
1 Groups and subgroups

In this section elements of the group G are denoted a, b, c, . . .. The group mul-
tiplication is a ∗ b. The identity element is e. The inverse is a−1, so we have
a ∗ a−1 = e and a−1 ∗ a = e.

Consider a group G and subgroup H. Two elements a, b of G are equivalent
if a−1 ∗ b is in H. The equivalence classes are called left cosets of H. The left
coset determined by a (or by b) consists of a ∗H (or b ∗H). These left cosets
are the blocks of a partition of G.

The Lagrange theorem follows from the remark that all left cosets have the
same number of elements, which is just the order of H. The bijection from H
to a ∗H is obtained by sending h to a ∗ h.

It follows that the order of H times the number of left cosets equals the
order of G.

2 Groups actions

Consider a group acting on a set X. The action of a in G on x in X is another
element a(x) in X. Then

• (a ∗ b)(x) = a(b(x))

• e(x) = x.

Given an element x in X, its orbit orb(x) is defined by

orb(x) = {a(x) | a ∈ G}. (1)

If we say that y is equivalent to x if y is in the orbit of x, then this defines an
equivalence relation. The orbits form a partition of X. Write O for the blocks
of this partition. Our goal is to count O.

Fix attention on one x in X. Let Hx = stab(x) be the stabilizer subgroup
of G defined by

stab(x) = {c ∈ G | c(x) = x}. (2)

Consider the map from G to X defined that sends a to a(x). This defines a
partition of G, and the blocks of this partition are just the left cosets of stab(x).
In fact, the left coset consists of all a ∗ c with c(x) = x, and for such an element
(a ∗ c)(x) = a(c(x)) = a(x).

This argument shows that the cosets of the subgroup stab(x) of G are in
bijective correspondence with orb(x). It follows that the order of stab(x) times
the number of points in orb(x) is the order of G. We may write this as

|G|
|stab(x)| = |orb(x)|. (3)
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3 Counting orbits

Define the fixed point set of a group element a in G to be

fix(a) = {x | a(x) = x}. (4)

The CFB theorem states that the number of orbits is the average over the group
of the number of fixed points:

|O| = 1
|G|

∑

a∈G

|fix(a)|. (5)

Here is the proof. We have

|O| =
∑

x∈X

1
orb(x)

. (6)

Then use
1

orb(x)
=

1
|G| |stab(x)|. (7)

to get

|O| = 1
|G|

∑

x∈X

|stab(x)| =
1
|G|

∑

x∈X

∑

a∈G

1a(x)=x (8)

=
1
|G|

∑

a∈G

∑

x∈X

1a(x)=x =
1
|G|

∑

a∈G

|fix(a)|. (9)

4 Counting fixed point sets

In this section elements of the group G are denoted π, σ, τ, . . .. The identity
element is e. The group acts on a set F .

Consider the case when G is a group of permutations of a set A. Let C be
a set of colors. Then F = CA is the set of all colorings of A. If π is in G and f
is in CA, then the action of π on f is

π(f)(a) = f(π−1(a)). (10)

There is a theorem that says that f is in fixG(π) if and only if f is constant
on each cycle of π. Thus if there are k = |C| colors, and c(π) is the number of
cycles in π, then

|fixG(π)| = kc(π). (11)

So the CFB theorem implies that

|(O)| = 1
|G|

∑

π∈G

kc(π). (12)

2



5 Appendix: Some small groups

The unit basis complex numbers are 1, i. It is required that i2 = −1. These
together with their negatives form a cyclic group C4 of order 4.

The unit basis quaternions are 1, i, j, k. It is required that i2 = −1, j2 = 1,
and k2 = −1. Furthermore it is required that ij = −ji = k, jk = −kj = i, and
ki = −ik = j. These together with their negatives form a group Q of order 8.

The cyclic group Cn is generated by the complex number z = e
2πi
n , repre-

senting counterclockwise rotation by 2πi/n. This group is of order n.
The dihedral group Dn is generated by the complex number z = e

2πi
n , rep-

resenting counterclockwise rotation by 2πi/n, together with reflection r across
the x axis. This group is of order 2n.

The dicyclic group Dcn is generated by the complex number z = e
2πi
2n to-

gether with the unit quaternion j. This group is of order 4n. A particularly
famous example is when n = 2. In this case it is the group generated by i, j,
which is Q.

The symmetric group Sn consists of all n! permutations of an n-set. The
alternating group An consists of all n!/2 even permutations of an n-set.

1. C1 = S1 = A2

2. C2 = S2 = D1

3. C3 = A3

4. C4 = Dc1, C2 × C2 = D2 (Klein 4-group)

5. C5

6. C6 = C2 × C3, NONABELIAN: D3 = S3 (triangle)

7. C7

8. C8, C2 × C4, C2 × C2 × C2, NONABELIAN: D4 (square), Q = Dc2

9. C9, C3 × C3

10. C10 = C2 × C5, NONABELIAN: D5 (pentagon)

11. C11

12. C12, C2×C6 = C2×C2×C3, NONABELIAN: A4, D6 = D3×C2 (hexagon),
T = Dc3

The number of abelian groups of order n is computed as follows. Factor
n into powers of primes. For each power k that occurs, compute the integer
partition number p(k). The answer is the product of these partition numbers.
Notice that if the power k is one, then the corresponding partition number p(1)
is 1.
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