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1 The quantum riddle

The book under review is devoted to a proposal for resolving the problem of
the foundations of quantum mechanics. There are two parts: first the essentials
of quantum theory, and then a variety of applications with emphasis on the
paradoxical features of the theory and on measurement situations. The level
of the book is comparable to that of other introductions to quantum theory,
but it concentrates on promoting consistent family theory and thus omits a
number of textbook topics that are not relevant to this. Something very similar
to consistent family theory has also been considered by Omnès [O] and by Gell-
Mann and Hartle [GH]. This theory is one instance of an important trend in
foundations of quantum mechanics—the idea that measurement should not play
a fundamental role.

While quantum mechanics is the fundamental theory of matter, its inter-
pretation is controversial. The problem emerges from the mathematics of the
theory. This mathematical apparatus is so simple and compelling that physicists
are completely under its spell. But it leads directly to the difficulty.

The easiest way to understand the problem is to make the comparison to
probability theory. In probability the structure is defined in terms of a set Ω. An
element of the set Ω is called an outcome. In addition, there is a given family of
subsets of Ω. Each such subset is called an event. The set Ω is itself an event. If
E is an event, then its complement E′ is also an event, representing the negation
of E. Furthermore, if E and F are each events, then their intersection EF is
an event, representing the conjunction of E and F . This family of events thus
forms a Boolean algebra. A probability measure assigns to each event a number
P [E] with 0 ≤ P [E] ≤ 1 in the closed interval from 0 to 1 in such a way that
the usual probability axioms are satisfied.

The most common interpretation of this mathematical apparatus is the fol-
lowing. There is a situation that may be reproduced many times under inde-
pendent, identical conditions. An outcome describes which events do or do not

1



happen. Thus the outcome ω for a particular replication may or may not belong
to the set E. The probability of E is supposed to be close to the proportion of
the replications for which E happens. The author of the book seems to endorse
something close to this interpretation of probability, where he explains the no-
tion of ensemble as “a large collection of systems” and says that “any particular
system will be in some definite state, but this state is not known before the
system is selected from the ensemble.” (pp. 73–74).

If the probability of an event is one, then one would expect to see the event
happen in each replication. This leads to a kind of logic. Thus, for instance,
if the probability of E and not F is zero, that is, if P [EF ′] = 0, then in each
replication in which E happens, F should also happen. That is, every (or almost
every) outcome in E should also be in F .

In quantum mechanics the structure is defined in terms of a Hilbert space H.
A closed subspace of H is called a quantum event. Since there is a one-to-one
correspondence between closed subspaces and orthogonal projection operators,
each closed subspace is identified with the corresponding projection operator.
Each such projection operator is self-adjoint and satisfies E2 = E. The identity
operator I projects onto the entire Hilbert space H, and it is regarded as a
quantum event. If E is a projection onto a subspace representing a quantum
event, then E′ = I−E projects onto the orthogonal complement and represents
the negation of E. If E and F are each quantum events, then they are said to be
compatible if the projections commute, EF = FE. If E and F are compatible
quantum events, then their product EF projects onto the intersection and is a
quantum event. A unit vector ψ in H plays the role of a probability measure.
The square of the length of the projected vector Eψ is a number

P [E] = ‖Eψ‖2 (1)

with 0 ≤ P [E] ≤ 1. This is the probability of the quantum event E.
The analogy is close, but an extra feature of quantum mechanics makes

all the difference. This is the existence of quantum events E,F that are not
compatible. A standard example is when E is the event that the position of a
particle is in a certain region, and F is the event that the momentum of the
particle is in some other region. There is no definition of the conjunction of two
such quantum events. Furthermore, there is no natural notion of outcome for
all quantum events that would help us overcome this difficulty.

A compatible family of quantum events is a family of quantum events with
the following properties. The family contains the sure event I, whenever E is in
the family its negation E′ is in the family, and whenever E, F are in the family,
then the E,F are compatible, and the conjunction EF is in the family. Then
this family forms a Boolean algebra, and the usual rules of probability hold. The
interpretation of probabilities in terms of the proportion of outcomes is without
problem. The puzzle is how one would be justified in restricting attention to a
particular compatible family.

This raises the question: How is it possible that there is no general defi-
nition of conjunction of quantum events? Can someone forbid us to use the

2



word “and”? If so, who will assume this burden? There are several possible
answers. One is to place the responsibility on the physicist performing an ex-
periment. The traditional account is if E and F are incompatible quantum
events, then there is no measurement that will simultaneously find out whether
E happens and whether F happens. A measurement of one precludes the mea-
surement of the other. Thus the question goes away. The measurement will
single out a particular compatible family of quantum events. The probabilities
given by quantum mechanics are relevant only to these events. They predict
the frequency of outcomes in the usual way.

Other solutions are possible; again these may involve restricting attention to
a special compatible family of quantum events. These events might correspond
to questions about positions of particles (as in Bohmian mechanics [BZ]), or they
might be certain macroscopic events (perhaps in some version of decoherence
theory). In any case, such a restricted class of events would fall within the scope
of ordinary probability theory. For better or worse, singling out such a class
discards much of the Hilbert space symmetry of quantum mechanics.

The book under review takes yet another direction. There are two major
themes. The first theme is relatively technical. The assertion is that it is useful
to consider an extension of quantum mechanics to a more general consistent
family (or framework) theory. In this theory one can do probability calculations
with certain quantum events that are not compatible in the above sense, but only
when certain consistency conditions are satisfied. The second theme has to do
with the interpretation of quantum mechanics. The idea is that the difficulties
mentioned above can be eliminated by imposing a new syntactic rule.

2 Consistent families

Say that there is a Boolean algebra of quantum events F associated with time
instant 1 and another Boolean algebra of quantum events E associated with time
instant 2. The quantum events E and F are not necessarily compatible. There
is a construction that associates to the quantum event E a corresponding event
E2 and to the quantum event F a corresponding event F1 in such a way that E2

and F1 are compatible. Unfortunately, the events E2 and F1 are associated with
a different Hilbert space. Nevertheless one can still try to define probabilities
of conjunctions using the original Hilbert space. Thus, given that the state is ψ
at time 0, the probability of the conjunction E2F1 is

P [E2F1] = ‖EFψ‖2. (2)

The above definition ignores the unitary time evolution of quantum mechan-
ics, but this is justified if we work in the Heisenberg picture. The real problem
is that it will not satisfy the usual probability axioms. Thus, for example, it is
not true in general that

P [E2] = P [E2F1] + P [E2F
′
1]. (3)
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Since

‖Eψ‖2 = ‖EFψ‖2 + ‖EF ′ψ‖2 + 〈EF ′ψ,EFψ〉+ 〈EFψ,EF ′ψ〉, (4)

the condition for this to happen is that the sum of the last two terms is zero.
This is an example of a consistency condition. (In some treatments this is called
a decoherence condition.)

Given the appropriate consistency conditions, the usual probability axioms
will be satisfied. This is the idea behind the concept of consistent family or
framework as expounded in the book. Each such framework corresponds to
the usual setup of ordinary probability theory. The only remaining question is
about the relation between different frameworks.

3 The single framework rule

The interpretation of quantum mechanics in the book is in the context of this
extended notion of consistent family or framework. However the ordinary case
of a compatible family may be viewed as special case of a framework. This could
be an algebra of events defined only at time 1, or it could involve compatible
events at time 1 and time 2 related (in the Heisenberg picture) by the time
evolution. So the success of the interpretation should not hang on the more
general notion; it would be impressive enough if it applied only to the special
case of a compatible family.

The goal is clear: It is “constructing a rational approach to quantum theory
that is not based on measurement as a fundamental principle” (p. xiv). The
author states that, “paradoxes have sometimes been used to argue that the
quantum world is not real, but is in some way created by human consciousness,
or else that reality is a concept which only applies to the macroscopic domain
immediately accessible to human experience.” (p. 10) He displays no sympathy
for such views.

The difficulty to be overcome is displayed in several examples, explained
in detail in the book. The Hardy paradox is typical. The system consists of
two particles, each passing through one of two arms of an interferometer and
then through one of two channels. The system has the following remarkable
property. Whenever the first particle emerges in the E channel, then the second
particle was earlier in the D̄ arm. Whenever the second particle emerges in the
Ē channel, then the first particle was earlier in the D arm. The probability that
the first particle emerges in the E channel while the second particle emerges in
the Ē channel is 1/12. However it is impossible for the first particle to have
gone through the D arm while the second particle went through the D̄ arm.
This is amazing, but it is also standard quantum mechanics.

In the language of quantum mechanics, the events E and Ē are compatible
and

P [EĒ] =
1
12
. (5)
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The events E and D̄ are compatible, and

P [ED̄′] = 0. (6)

The events Ē and D are compatible, and

P [ĒD′] = 0. (7)

Finally, the events D and D̄ are compatible, and

P [DD̄] = 0. (8)

The problem is this. If actual physical outcomes determine whether these events
happen or not, then for some significant fraction of these outcomes E and Ē
both happen. If E happens, then D̄ must happen. If Ē happens, then D must
happen. So for these outcomes both D̄ and D happen. But this is impossible.

The usual way out is to say that only compatible events may be measured in
any one experiment. So the probabilities only apply to these measured events.
Pairs such as E,D are not compatible. However this exit is not available to the
author, since he wants to develop a theory that is not based on measurement. His
solution is breathtakingly simple: the single framework rule. It says that “when
constructing a quantum description of a physical system it is necessary to restrict
oneself to a single framework, or at least not mix results from incompatible
frameworks.” (p. 217) In the example the events E, Ē,D, D̄ do not fit into a
single consistent family or framework, and so the laws of probability cannot be
used to deduce that P [DD̄] ≥ 1/12.

How does this restriction work? He explains, “To be sure, there is never any
harm in constructing as many alternative descriptions of a quantum system as
one wants to, and writing them down on the same sheet of paper. The difficulty
comes about when one wants to think of the results obtained by using incom-
patible frameworks as all referring simultaneously to the same physical system,
or tries to combine the results of reasoning based on incompatible frameworks.”
(p. 225) There is an element of choice: “In order to describe a physical system,
a physicist must, of necessity, adopt some framework and this means choosing
among many incompatible frameworks, no one of which is, from a fundamental
point of view, more appropriate or more ‘real’ than any other.” (p. 364) The
physicist can assert, “If E , then D̄.” Another choice is, “‘If Ē, then D.” But
the conjunction “If E, then D̄, and if Ē, then D” is meaningless.

The rule is that no more than one consistent family may be used at a time.
This leads to a natural question: Is every possible consistent family available
for use? For example, each quantum event E generates a consistent family
consisting of 0, I, E,E′. One event is that the position of a particle is in a
certain region. Another event is that the momentum is in some other region.
These two are not compatible, but they separately generate consistent families.
There is also the event that some particular linear combination of position and
momentum is in a given region. This has exactly the same mathematical status
at the first two events, but its physical meaning is more obscure. Other events
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may seem even more arbitrary. Does every quantum event, when regarded as
a member of some consistent family, have a physical meaning? If so, then how
does one find out this meaning? What do the probabilities predict? Or are some
of the more complicated and arbitrary consistent families mere mathematical
artifacts? If so, is there a systematic theory to select those that have physical
meaning? The book treats many examples of consistent families, but it pays
little attention to this more general issue.

4 Conclusion

There is a useful summary at the end of the book. The author makes three
claims. (These might seem totally reasonable to a scientist not steeped in the
orthodoxy of quantum mechanics.)

1. “Measurements play no fundamental role in quantum mechanics, just as
they play no fundamental role in classical mechanics.”

2. “Quantum mechanics, like classical mechanics, is a local theory in the
sense that the world can be understood without supposing that there are mys-
terious influences which propagate over long distances more rapidly than the
speed of light.”

3. “Both quantum mechanics and classical mechanics are consistent with the
notion of an independent reality, a real world whose properties and fundamental
laws do not depend upon what human beings happen to believe, desire, or think.
While this real world contains human beings, among other things, it existed long
before the human race appeared on the surface of the earth, and our presence
is not essential for it to continue.”

The theory that is to justify these claims relies on the single framework
rule, which is a syntactic rule of a certain kind of logic. This is explicit in
a letter by the Griffiths and Omnès in the May 2000 issue of Physics Today
[GO]. They say that the principles of quantum mechanics “inevitably require
some modification of the rules of propositional logic when dealing with quantum
properties.” They are specific: “What we are recommending is a syntactical
rule governing how logical expressions can be formed in a meaningful way, which
prohibits combining propositions from distinct, incompatible consistent families.
Each consistent family, on the other hand, constitutes a logic in which the usual
rules of reasoning apply.”

The book does little to put this kind of quantum reasoning in a more gen-
eral logical context. On the other hand, Isham [I] describes a logic in which
mathematical objects are indexed by consistent families. He refers to this ap-
proach as “a type of neorealism.” For each quantum event E and each number
p with 0 ≤ p ≤ 1, the truth value of P [E] = p is itself indexed by consistent
families. This truth value belongs to a Heyting algebra that obeys the rules of
intuitionistic logic. (A Heyting algebra is more general than a Boolean algebra;
in particular the law of double negation need not hold.) Presumably a theoret-
ical physicist could carry out all needed calculations in intuitionistic calculus, a
subject that is already highly developed [B].
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Near the end of the book there a passage that reads:

“The principle of unicity does not hold: there is not a unique ex-
haustive description of a physical system or a physical process. In-
stead, reality is such that it can be described in various alternative,
incompatible ways, using descriptions that cannot be compared or
combined.” (p. 369)

This concept of reality is defined negatively, and so its intent is elusive. Perhaps
a clue could emerge from the fact that probabilities predict relative frequencies.
Frequencies of what? The author is clear that there is no single overall objective
outcome that describes whether each of the quantum events happens or not. In
fact, this is ruled out by the non-existence of a “universal truth functional.”
Perhaps the repetitions of the physical situation are partitioned according to
the description that is being entertained—but then the partition would seem
to depend on the choice of the physicist. The author is quite clear that there
is no law of nature that specifies the framework that has to be employed in a
particular circumstance. (p. 255) His advice is to say that “one has to learn
how to choose the correct sample space for discussing a particular problem, and
how to avoid carelessly combining results from incompatible sample spaces.”
(p. 75) On the other hand, maybe the idea is that for each repetition there are
outcomes associated with each of the individual consistent families, yet somehow
these outcomes do not fit together to form an overall outcome, because they are
making assertions about incomparable aspects of the physical system. Thus the
notion of outcome in probability is also problematic. Or is there some other
content to the probability predictions? This puzzle reflects the fundamental
problem with the version of quantum theory in this book: A syntactical rule
that merely restricts discourse does little to tell what the theory is about.
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