1 Groups and subgroups

In this section elements of the group G are denoted a, b, c, \ldots The group multiplication is a * b. The identity element is e. The inverse is a^{-1} , so we have $a * a^{-1} = e$ and $a^{-1} * a = e$.

Consider a group G and subgroup H. Two elements a, b of G are equivalent if $a^{-1} * b$ is in H. The equivalence classes are called left cosets of H. The left coset determined by a (or by b) consists of a * H (or b * H). These left cosets are the blocks of a partition of G.

The Lagrange theorem follows from the remark that all left cosets have the same number of elements, which is just the order of H. The bijection from H to a * H is obtained by sending h to a * h.

It follows that the order of H times the number of left cosets equals the order of G.

2 Groups actions

Consider a group acting on a set X. The action of a in G on x in X is another element a(x) in X. Then

- $\bullet \ (a*b)(x) = a(b(x))$
- \bullet e(x) = x.

Given an element x in X, its orbit orb(x) is defined by

$$orb(x) = \{a(x) \mid a \in G\}. \tag{1}$$

If we say that y is equivalent to x if y is in the orbit of x, then this defines an equivalence relation. The orbits form a partition of X. Write \mathcal{O} for the blocks of this partition. Our goal is to count \mathcal{O} .

Fix attention on one x in X. Let $H_x = \operatorname{stab}(x)$ be the stabilizer subgroup of G defined by

$$\operatorname{stab}(x) = \{ c \in G \mid c(x) = x \}. \tag{2}$$

Consider the map from G to X defined that sends a to a(x). This defines a partition of G, and the blocks of this partition are just the left cosets of $\mathrm{stab}(x)$. In fact, the left coset consists of all a*c with c(x)=x, and for such an element (a*c)(x)=a(c(x))=a(x).

This argument shows that the cosets of the subgroup $\operatorname{stab}(x)$ of G are in bijective correspondence with $\operatorname{orb}(x)$. It follows that the order of $\operatorname{stab}(x)$ times the number of points in $\operatorname{orb}(x)$ is the order of G. We may write this as

$$\frac{|G|}{|\operatorname{stab}(x)|} = |\operatorname{orb}(x)|. \tag{3}$$

3 Counting orbits

Define the fixed point set of a group element a in G to be

$$fix(a) = \{x \mid a(x) = x\}.$$
 (4)

The CFB theorem states that the number of orbits is the average over the group of the number of fixed points:

$$|\mathcal{O}| = \frac{1}{|G|} \sum_{a \in G} |\text{fix}(a)|. \tag{5}$$

Here is the proof. We have

$$|\mathcal{O}| = \sum_{x \in X} \frac{1}{\operatorname{orb}(x)}.$$
 (6)

Then use

$$\frac{1}{\operatorname{orb}(x)} = \frac{1}{|G|} |\operatorname{stab}(x)|. \tag{7}$$

to get

$$|\mathcal{O}| = \frac{1}{|G|} \sum_{x \in X} |\operatorname{stab}(x)| = \frac{1}{|G|} \sum_{x \in X} \sum_{a \in G} 1_{a(x) = x}$$
(8)

$$= \frac{1}{|G|} \sum_{a \in G} \sum_{x \in X} 1_{a(x)=x} = \frac{1}{|G|} \sum_{a \in G} |\text{fix}(a)|.$$
 (9)

4 Counting fixed point sets

In this section elements of the group G are denoted $\pi, \sigma, \tau, \ldots$ The identity element is e. The group acts on a set F.

Consider the case when G is a group of permutations of a set A. Let C be a set of colors. Then $F = C^A$ is the set of all colorings of A. If π is in G and f is in C^A , then the action of π on f is

$$\pi(f)(a) = f(\pi^{-1}(a)). \tag{10}$$

There is a theorem that says that f is in $\operatorname{fix}_G(\pi)$ if and only if f is constant on each cycle of π . Thus if there are k = |C| colors, and $\operatorname{c}(\pi)$ is the number of cycles in π , then

$$|\operatorname{fix}_G(\pi)| = k^{\operatorname{c}(\pi)}.$$
(11)

So the CFB theorem implies that

$$|(O)| = \frac{1}{|G|} \sum_{\pi \in G} k^{c(\pi)}.$$
 (12)

5 Appendix: Some small groups

The unit basis complex numbers are 1, i. It is required that $i^2 = -1$. These together with their negatives form a cyclic group C_4 of order 4.

The unit basis quaternions are 1, i, j, k. It is required that $i^2 = -1$, $j^2 = 1$, and $k^2 = -1$. Furthermore it is required that ij = -ji = k, jk = -kj = i, and ki = -ik = j. These together with their negatives form a group Q of order 8.

The cyclic group C_n is generated by the complex number $z = e^{\frac{2\pi i}{n}}$, representing counterclockwise rotation by $2\pi i/n$. This group is of order n.

The dihedral group D_n is generated by the complex number $z = e^{\frac{2\pi i}{n}}$, representing counterclockwise rotation by $2\pi i/n$, together with reflection r across the x axis. This group is of order 2n.

The dicyclic group Dc_n is generated by the complex number $z = e^{\frac{2\pi i}{2n}}$ together with the unit quaternion j. This group is of order 4n. A particularly famous example is when n = 2. In this case it is the group generated by i, j, which is Q.

The symmetric group S_n consists of all n! permutations of an n-set. The alternating group A_n consists of all n!/2 even permutations of an n-set.

```
1. C_1 = S_1 = A_2
```

2.
$$C_2 = S_2 = D_1$$

3.
$$C_3 = A_3$$

4.
$$C_4 = Dc_1, C_2 \times C_2 = D_2$$
 (Klein 4-group)

$$5. C_5$$

6.
$$C_6 = C_2 \times C_3$$
, NONABELIAN: $D_3 = S_3$ (triangle)

7.
$$C_7$$

8.
$$C_8$$
, $C_2 \times C_4$, $C_2 \times C_2 \times C_2$, NONABELIAN: D_4 (square), $Q = Dc_2$

9.
$$C_9, C_3 \times C_3$$

10.
$$C_{10} = C_2 \times C_5$$
, NONABELIAN: D_5 (pentagon)

11.
$$C_{11}$$

12.
$$C_{12}, C_2 \times C_6 = C_2 \times C_2 \times C_3$$
, NONABELIAN: $A_4, D_6 = D_3 \times C_2$ (hexagon), $T = Dc_3$

The number of abelian groups of order n is computed as follows. Factor n into powers of primes. For each power k that occurs, compute the integer partition number p(k). The answer is the product of these partition numbers. Notice that if the power k is one, then the corresponding partition number p(1) is 1.