
the Heisenberg relation

PmQ−mQP = −imh̄. (10.13)

This is a characteristic feature of the action of Galilean transformations in
quantum mechanics; there is a parameter m that occurs in the commutation
relations that parametrizes the way that the transformations act on Hilbert
space.

Still another form of the commutation relations is the Weyl relation that
relates the two groups. This is

exp(−ibQ/h̄) exp(−iaP/h̄) = exp(−iaP/h̄) exp(−ibQ/h̄) exp(−iab/h̄)
(10.14)

This relation is somewhat curious, in that the Galilean transformations of
translation in space and boosting commute. However this equation says
that the correspoinding unitary operators in quantum mechanics do not
commute. The resolution of the difficulty is to remember that in quantum
mechanics the states are determined only up to scalar multiples. The extra
term exp(−iab/h̄) is a scalar multiple, and has no effect on the actual state.

The relation between the Heisenberg relation and the Weyl relation is
an instance of the relation between a Lie algebra commutation relation and
a Lie group product relation. In this case the Lie algebra and Lie group
are not just the Galilean translations and boosts, but a non-commutative
extension that provides the constant term in the commutation relation and
the extra phase in the group version.

The properties of Galilean transformations in quantum mechanics were
studied beginning with Bargmann [2]. They have been subsequently anal-
ysed by various authors [H, Ma2, 10], who may be consulted for further
information.

Problems
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1. Show that the Heisenberg commutation relations cannot be satisfied
by operators in a finite dimensional Hilbert space. (Hint: Take the
trace of both sides.)

10.3 Uniqueness: Discrete translations

Consider the translation group Ua = exp(−iaP/h̄) acting on L2 of the line.
Let g be an increasing function. Then U∗ag(Q)Ua = g(Q + a), which is
increasing as a increases. It turns out that this property has deep impli-
cations for spectral theory: It is a diagonostic for absolutely continuous
spectrum. (Indeed the operator P has absolutely continuous spectrum.)

Take g to be the indicator function of the right half-line. Let M be the
range of g(Q) (the subspace where Q ≥ 0). Note that g(Q−a)Ua = Uag(Q).
We may think of the range of g(Q− a) as the subspace where Q ≥ a. This
shows that Ua takes the space M where Q ≥ 0 to the space UaM where
Q ≥ a. Thus the subspaces decrease as a increases.

This setup has an interesting and useful discrete analog. Let V be the
translation to the right by one on the space `2 of the integers. Let M be
the subspace of functions f in `2 such that f(x) 6= 0 only for x ≥ 0. Then
V n takes M into the subspace of functions f in `2 such that f(x) 6= 0 only
for x ≥ n. Again the subspaces decrease as n increases.

Notice that V has a spectral representation given by Fourier series. The
spectral measure is a measure on the circle that has a density, and so V
has absolutely continuous spectrum.

We would like to characterize this sort of situation in intrinsic Hilbert
space terms, at least up to isomorphism and multiplicity. In this section we
deal with the discrete case; the continuous case follows in the next section.
The following definition makes no reference to the concrete form of the
operators; it just gives a relation between a unitary operator and a closed
subspace.

Definition 19 We say that M is an outgoing subspace for the unitary
operator V if

VM ⊂M, (10.15)

and
∩nV nM = 0, (10.16)

and
closure ∪n V nM = H. (10.17)

This definition is satisfied by the standard model we considered above.
In this model the Hilbert space is `2(Z). The action of V is the right shift
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V f(x) = f(x − 1). The subspace M consists of all f in `2(Z) such that
f(x) 6= 0 implies x ≥ 0. The definition is also satisfied by a direct sum of
copies of the standard model.

Proposition 31 Let V be a unitary operator and M be an outgoing sub-
space of H. Then the Hilbert space is a direct sum of Hilbert spaces in each
of which V and M are isomorphic to the standard model.

Proof: Since V sends M into M , the space VM is a closed subspace
of M . By the projection theorem, there is a closed subspace N of M such
that the direct sum of N with VM is M .

It is not hard to check that the spaces V kN for k ≥ 0 are orthogonal
closed subspaces of M . If φ is a vector in M that is orthogonal to all
these closed subspaces, then it must be in V kM for all k ≥ 1. From
the definition of outgoing space it follows that it is the zero vector. The
projection theorem then implies that M is the direct sum of these closed
subspaces.

Now consider the orthogonal closed subspaces V kN for all integer k.
For arbitrarily negative j we see from the first conclusion that that V jM
is the direct sum of the V kN for k ≤ j. From the definition of outgoing
space it follows that the union of the V jM is dense in H. It follows that
the direct sum of the closed subspaces V kN is dense in H. Since this direct
sum is again a closed subspace, the projection theorem implies that it must
be equal to H.

Now let φj be a basis for N . For each j the vectors V kφj form a basis
for a closed subspace Hj of H. This basis defines an isomorphism of Hj
with `2(Z). Q.E.D.

Problems

1. Find the spectral representation for V .

10.4 Uniqueness: Continuous translations

We wish to show that the Weyl relations have a unique solution up to
multiplicity. For simplicity we give the complete proof only for the case of
one dimension. The proof is taken from Lax and Phillips [LP].

Theorem 23 Let P and Q be self-adjoint operators acting in H. Assume
that for each real Borel function g they satisfy the relations

exp(iaP/h̄)g(Q) exp(−iaP/h̄) = g(Q+ a) (10.18)
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for all real a. Then the Hilbert space is a direct sum of Hilbert spaces in each
of which P and Q are isomorphic to the standard momentum and position
operators.

We write Ua = exp(−iaP/h̄) for the unitary group. Let 1+ denote the
function that is one for x ≥ 0 and zero for x < 0. The starting point is the
commutation relation in the form

1+(Q− a)Ua = Ua1+(Q). (10.19)

We want to formulate this in terms of an outgoing subspace.

Definition 20 A closed subspace M is an outgoing subspace for the unitary
group Ua if for all a ≥ 0

UaM ⊂M, (10.20)

and
∩aUaM = 0, (10.21)

and
closure(∪aUaM) = H. (10.22)

This definition says that the subspace UaM is contained in M for a ≥ 0,
that it is decreasing to zero as a→∞, and that it is increasing to the whole
space as a→ −∞.

Let M be the closed subspace that is the range of 1+(Q). It is easy to
check that M is an outgoing subspace. The condition on the intersection
follows by looking at large positive a, and the condition on the union follows
by looking at large negative a.

Now we want to reduce the uniqueness problem for the continuous dy-
namics given by the unitary group to that for the discrete dynamics given
by the powers of the unitary operator.

So consider a real constant h > 0 and the Cayley transform

V = (1− iPh/2)(1 + iPh/2)−1 (10.23)

Lemma 9 A subspace M is invariant under the unitary group Ua = exp(−iaP/h̄)
for all a ≥ 0 if and only if it is invariant under the unitary operator V .

Proof: Assume that M is invariant under the unitary group with a ≥ 0.
We know that from the unitary group with a ≥ 0 we can recover the
resolvent (P − iε)−1 for ε > 0. From the resolvent one can recover the
Cayley transform. Thus M is also invariant under the Cayley transform.

On the other hand, assume that M is invariant inder the Cayley trans-
form V defined with some particular value of h. Then it is invariant under
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(P − iε)−1 for some ε > 0. It is not difficult to show that it must be invari-
ant under (P − iε)−1 for all ε > 0. Therefore it is invariant under V for all
values of h > 0. We may recover the unitary group Ua from V n in the limit
n→∞ with nh→ a. Therefore it is invariant under the unitary group for
a ≥ 0. Q.E.D.

Lemma 10 A subspace M is an outgoing subspace for the unitary group
Ua if and only if M is an outgoing subspace for the corresponding Cayley
transform V .

Proof: We give the proof for the case when the subspace M is known
to be an outgoing subspace for the unitary group and we want to conclude
that it is an outgoing subspace for the Cayley transform.

Let M∞ = ∩nV nM . It is easy to check that V nM∞ ⊂ M∞ for all n,
positive or negative. It follows that UaM∞ ⊂ M∞ for all a, positive or
negative. From the group property it is easy to check that UaM∞ = M∞
for all a. Since M∞ ⊂M , we have M∞ = ∪aUaM∞ ⊂ ∪aUaM = {0}.

Let M−∞ = closure∪n V nM . It is easy to check that V nM−∞ ⊂M−∞
for all n, positive or negative. It follows that UaM−∞ ⊂ M−∞ for all
a, positive or negative. From the group property it is easy to check that
UaM−∞ = M−∞ for all a. Since M ⊂ M−∞, we have a dense subspace
∪aUaM ⊂ ∪aUaM−∞ = M−∞, which implies that M∞ = H. Q.E.D.

Proof of theorem: Assume that we have a solution of the relation be-
tween the one-parameter group generated by P and the operator Q. Then
we have the one-parameter group and the outgoing subspace in the con-
tinuous case. It follows from the lemmas that we have the discrete group
and outgoing subspace. We have seen in the previous section that all real-
izations of the discrete group and outgoing subspace are isomorphic, up to
multiplicity. Since the continuous group may be recovered from the Cayley
transform (by solving explicitly for the generator P ), the same must be
true for the continuous group and the outgoing subspace.

From the unitary group Ua and from M we can recover the subspaces
Ua where Q ≥ a. This is enough to show that the original P and Q are
uniquely determined, up to isomorphism and multiplicity. Q.E.D.

It does not follow from this theorem that the representation of P and
Q is isomorphic to the standard representation; it may be isomorphic to a
direct some of several copies. For an electron, which has spin, the repre-
sentation is isomorphic to the direct sum of two copies.

Problems

1. Consider the standard Schrödinger representation of P and Q. Use
the explicit form for V as an integral operator to verify that V leaves
M invariant.
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10.5 Multidimensional systems

Much the same story applies to the case of several dimensions. The standard
Schrödinger realization is with the momentum operators

a ·P = −ih̄a · ∇x (10.24)

and the position operators

b ·Q = b · x. (10.25)

As before we may take functions of each of these operators. In particu-
lar, they generate unitary groups. One is the translation group

exp(−ia ·P/h̄)f(x) = f(x− a), (10.26)

and the other consists of multiplication operators.

exp(−ib ·Q/h̄)f(x) = exp(−ib · x/h̄)f(x). (10.27)

Again the translation group acts on functions of position Q by

exp(ia ·P/h̄)g(Q) exp(−ia ·P/h̄) = g(Q + a). (10.28)

Similarly, the boost group acts on functions of momentum by

exp(ib ·Q/h̄)g(P) exp(−ib ·Q/h̄) = g(P + b). (10.29)

There are still other ways of writing this relation. We may differentiate

exp(ita ·P/h̄)b ·Q exp(−ita ·P/h̄) = b ·Q + ta · b (10.30)

to obtain the Heisenberg commutation relation

(a ·P)(b ·Q)− (b ·Q)(a ·P) = −ih̄a · b. (10.31)

We may write this in a abbreviated tensorial form as

[P,Q] = PQ−QP = −ih̄δ. (10.32)

Or we may relate the two groups by the Weyl relations

exp(−ib·Q/h̄) exp(−ia·P/h̄) = exp(−ia·P/h̄) exp(−ib·Q/h̄) exp(−ia·b/h̄)
(10.33)

It is possible to prove a version of the uniqueness theorem theorem as long
as ν <∞.
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10.6 The Galilean group and quantum dy-
namics

The Galilean group consists of space translations, time translations, ro-
tations, and boosts. We will neglect discussion of the rotations and con-
centrate on the relation between space translations, time translations, and
boosts. In quantum mechanics the corresponding tranformations are gen-
erated by self-adjoint operators. The generators of space-translations, time
translations, and boosts are the operators P, H, and mQ.

We shall always assume that the relation between space translations
and boosts is given by the Heisenberg commutation relation

i

h̄
[P,mQ] = −ih̄mδ. (10.34)

If the quantum system is Galilean invariant, a situation that corresponds
to free motion, then the time translation generator is just H = P2/(2m).
In this case the relation between time translations and boosts is given by

i

h̄
[H,mQ] = P. (10.35)

Finally, the relation between time translation and space translation is sim-
ply

[H,P] = 0. (10.36)

This last equation says that the time evolution is translation invariant: No
part of space is preferred to any other.

Quantum systems are usually not Galilean invariant. There are electric
and magnetic fields that affect the time translation. With electric fields the
third Galilean commutation relation fails; the electric potential is different
in different parts of space. With magnetic fields the second commtation
relation relation also fails.

When magnetic fields are present it is necessary to distinguish between
momentum P and velocity Q̇; they are no longer related by P = mQ̇.
However it is assumed that boosts act on velocities in the same way that
they act on momenta. Thus we have the relation

i

h̄
[mQ̇,mQ] = mδ. (10.37)

The second Galilean commutation relation is replaced by

i

h̄
[H,mQ] = mQ̇. (10.38)
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From these relations we can find a suitable form for the time translation
generator H. The fact that P and mQ̇ have the same commutator with Q
suggests that they differ by a function of Q, so that

mQ̇ = P− a(Q). (10.39)

This extra term represents the magnetic vector potential.
The fact that H and Q̇2/(2m) have the same commutator with mQ

(namely mQ̇) suggests that they differ by a function of Q. Thus

1

2m
Q̇2 = H − v(Q). (10.40)

This last equation determines the form of the Schrödinger equation. From
now on we shall mainly use it in the conventional form

H =
1

2m
(P− a(Q))2 + v(Q). (10.41)

The commutation relation between the various components of mQ̇ is
non-trivial. We have

i

h̄
[mQ̇,mQ̇] = ((∇a(Q))T −∇a(Q)), (10.42)

where T denotes transpose. We may now compute the final commutator
between H = (1/2)mQ̇2 + v(Q) and mQ̇. We obtain

i

h̄
[H,mQ̇] = Q̇ · (∇a(Q))T − (Q̇ · ∇)a(Q)−∇v(Q). (10.43)

This is the usual form of the force law with a magnetic and electric field.

Problems

1. Let g be a smooth real function and define U = exp(−ig(Q)/h̄). Let
P̃ = U∗PQ. Show that the pair P̃ , Q is isomorphic to the pair P,Q.

2. Let ã = a−∇g. Show that Q̇ = P̃ − ã(Q).

3. Show that if ν = 1, then g may be chosen so that ã = 0. Thus there
are no magnetic fields in one dimension.

æ
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Chapter 11

Operator Sums

This chapter is the beginning of the analysis of quantum dynamics. This is
determined by the sum of two self-adjoint operators, and one is interested in
the question of when the sum is self-adjoint. The most elementary concept
of sum is the operator sum, and we begin with that.

11.1 Quantum dynamics

We have seen that the Schrödinger equation may be written

ih̄
dψ(t)

dt
= Hψ(t). (11.1)

If H is self-adjoint, then this has the solution

ψ(t) = exp(−itH/h̄)ψ(0). (11.2)

In practice H is often the sum of a kinetic energy part H0 and a potential
energy part V . In the standard situation

H0 =
P2

2m
(11.3)

and
V = v(Q), (11.4)

where v is a real measurable function. Each of these operators is self-adjoint.
However they certainly do not commute.

We would like to define

H = H0 + V (11.5)
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as a self-adjoint operator in an unambiguous way. This is not possible in
general. However we shall see that there are important cases when the
situation is satisfactory. The most elementary is when V is a bounded
operator. This will establish that the Schrödinger equation has a uniquely
determined solution whenever v is a bounded measurable function.

Of course it is also desirable to allow v to have singularities. This will
require further analysis.

11.2 Operator Sums

The obvious definition of operator sum is to define A+B on D(A)∩D(B) by
(A+B)ψ = Aψ+Bψ. It is not at all clear that this has nice properties. For
instance it is possible that D(A) and D(B) are both dense linear subspaces
of the Hilbert space, but the intersection contains only the zero vector. In
that case A+B is rather degenerate. In particular, its adjoint is not even
an operator.

If one is interested in adjoints, all that one can say in general about the
adjoint of a sum is that A∗ +B∗ ⊂ (A+B)∗. The simplest case when one
can say something more positive is when one of the operators is bounded.

Theorem 24 If A is a densely defined operator and B is a bounded oper-
ator, then

(A+B)∗ = A∗ +B∗. (11.6)

In particular, if A is a self-adjoint operator and B is a bounded self-adjoint
operator, then A+B is self-adjoint.

Proof: It is easy to check that for arbitrary densely defined operators
whose sum is densely defined we have A∗ +B∗ ⊂ (A+B)∗.

The work is to show that if B is bounded, then (A + B)∗ ⊂ A∗ + B∗.
The key is the fact that B∗ is also bounded. Let ψ be in D(A+B)∗. Then
for all φ is D(A+B) = D(A) we have

〈(A+B)∗ψ, φ〉 = 〈ψ,Aφ〉+ 〈ψ,Bφ〉. (11.7)

Hence

〈ψ,Aφ〉 = 〈(A+B)∗ψ, φ〉 − 〈B∗ψ, φ〉. (11.8)

Thus ψ is in D(A∗) with A∗ψ = (A + B)∗ψ − B∗ψ. This may be written
(A+B)∗ψ = A∗ψ +B∗ψ, which is the desired conclusion. Q.E.D.

The application of this theorem to Schrödinger operators is immediate.
Let v be an arbitrary real Borel measurable function. Let H0 = P2/(2m)
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and V = v(Q). Then H = H0 + V is self-adjoint. This result is remark-
able, since there are no continuity conditions on v and no conditions on
the asymptotic behavior at infinity, other than being bounded. It is nat-
ural to ask: What are the boundary conditions at infinity needed for the
Schrödinger equation to have a uniquely specified solution? The answer
in this situation is: There are none. In particular, the result applies to
extended media with irregular (non-periodic) potentials.

On the other hand, this result is lacking for some important applica-
tions. The Hydrogen atom problem involves a potential that is unbounded
below; that case is not covered by the above theorem. The harmonic oscil-
lator potential is unbounded above; that case certainly evades the present
analysis. We will see below that there are more powerful results that take
care of such cases.

In the rest of this section we survey other facts about the algebra of
operators. We define the operator sum A+B of A and B on D(A+B) =
D(A)∩D(B) by (A+B)ψ = Aψ+Bψ. (The operator difference is of course
A − B = A + (−B).) We define the operator product AB of A and B on
D(AB) = B−1D(A) ∩D(B) by (AB)ψ = ABψ.

The algebraic properties of these operations are not so nice. However
there are a few useful identities. The proofs are mainly routine verifica-
tions [RN]. Whenever we are discussing adjoints we shall assume that the
operator is densely defined, so that its adjoint is an operator.

For the operator sum we have the associative law (A + B) + C = A +
(B + C) and the commutative law A + B = B + A. There is an identity
A+ 0 = 0 + A = A. In general there is no inverse; all we have is A− A =
−A+A ⊂ 0. For the adjoint all we have in general is A∗+B∗ ⊂ (A+B)∗.

For the operator product we have the associative law (AB)C = A(BC)
and the law for the inverse of a product (AB)−1 = B−1A−1. Note the
reversal of order in the last law. We have an identity A1 = 1A = A. In
general there is no inverse; we get AA−1 ⊂ 1 and A−1A ⊂ 1. For the
adjoint all we have in general is A∗B∗ ⊂ (BA)∗. Note again the reversal of
order. We shall see in a later chapter that (A∗A)∗ = A∗A.

For the combination of the sum and product we have the distributive
law BA + CA = (B + C)A on one side but not the other. All we have in
general is AB +AC ⊂ A(B + C).

We can do much better with the sum and product when one of the
operators is bounded. When B is bounded we have A∗ + B∗ = (A + B)∗

and B∗+A∗ = (B+A)∗ in either order. When B is bounded we also have
A∗B∗ = (BA)∗. In this case the order is important.

It is difficult to give a general definition of commuting operators. If one
of the operators is bounded then there is a good definition. We say that a
bounded operator B commutes with an operator A if BA ⊂ AB.
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Some motivation for this definition comes from taking the case when
B = A−1 is bounded. Then A−1A ⊂ AA−1 = 1.

If B is bounded and B commutes with A, then B commutes with A−1.
If B is bounded and B commutes with A, then B∗ commutes with

A∗. (The proof is an easy computation. Since BA ⊂ AB, it follows that
(AB)∗ ⊂ (BA)∗. It follows that B∗A∗ ⊂ (AB)∗ ⊂ (BA)∗ = A∗B∗.)

11.3 Hermitian operators

We want to give a more profound analysis of self-adjointness. For this we
want to see how an operator can fail to be self-adjoint. This leads to the
concept of Hermitian operator.

The numerical range of an operator is the set of all 〈ψ,Aψ〉 with ψ in
D(A) and ‖ψ‖ = 1.

Proposition 32 Assume that z is a distance d > 0 from the numerical
range of A. Then and

‖(A− z)−1ψ‖ ≤ 1/d‖ψ‖ (11.9)

for all ψ in R(A− z).

Proof: For unit vectors ψ in the domain of A we have

d ≤ |〈ψ,Aψ〉 − z| = |〈ψ, (A− z)ψ〉| ≤ ‖(A− z)ψ‖. (11.10)

The spectrum of an operator A is the set of numbers z such that it is
false that (A − z)−1 is a bounded operator defined on the entire Hilbert
space.

Corollary 9 Assume that z is a distance d > 0 from the numerical range
of A. Assume also that R(A− z) = H. Then z is not in the spectrum of A.

We write A ⊂ B and say A is a restriction of B or B is an extension of
A if the graphs satisfy A ⊂ B

Note that if A ⊂ B, then B∗ ⊂ A∗.
A densely defined operator is said to be Hermitian if A ⊂ A∗. Notice

that the closure Ā is also a Hermitian operator.

Proposition 33 Let A be a Hermitian operator. Then the numerical range
is real.

We shall now see that for a Hermitian operator, if the spectrum is real,
then the operator is self-adjoint. In fact, all that is needed is a pair of
complex conjugate numbers z and z∗ that are not in the spectrum.
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Theorem 25 Let A be a Hermitian operator such that R(A− z) = H and
R(A− z∗) = H. Then A is self-adjoint.

Proof: We have A − z ⊂ A∗ − z. Since R(A − z∗) = H, its adjoint
(A− z∗)∗ = A∗ − z is one-to-one. Since R(A− z) = H, the only possibility
is that A− z = A∗ − z. But then A = A∗.

Corollary 10 Let A be a Hermitian operator such that R(A− z) = H for
some real z. Then A is self-adjoint.

Now we can give a perturbation theorem that is better than the one
given before.

Theorem 26 Let A be a self-adjoint operator with domain D(A). Let B be
a self-adjoint operator such that D(A) ⊂ D(B). Assume that for some pair
of complex conjugate z not in the spectrum of A we have ‖B(A−z)−1‖ < 1.
Then A+B is self-adjoint.

Proof: It is clear that A + B is Hermitian. In order to show that the
range R(A+B − z) = H it is clearly sufficient to show that (A+B − z)−1

is a bounded operator. However

(A+B − z)−1 = (A− z)−1
(
1 +B(A− z)−1

)−1
. (11.11)

The inverse on the right is given by a convergent geometric series in the
operator −B(A− z)−1. Q.E.D.

This series is often called a Neumann series or a Born series. In this
particular context, when we are interested in the existence and uniqueness
of dynamics, but not in a detailed description, we only need the series for
z far away from the spectrum.

The previous theorem on perturbations by bounded operators is a corol-
lary.

Corollary 11 Let A be a self-adjoint operator with domain D(A). Let B
be a bounded self-adjoint operator. Then A+B is self-adjoint.

Proof: The norm of (A− z)−1 may be made arbitrarily small by taking
z far enough away from the spectrum of A. Q.E.D.

11.4 Operator perturbation

We want to apply this to Schrödinger operators of the type arising in the
Hydrogen problem [K]. Take |v(x)| ≤ c/r, where r = |x| is the distance
from the origin. Then it is not necessary that v be bounded.
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Let H0 = P2/(2m) and V = v(Q). We wish to show that H = H0 + V
is self-adjoint.

For this we use the local uncertainty principle bound

〈ψ, 1

r2
ψ〉 ≤ 4

(ν − 2)2h̄2 〈ψ,P
2ψ〉 (11.12)

of the next section. This bound is valid whenever the dimension ν ≥ 3.
It says that the expectation of 1/r2 is bounded by the expectation of the
square of the momentum.

From this we immediately obtain the estimate

〈ψ, 1

r2
ψ〉 ≤ 8m

(ν − 2)2h̄2 〈ψ,H0ψ〉 (11.13)

Finally we have the trivial estimate (H0−b)2 ≥ 0 which may be written
2bH0 ≤ (H0 + b)2. This gives the second order estimate

〈ψ, 1

r2
ψ〉 ≤ 1

2b

8m

(ν − 2)2h̄2 〈ψ, (H0 + b)2ψ〉 (11.14)

which may be rewritten in terms of norms as

‖1

r
ψ‖2 ≤ 1

2b

8m

(ν − 2)2h̄2 ‖(H0 + b)ψ‖2. (11.15)

It follows easily that by taking b > 0 large enough we may arrange that the
operator (1/r)(H0 + b)−1 has arbitrarily small norm. In particular we can
arrange that V (H0 + b)−1 has norm less than one. This is enough to show
that D(H0) ⊂ D(V ) and that H = H0 + V is self-adjoint.

æ



Chapter 12

Uncertainty Principles

The self-adjoint operators representing quantum mechanical observables do
not commute. This is the ultimate origin of all the uncertainty principles.
Such principles say that the probability distributions of these observables
cannot be simultaneously concentrated on a scale measured by Planck’s
constant h̄.

The Heisenberg uncertainty principle ∆P∆Q ≥ h̄/2 is the most famous
but not the most useful uncertainty principle. In this chapter we also
present local uncertainty principles that are much more powerful. Some of
these are useful for deriving estimates. This subject is surveyed in more
detail elsewhere [7].

12.1 Expectations and Variances

Let A be a self-adjoint operator representing an observable. Let ψ be a unit
vector that determines a state. Then A is isomorphic to multiplication by
α on L2(X,µ) and ψ corresponds to some Wψ in L2(X,µ). We have

Pr
ψ

[A ∈ S] =

∫
{x|α(x)∈S}

|Wψ(x)|2 dµ(x). (12.1)

The expectation of A in the state ψ is the average of the values of A weighted
by the probability that A has these values. Thus the expectation is

〈A〉ψ = 〈ψ,Aψ〉 =

∫
α(x)|Wψ(x)|2 dµ(x). (12.2)

The integral defining the expectation converges absolutely whenever |α|1/2Wψ
is in L2, that is ψ is in D(|A|1/2).
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Definition 21 If A is a self-adjoint operator, then its quadratic form do-
main Q(A) is defined to be D(|A|1/2). The quadratic form of A is defined
for ψ in Q(A) by the above integral and is denoted 〈ψ,Aψ〉 for all ψ in
Q(A).

Note that strictly speaking one should write the quadratic form as
〈|A|1/2ψ, sign(A)|A|1/2ψ〉, but this is so clumsy to read that the form in
the definition is preferred.

The second moment of A in the state ψ is the average of the values of
A2 weighted by the probability that A has these values. Thus the second
moment is

〈A2〉ψ = ‖Aψ‖2 =

∫
α(x)2|Wψ(x)|2 dµ(x). (12.3)

The integral defining the second moment converges absolutely whenever
αWψ is in L2, that is ψ is in D(A).

Let A be a self-adjoint operator and let ψ be a state. Write 〈A〉 for the
expectation of A in this state. The variance (∆A)2 in the state ψ is defined
for ψ in D(A) by

(∆A)2 = 〈(A− 〈A〉)2〉 = ‖(A− 〈A〉)ψ‖2 =

∫
(α(x)− 〈A〉)2|Wψ(x)|2 dµ(x).

(12.4)
The standard deviation (∆A) is the square root of the variance.

Note that (∆A)2 = 〈(A− 〈A〉)2〉 = 〈A2〉 − 〈A〉2, so that (∆A)2 ≤ 〈A2〉.

12.2 The Heisenberg uncertainty principle

Theorem 27 The Heisenberg uncertainty principle

∆P∆Q ≥ h̄

2
(12.5)

is valid in every state.

Proof: The Heisenberg commutation relation says that PQ−QP = −ih̄.
Let P ′ = P − 〈P 〉 and Q′ = Q − 〈Q〉. Then P ′ and Q′ also satisfy the
commutation relation. Thus

〈P ′ψ,Q′ψ〉 − 〈Q′ψ, P ′ψ〉 = −ih̄. (12.6)

This may be rewritten

=〈P ′ψ,Q′ψ〉 =
h̄

2
. (12.7)
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Since P and Q are the closures of their restrictions to smooth functions with
rapid decrease, this equation is valid for all ψ in both D(P ) and D(Q). The
Schwarz inequality gives

h̄

2
= =〈P ′ψ,Q′ψ〉 ≤ |〈P ′ψ,Q′ψ〉| ≤ ‖P ′ψ‖‖Q′ψ‖ = ∆P∆Q, (12.8)

which is the theorem.

Problems

1. Find all states ψ in which ∆P∆Q = h̄/2. Hint: Show that Pf = zQf
and then that z = ic for some c > 0. Solve the resulting differential
equation (in the Schrödinger representation).

12.3 The local uncertainty principle: dimen-
sion one

We now come to another uncertainty principle that is less symmetric but
more powerful that the Heisenberg principle.

Theorem 28 Let S be a set of measure b. Then in every state

Pr[Q ∈ S] ≤ b∆P

h̄
. (12.9)

Proof: We work in the Schrödinger representation for the pair P −
〈P 〉, Q, so that P − 〈P 〉 = −ih̄d/dx and Q is multipication by x. We have

Pr[Q ∈ S] =

∫
S

|f(x)|2 dx. (12.10)

Thus we must estimate g(x) = f(x)2. We may write

2g(x) =

∫ x

−∞
g′(t) dt−

∫ ∞
x

g′(t) dt. (12.11)

Hence for each x we have the estimate

2|g(x)| ≤
∫ ∞
−∞
|g′(t)| dt. (12.12)

It follows that for every x we have

2|f(x)|2 ≤
∫ ∞
−∞

2|f ′(t)||f(t)| dt ≤ 2‖f ′‖‖f‖ = 2‖(P − 〈P 〉)f‖ =
2∆P

h̄
.

(12.13)
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Thus

Pr[Q ∈ S] =

∫
S

|f(x)|2 dx ≤ ∆P

h̄

∫
S

dx =
∆P

h̄
b. (12.14)

The local uncertainty principle is more powerful than the Heisenberg
uncertainty principle. The latter says that if ∆P is small, then ∆Q is
large, that is, it is probable that Q has a wide range of values. The local
uncertainty principle says something more: It is improbable that Q is con-
centrated near some point. The fact that this is stronger follows form an
elementary inequality from probability theory: Chebyshev’s inequality.

Proposition 34 Let c > 0. Let g be an increasing function. Then

Pr[A ≥ c] ≤ 〈g(A)〉
g(c)

. (12.15)

The following corollary is obtained by taking replacing A by |A − 〈A〉|
and taking g(u) = u2 for u ≥ 0.

Corollary 12 Let c > 0. Then

Pr[|A− 〈A〉| ≥ c] ≤ (∆A)2

c2
. (12.16)

Now assume that we have operators P and Q for which the local uncer-
tainty principle

Pr[|Q− 〈Q〉| ≤ b/2] ≤ b∆P

h̄
. (12.17)

is satisfied. If combine this with Chebyshev’s inequality

Pr[|Q− 〈Q〉| ≥ b/2] ≤ 4(∆Q)2

b2
(12.18)

we obtain

1− b∆P

h̄
≤ 4(∆Q)2

b2
. (12.19)

Choose b = h̄/(2∆P ). Then we obtain

h̄

4
√

2
≤ ∆P∆Q. (12.20)

This is not quite the Heisenberg uncertainty principle, because the constant
is wrong. But it is qualitatively an inequality of the same kind. The point
is that it is difficult to imagine that one could reverse the derivation and
derive something like the local uncertainty principle from the Heisenberg
uncertainty principle.
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12.4 The local uncertainty principle: dimen-
sion three

There is a particularly useful form of the local uncertainty principle in
dimension three or greater.

Theorem 29 Let ν ≥ 3. Let r = |x| be the distance form the origin. Then
in every state ψ we have the inequality

(ν − 2)2h̄2

4
〈ψ, 1

r2
ψ〉 ≤ 〈ψ,P2ψ〉. (12.21)

This looks more like an uncertainty principle when one writes it in the
form

(ν − 2)h̄

2
≤ 〈ψ,P2ψ〉 12 〈ψ, r−2ψ〉− 1

2 . (12.22)

Notice the corollary

Pr[r ≤ a] ≤ a2 4

(ν − 2)2h̄2 〈ψ,P
2ψ〉. (12.23)

which follows immediately using Chebyshev’s inequality. The important
thing to note is that in every dimension ν ≥ 3 the probability of being near
a given point goes to zero quadratically as one approaches the point.

Proof: It is sufficient to prove the result

(ν − 2)2

4
〈ψ, 1

r2
ψ〉 ≤ 〈 ∂

∂r
ψ,

∂

∂r
ψ〉. (12.24)

For every real β compute

‖( ∂
∂r

+ β
1

r
)ψ‖2 = ‖ ∂

∂r
ψ‖2 +

β2 − (ν − 2)β

r2
. (12.25)

Take β = (ν − 2)/2. Q.E.D.
This local uncertainty principle shows that when v(x) ≥ −c/r2 for some

sufficiently small constant c, then Hamiltonian H = P2/(2m) + v(Q) is
bounded below. Thus rather severe negative local singularities are allowed.

There are more general criteria in which the condition is that v be in
some Lp space (that |v|p be integrable) for suitable p. These are usually
called Sobolev inequalities. It is remarkable that these Sobolev inequalities
may be deduced from the local uncertainty principle given here [6].

æ
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