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Preface

The book you are reading began as notes for a one-semester undergraduate
course in mathematical logic. The students in such a course have ordinarily al-
ready taken a course in which they have explicit training in constructing proofs.
They also tend to have experiences in courses in algebra or analysis where rig-
orous proofs are an important part of the content. However, the material in
this book may well be of wider interest. A considerable number of professional
mathematicians do not know explicit rules for constructing proofs; even fewer
know the implications of these rules for our understanding of mathematics. The
author would argue that every mathematician should pay serious attention to
this subject.

The book is organized in four parts. The material in Chapters 1 through 6 is
the practical story about proof construction. The following Chapters 7 through
9 attempt to explain proofs from a more theoretical point of view. Chapters 10
through 12 describe the extent to which the theorems and proofs of mathematics
characterize mathematical reality; the answer given by model theory is there is
fundamental ambiguity. The remaining chapters are supplementary material:
background results in Chapters 13 through 15, a new topic sketched in Chapter
16.

The thesis of this book is that there is a science of proof. Mathematics
prides itself on making its assumptions explicit, but most mathematicians learn
to construct proofs in an unsystematic way, by example. This is in spite of the
known fact that there is an organized way of creating proofs using only a limited
number of proof techniques. This is not only true as a theoretical matter, but
in actual mathematical practice.

Relatively few mathematics texts present a systematic exposition of rules for
proof. However it is common for logic texts written by philosophers to introduce
a subject called natural deduction. This is a set of rules that comes rather
close to those that mathematicians use in practice. Of course mathematicians
justifiably tend to skip over the more trivial steps in logical reasoning. Some less
obvious techniques, such as the use of “arbitrary variables,” are nicely captured
by natural deduction.

Even using natural deduction it is possible to make stupid attempts at proof
construction, such as going around in a circle of statements. One natural ques-
tion is whether it is possible to construct proofs in a way that actually leads to
progress. It will be shown that there are a small number of natural deduction

vii
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proof templates that accomplish this. These work quite well in practice for the
simple proofs that are often used as exercises for beginning students.

The templates for natural deduction have a somewhat clumsy structure. The
reason for this may be traced back to the fact that at each stage in reasoning
there may be a number of hypotheses in force, but at the particular stage there
is only a single conclusion. There are alternatives to natural deduction for
which at each stage there can be multiple hypotheses and multiple (alternative)
conclusions. Gentzen deduction is of this nature. See Kleene’s book [6] for a
treatment. (The tableau framework [17] is similar; it is basically a more efficient
packaging of Gentzen deduction.) In Gentzen deduction it is immediately clear
what needs to be done at each stage of proof construction.

There is a translation between natural deduction with templates and Gentzen
deduction. In Gentzen deduction one allows multiple alternate conclusions. In
natural deduction with templates there is only one conclusion at a time; possible
alternative conclusions are replaced by negated hypotheses. This seems like a
small distinction, but the two approaches appear quite different. At a deeper
level they are the same.

In this book we present the translation of natural deduction templates to
Gentzen deduction. We use natural deduction for practical reasoning and
Gentzen deduction for theoretical understanding. The fundamental theoretical
result is the classic Gödel completeness theorem. (We shall see that this might
be better called the Gödel “semantic completeness” theorem.) In the framework
of proof theory, this theorem says that there is a systematic way of attempt-
ing to construct proofs. If there is a proof, then the method is guaranteed to
construct it. If there is no proof, then the method produces a counterexample.

It might seem that this might make mathematics a trivial enterprise, but this
is not at all the case. The problem is that the construction of a counterexample is
in most cases an infinite process. In a practical instance of proof construction, at
a given stage one may not know whether one is on the way to a proof, or whether
one is working at the never-ending task of constructing the counterexample.
This deep problem arises from the fact that there can be a never-ending sequence
of “arbitrary variables” with ever more complex properties.

In this context, it is a remarkable fact that each proof, once accomplished,
is finite. This fact, combined with the Gödel completeness theorem, leads to
another classic result called the compactness theorem. It turns out that the
compactness theorem has strikingly negative implications for our hope of under-
standing the mathematical universe. This issue is the beginning of the subject
of model theory. In this book we treat model theory at a very elementary level.
Nevertheless, we shall see in an explicit way that any mathematical theory that
treats infinite mathematical objects will have non-standard models. These are
interpretations that are essentially different from the original interpretation that
we were trying to specify. In other words, in mathematics we almost never know
what we are talking about. This is a fundamental problem of semantics.

There is a more positive aspect to the existence of non-standard models.
Some mathematicians have proposed a program of non-standard mathematics,
in which mathematical reasoning is enriched by acknowledging additional prop-
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erties that arise in such models. Thus there is non-standard arithmetic and
even non-standard analysis. Non-standard analysis turns out to be a possible
framework for introducing infinitesimals, which then leads to a particularly ele-
mentary approach to calculus. The approach developed by Nelson [10, 11] gives
an accessible introduction to this circle of ideas.

It is worth making a few comments about a topic that is not
included in this book. There is an extremely famous result called
the Gödel incompleteness theorem. The meaning of the word “com-
plete” in this context is quite different. It refers to the difficult of
finding an effective set of axioms for a theory that settles all ques-
tions about the theory. (For this reason the result might better be
called the Gödel “syntatic incompleteness” theorem.) This theory
applies in particular to the theory of the natural number system.
The description of what is meant by an effective set of axioms and
the developments needed to prove the Gödel incompleteness theorem
are somewhat complicated. They are not treated in this book.

The Gödel incompleteness theorem is said to have dramatic im-
plications for mathematics, and this is in fact the case. However, the
author believes that the result that follows from the Gödel complete-
ness theorem and the compactness theorem, while quite different, is
even more devastating. There is an artificial device for defining a set
of axioms that settles all questions about the theory of some infinite
mathematical object, such as the natural number system. One can
just take as axioms all true statements. So it is always possible to
have a complete theory in this syntactic sense, at least in principle.
However, a complete theory of the natural numbers will still have
non-standard models. In other words, even the collection of all true
statements about the natural numbers cannot characterize the nat-
ural number system. The natural numbers go on and on, but just
how they do it is a mystery.

The origin of this book was the proof theory part; the model theory part
was added later. It arose from my desire to understand the natural mathemat-
ical structure of logical reasoning. When I was a student at the University of
Washington I attended lectures of Paul Halmos on algebraic logic, and I found
this the beginning of a coherent account [5]. More clarification came from a
series of conversations with William Lawvere, when we were both visiting the
Institut des Hautes Etudes Scientifiques. He pointed out that commonly used
patterns of logical inference are adjoint functors in the sense of category theory.
At some point he mentioned the text by Kleene [6] and the Gentzen calculus
explained there. I was pleased by Gentzen’s idea of systematically eliminating
logical operations in an attempt to produce a proof, and I decided to base a logic
course on this approach. The Gentzen calculus turns reasoning into something
akin to manipulating inequalities, and this is not how we reason in practice.
So I also taught natural deduction, which is closer to the the way we construct
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proofs in mathematics. I also introduced that templates for natural deduction
that channel it into a framework that is guaranteed to produce a proof (if one
exists). These templates seem not to be widely known, but the world would
surely be a better place if every mathematician were aware of their existence.

It seems appropriate to dedicate this book to Edward Nelson
(1932–2014). He contributed to analysis, probability, mathemati-
cal physics, non-standard mathematics, and logic. In every field in
which he worked he dealt with the most important and fundamen-
tal issues. His insights will be prized as long as there is a world of
mathematics and mathematicians.



Chapter 1

Introduction

1.1 Introduction

Mathematics is different from other sciences. The distinction is expressed in the
following passage by James Glimm [4].

There is an absolute nature to truth in mathematics, which is
unmatched in any other branch of knowledge. A theorem, once
proven, requires independent checking but not repetition or inde-
pendent derivation to be accepted as correct. In contrast, experi-
ments in physics must be repeated to be regarded as confirmed. In
medicine, the number of independent confirmations required is much
higher. Truth in mathematics is totally dependent on pure thought,
with no component of data to be added. This is unique. Associated
with truth in mathematics is an absolute certainty in its validity.

Why does this matter, and why does it go beyond a cultural
oddity of our profession? The answer is that mathematics is deeply
embedded in the reasoning used within many branches of knowl-
edge. That reasoning often involves conjectures, assumptions, intu-
ition. But whatever aspect has been reduced to mathematics has an
absolute validity. As in other subjects search for truth, the mathe-
matical components embedded in their search are like the boulders
in the stream, providing a solid footing on which to cross from one
side to the other.

A mathematical result has added value when it is accompanied by a mathe-
matical proof. This does not mean that it is superfluous to draw an illuminating
picture or present a striking application. However, in this book the focus is on
proof.

Most mathematicians have some idea of how to construct a proof and check
its validity, but the process is learned by experience. The thesis of this book is
that there is a science of proof (proof theory) that should be known to mathe-
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2 CHAPTER 1. INTRODUCTION

maticians. In simple cases it can even help in creating proofs. Proofs are not
only a source of certainty; they also have useful internal structure.

In every branch of applied mathematics a theory is created to understand a
given subject matter. Proof theory is no different; logic is applied to understand
what mathematicians are attempting when they construct proofs. The logical
tools also have broader implications. It turns out that mathematical proof, while
indeed giving a kind of certainty, is an imperfect description of mathematical
reality. This appears in the last part of the book (model theory).

The book treats the following topics:

1. The syntax and semantics of logic (chapters 2,3,4)

2. Natural deduction with templates (chapters 5,6)

3. Gentzen deduction and the Gödel completeness theorem (chapters 7,8,9)

4. Model theory (chapters 10,11,12)

5. Mathematical background (chapters 13,14,15)

The appendix (chapter 16) is a brief introduction to intuitionistic logic.

1.2 Syntax and semantics

In mathematical logic there is a distinction between syntax and semantics. Syn-
tax is the study of the formal structure of the language. The formation of sen-
tences and the structure of proofs are part of syntax. Semantics is about possible
interpretations of sentences of the language and about the truth of sentences in
an interpretation. Syntax is about language, and semantics is about content.

The word semantics is used rather generally to refer to meaning. Thus a
sentence like “Rover swims” might refer to the ability of a certain dog named
Rover. To grasp this sort of meaning requires a knowledge of the world, including
animals and bodies of water. On the other hand, we might only care that the
sentence “Rover swims” is true. In other words, there is some object (named
Rover) that belongs to some set (of swimming dogs). The kind of object and
the identity of the set may be irrelevant. This kind of semantics might be called
truth semantics. It is a much less informative kind of semantics.

The semantics studied in mathematical logic is truth semantics. Even this is
an interesting subject. This is not completely obvious at first, since a sentence
like “Rover swims” is rather trivial from the point of truth semantics. Either
Rover belongs to the set of swimmers, or Rover does not belong to the set of
swimmers. So the sentence is either true or false. The chapter on property logic
presents a complete analysis of the truth semantics of this kind of sentence.

The situation is entirely different when there is a relation in the story. The
truth semantics of sentences involving even a single relation can be rich enough
to be worth serious study. In general, no complete analysis is possible. For a
start, the truth of a small number of appropriately chosen sentences may imply
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that there are infinitely many objects under discussion. This fact is familiar in
contexts such as the sentence “Every event is caused by some other event”. Take
this sentence together with sentences that assert that “causes” is irreflexive and
transitive. (See the next section for such sentences.) If these sentences are true,
then it follows logically that there is no first cause.

1.3 Syntax constrains semantics

Here is an example of how syntax constrains semantics. It is the same example
with the relation “causes”, but now we use the symbol <. Consider the three
sentences.
∀x∃y y < x
∀x¬x < x
∀x∀y ∀z ((z < y ∧ y < x)⇒ z < x)
These have clear meanings in the theory of causation. The first says that

every x is caused by some y. The second says that it is never the case that x
causes x. The third says that if y causes x and z causes y, then z (indirectly)
causes x.

If these three sentences have an interpretation in some domain of objects
(events), then it follows that there are infinitely many objects. In other words,
there is no first cause. This is an example where simple syntax (three sentences)
has profound semantic implications.

It also shows how convenient it is to use truth semantics. One does not need
a deeper knowledge of the nature of events or the meaning of causation. In fact,
these are notoriously difficult issues in philosophy. All one needs to ask is what
happens when three axioms are true.

1.4 Language and metalanguage

In order to give understand logic and proof, it is useful to focus on a precisely
specified language. This is called the object language, and it is the intended
object of study. For example, we could have a language that is intended to
describe certain aspects of natural numbers. It could have property symbols
“even” and “odd”. A typical sentence might be

¬∃n (n even ∧ n odd)

This is intended to say that there does not exist a number that is both even
and odd. Another sentence is

∀n (¬n even ∨ ¬n odd)

This is intended to mean that every number is not even or not odd.
We can now discuss properties of these sentences. For instance, we could

say that they are logically equivalent. That is, without knowing anything about
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“even” and “odd” other than that they express properties of some kind of ob-
jects, the two sentences are both true or both false.

In the intended interpretation of the sentences, in which the objects are
natural numbers and the properties are the usual properties of evenness and
oddness, the sentences are both true. The fact that the sentences are logically
equivalent gives us the possibility of transforming such sentences one into an-
other in other contexts. For instance, we might be talking about some group
of people. Perhaps in this context “even” means “even-tempered” and “odd”
means “non-conformist”. Then the truth or falsity of the individual sentences
is not so clear, but they are true or false together.

There is a syntactical discussion about the formal relation of these sentences.
There is also a semantic discussion about the implications of this relation for
truth. These discussions are in the metalanguage, the language that is used to
discuss the object language. In this case, the metalanguage is English, but in
the following it will usually also have a component of mathematical jargon. We
could say that

¬∃n (A ∧B)

is logically equivalent to
∀n (¬A ∨ ¬B)

Here A,B are variables that stand for formulas involving n. The A,B variables
are not part of the language, but are part of the metalanguage. Such expressions
involve a confusing mixture of object language and metalanguage to which the
reader must remain alert.

In the translation from English to mathematical logic one drops the word
“is”. Instead of writing “n is even”, one just writes “n even”. It might seem
shocking that this word is superfluous, but this is a matter of context, as will
now be demonstrated.

In the following discussion, the object language will be Russian, and the
metalanguage will be English. In English one would write, “Every happy fam-
ily is similar to every other happy family.” In Russian one would write the
equivalent of “Every happy family similar to every other happy family.” This
is completely natural in the Russian language.

Here is a translation (by Constance Garnett) of the famous opening sentences
of Anna Karenina.

Happy families are all alike; every unhappy family is unhappy in its
own way.

Everything was in confusion in the Oblonskys’ house. The wife
had discovered that the husband was carrying on an intrigue with a
French girl, who had been a governess in their family, and she had
announced to her husband that she could not go on living in the
same house with him.

The word “is” (with various variations) occurs a number of times in the trans-
lated passage. In the original Russian it is omitted, at least in the present
tense.
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Another feature of Russian is that there are no articles. In place of “the
wife” and “a French girl” the Russian form would be “wife” and ”French girl”.
However, it would be a mistake to think that the Russian language is relatively
impoverished. On the contrary, it has a rich internal structure of its own, a
structure that is not preserved in the process of translation to English.

The object language of mathematical logic is designed to be simple and
explicit. It is our good fortune that it is so primitive; we have at least some
hope of understanding it.
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Chapter 2

Propositional logic

2.1 Syntax of propositional logic

Propositional logic is logic that describes how to combine sentences. The sym-
bols that represent sentences of propositional logic will be called formulas.

Here is the syntax of propositional logic. There are atomic formulas denoted
P,Q,R, . . .. They are combined by connectives ∧, ∨,⇒, ¬ to form more compli-
cated formulas. (One could just as well use the more familiar connectives “and”,
“or”, “implies”, “not”. These are the intended meanings of the symbols.) Here
are the rules for generating these formulas:

And If A,B are formulas, then (A ∧B) is a formula.

Or If A,B are formulas, then (A ∨B) is a formula.

Implies If A,B are formulas, then (A⇒ B) is a formula.

Not If A,B are formulas, then ¬A is a formula.

This particular list of connectives is chosen for later convenience. There is
something unnatural about having three binary operations and only one unary
operation. This could be avoided by the following device. Introduce an atomic
sentence ⊥ that is always to be interpreted as false. Then one could take ¬A
as an abbreviation of (A⇒ ⊥).

Sometimes people introduce other connectives. One that is frequently useful
is equivalent. In this treatment we treat this as an abbreviation; in fact (A⇔ B)
is taken as a shorter version of ((A⇒ B) ∧ (B ⇒ A)).

Example: The implication (Q ⇒ (P ∧ (P ⇒ Q))) is a formula. So is the
implication (¬(P ∧Q)⇒ ¬P ).

Example: The expression (Q ⇒ (P ⇒ Q ∧ P )) is not a formula. However
(Q⇒ (P ⇒ (Q ∧ P ))) (Q⇒ ((P ⇒ Q) ∧ P )) are both formulas.

7
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The word “formula” in logic is used in more general contexts, such as the
logic of properties or the logic of relations. In these contexts a sentence is a
special kind of formula such that in a given interpretation it is either true or
false. In propositional logic a formula is always a sentence, so this may also be
called the logic of sentences.

Convention 2.1 In writing a formula, omit the outermost parentheses. Re-
store them when the formula becomes part of another formula.

This convention is just a convenient abbreviation. Thus the formula Q ⇒
(P ∧ (P ⇒ Q)) is an abbreviation for the formula (Q ⇒ (P ∧ (P ⇒ Q))). On
the other hand, its negation must be written as ¬(Q⇒ (P ∧ (P ⇒ Q))).

2.2 Lore of connectives

The connectives ∧, ∨, ¬ are sometimes called conjunction, disjunction, negation.
The implication A⇒ B is also written
if A, then B
A only if B
B if A.
The converse of the implication A ⇒ B is the implication B ⇒ A. The

contrapositive of the implication A⇒ B is the implication ¬B ⇒ ¬A.
The equivalence A⇔ B is also written
A if and only if B.
Warning: In mathematical practice, when A is defined by B, the definition

is usually written in the form A if B. It has the logical force of A⇔ B.

2.3 Semantics of propositional logic

Here is the semantics of propositional logic. Since the only syntactic objects
are sentences, the semantics is rather degenerate: in an interpretation every
sentence is either false or true.

A propositional interpretation is specified by attaching to each atomic sen-
tence a truth value, false or true. For example, one could attach to P the value
true and to Q the value false.

The next thing is to determine the truth value for compound formulas. In
logic the word “or” is used in the inclusive sense, so that an “or” formula is
true when either one or the other or both of the constituents are true. (Some
treatments of logic also introduce an “exclusive or”, but we shall not need that.)

And (A ∧B) is true when A is true and B is true, otherwise false.

Or (A ∨B) is true when A is true or B is true, otherwise false.

Implies (A⇒ B) is true when A is false or B is true, otherwise false.
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Not ¬A is true when A is false, otherwise false.

It is easy to see that (A⇔ B) is true when A,B are both true or both false,
otherwise false.

Example: With the interpretation in which P is true and Q is false, the
formula Q⇒ (P∧(P ⇒ Q)) is true. On the other hand, the formula ¬(P∧Q)⇒
¬P is false.

2.4 Interpretation of formulas

Sometimes it is helpful to have a somewhat more mathematical description of
the semantics. For convenience we use the symbols 0 and 1 to denote falsity and
truth. A propositional interpretation is specified by attaching to each atomic
sentence a truth value 0 or 1. For example, one could attach to P the value 1
and to Q the value 0. If we write P for the set of atomic sentences, then the
interpretation is specified by a function φ : P → {0, 1}. So in the example the
function φ is chosen so that φ[P ] = 1 and φ[Q] = 0.

Proposition 2.2 If there are k atomic sentences, then there are 2k interpreta-
tions.

In principle the number of atomic sentences could be very large, but in a
given argument it may be that a relatively small number of them actually occur.
So we may often think of the set P of atomic sentences as having k elements,
where k is not particularly large. In that case we can do logical calculations by
examining all 2k possibilities.

In this more sophisticated notation the truth value for a compound formula
is determined as follows.

And φ[(A ∧B)] = min[φ[A], φ[B]].

Or φ[(A ∨B)] = max[φ[A], φ[B]].

Implies φ[(A⇒ B)] = max[(1− φ[A]), φ[B]].

Not φ[¬A] = 1− [φ[A]].

The essential property of implication is that φ[(A ⇒ B)] = 1 precisely
when φ[A] ≤ φ[B]. The convention for the symbol ⊥ is that φ[⊥] = 0, so
φ[¬A] = φ[(A⇒ ⊥)].

For equivalence the important thing is that φ[A ⇔ B] = 1 precisely when
φ[A] = φ[B]. For instance, we could express φ[(A⇔ B)] = 1− (φ[A]− φ[B])2.

Example: With the interpretation in which P is true and Q is false, the
sentence Q⇒ (P ∧ (P ⇒ Q)) is true. The sentence ¬(P ∧Q)⇒ ¬P is false.



10 CHAPTER 2. PROPOSITIONAL LOGIC

The first calculation is easy, all one needs is the value φ[Q] = 0. The result
is φ[Q⇒ (P ∧ (P ⇒ Q))] = max[1− 0, φ[P ⇒ (P ⇒ Q)] = 1.

The second calculation is more intricate. Compute φ[¬(P ∧ Q) ⇒ ¬P ] =
max[1− φ[P ∧Q], 1− φ[P ]]. Since φ[P ] = 1 we have φ(P ∧Q) = min[1, 0] = 0.
So this is max[0, 0] = 0.

2.5 Tree structure of formulas

Another way to think of a formula of propositional logic is as a rooted tree. The
original formula is the root, and the successors are the constituent formulas.
The immediate successors are defined by the last logical operation that was
used.

In the following discussion the propositional connectives are ∧,∨,⇒, and ¬.
As usual, we omit writing outermost parentheses.

Example: Take the formula Q ⇒ (P ∧ (P ⇒ Q)). This is the root. The
last operation used to construct was the first implication, so the immediate
successors of the root are Q and P ∧ (P ⇒ Q). The Q is an end element, but
P ∧ (P ⇒ Q) is a conjunction. Its immediate successors are P and P ⇒ Q.
Finally, the implication P ⇒ Q has two immediate successors P,Q.

Example: Consider ¬(P ∧Q)⇒ ¬P . This is an implication. The immediate
successors are the negations ¬(P ∧Q) and ¬P . The first of these has immediate
successors the conjunction P ∧ Q and finally P,Q. The second has immediate
successor P .

These trees have been constructed so that the end elements are atomic sen-
tences. This gives a nice way of describing the truth value of the root formula
in an interpretation. The idea is to start with the end elements, whose truth
values are given. Then work toward the root, finding the truth value of each
element from the truth value of its immediate successors.

Each formula of propositional logic is either atomic or is a formula corre-
sponding to one of the connectives. The connective is the last one that was used
to construct the formula. So even if a formula is very complicated, then it makes
sense to say that the formula is a conjunction or disjunction or implication or
negation.

2.6 Logical implication

To know whether a formula is true or false, one needs to know the truth or
falsity of the constituent atomic sentences. In a specific situation one would
need some empirical data to get this information. However, in logic one looks
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for results that do not depend on the state of the world. This leads to another
kind of semantics, the semantics of logical implication.

If A,C are formulas, then the logical implication A |= C means that for
every interpretation in which A is true it is also the case that C is true. There
is also a more general notion in which several hypotheses lead logically to a
certain conclusion. Thus, if A,B,C are formulas, then the logical implication
A,B |= C means that in every interpretation in which A,B are both true, it is
also the case that C is true. (The observant reader will notice that the comma
plays a role rather similar to that of the “and” conjunction. This is often the
case in mathematics.) The other extreme is when there are no hypotheses.
In this case it is conventional to write |= B to mean that B is true in every
interpretation.

Example: Take P, P ⇒ Q |= Q. If Q is true, then there is no problem. If P
is false, then there is also no problem. The only issue is when P is true and Q
is false. But then P ⇒ Q is false, so again there is no problem.

Example: Take |= P ∨ ¬P . There are only two possible interpretations of P ,
and P ∨ ¬P is true in each of them.

There is an interesting relation between logical implication and implication:

A |= B is equivalent to |= A⇒ B.

There is another related concept. The logical equivalence A ≡ B means that
in every interpretation φ we have that A is true if and only if B is true. It is
not hard to see that A ≡ B is equivalent to |= A⇔ B.

Example: It would be incorrect to say that P ∧(P ⇒ Q) is logically equivalent
to Q. For instance, if we take an interpretation in which P is false and Q is
true, then P ∧ (P ⇒ Q) is false and the Q is true. On the other hand, it is true
that ¬(P ∨Q) ≡ (¬P ∧ ¬Q).

One way to check a logical implication is semantically, examining all possi-
ble interpretations, but this is tedious. There are, however, general syntactic
principles, such as the following:

A,A⇒ B |= B.

This rule is called modus ponens. This is Latin for “mode of putting.” Say
that A ⇒ B is known. The most straightforward way to draw a conclusion is
to put down A. In that case B follows logically.

Such a general principle can have powerful consequences. For instance, one
consequence is that (P ∨Q)∧ ((P ∨Q)⇒ (R∧¬S)) |= R∧¬S. If we wanted to
check this by looking at all interpretations of atomic sentences, then one would
have to attach to each of P,Q,R, S a truth value 0 or 1, and there would be
24 = 16 such interpretations.

Here are some famous logical equivalences in propositional logic:
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The law of double negation states that

¬¬A ≡ A. (2.1)

De Morgan’s laws for connectives state that

¬(A ∧B) ≡ ¬A ∨ ¬B (2.2)

and that
¬(A ∨B) ≡ ¬A ∧ ¬B. (2.3)

Implication may be defined in terms of other connectives by

A⇒ B ≡ ¬A ∨B. (2.4)

An implication is logically equivalent to its contrapositive, that is,

A⇒ B ≡ ¬B ⇒ ¬A. (2.5)

Problems

1. Find the formation tree of ((P ⇒ Q)∧ (Q⇒ ¬P ))⇒ (P ∨Q). What kind
of sentence is it?

2. Find the truth value of the preceding sentence when P has value 0 and Q
has value 1. Also, find the truth value of the preceding sentence when P
has value 0 and Q has value 0.

3. Find the truth value of (P ⇒ R)⇒ ((P ⇒ Q)∧ (Q⇒ R)) for each of the
eight truth valuations.

4. By examining each of the eight truth valuations, prove that it is the case
that |= ((P ⇒ Q) ∧ (Q⇒ R))⇒ (P ⇒ R).

5. Is it true that ¬(P ∧Q) |= ¬P ∨ ¬Q? Prove that your answer is correct.

6. Is it true that ¬(P ∧Q) |= ¬P ∧ ¬Q? Prove that your answer is correct.

7. Is it the case that P ∨Q,P ⇒ ¬R,Q⇒ ¬R |= ¬R. Give a proof.

8. Is the following reasoning logically valid. Either I’ll try this problem or
I’ll go have a coffee. If I try I won’t get it. But if I go have a coffee then
I certainly won’t get it. So I won’t get it.

9. Is it the case that (P ∨Q)⇒ R,¬P,¬Q |= ¬R. Give a proof.

10. How about the following reasoning? If logic is part of mathematics or
part of philosophy, then it is a scientific field. But logic is not part of
mathematics, neither is it part of philosophy. So it is not a scientific field.



Chapter 3

Property logic

3.1 Syntax of property logic

The basic ideas of propositional logic are rather simple. The formulas are sen-
tences, and all one has to do is to attach to each atomic sentence a truth value,
and the rest is determined.

In property logic a formula has a more complex structure. An atomic formula
has a subject and a predicate. As a start, consider the case when the subject is
a variable. Thus a typical atomic formula might be “x happy”, which says that
an unspecified individual is happy. Consider a population (say of people) and
an interpretation of the predicate “happy”. It is not immediately clear whether
this formula should be true or false in this interpretation, since this would seem
to depend on which individual in the population is denoted by x. A slightly
more complicated formula is ∀xx happy. This is says that everyone is happy.
In a given interpretation this formula is either true or false. It is true if everyone
in the population is happy, and it is false if there is an unhappy individual.

A peculiarity of this example is that the truth or falsity of ∀xx happy does
not depend on any information about x. The x in such a context is called a
bound variable. This usage of bound variables in sentences is unusual in English,
but it is rather standard in mathematics. In English the closest equivalent might
be “For every individual under consideration, that individual is happy.” More
likely we would say “Everyone is happy”.

In property logic we have a choice of language. It is determined by a list
of property symbols p, q, r, . . .. For instance, we could tell a story about a
population of individuals who could each be describes as happy, rich, or wise.

In logic it is customary to have variables such as x, y, z that are allowed to
stand for various objects. For at least certain aspects of property logic it is
possible to get by with only one variable x. Then an atomic formula is of the
form x p, where p is a property symbol.

We may combine formulas with the same propositional connectives as before.
However now we may make new formulas with quantifiers.

13
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All If A is a formula, then ∀xA is a formula.

Exists If A is a formula, then ∃xA is a formula.

Example: Take A to be the sentence x happy. Then ∀xx happy is also a
formula. It says that everyone is happy.

Example: A quantifier may be placed in front of a formula to make a new
formula. Thus ∀x 2 + x = 5 is a formula, one that in the usual mathematical
interpretation would be regarded as false. On the other hand, ∀x 2 + z = 5 is
a legitimate but rather odd formula. It turns out to be logically equivalent to
the formula 2 + z = 5 without the quantifier. Such a formula is true or false
depending on what value is assigned to z.

Example: For a more complicated case, take B to be the formula x happy ∧
¬x rich. (Here again the convention is that the outermost parentheses are omit-
ted.) Then ∃xB is the formula ∃x (x happy ∧ ¬x rich). This is the classic but
improbable story about an individual who is happy but poor. Notice that it
is important that we restore the parentheses. Otherwise, we would get a dif-
ferent formula: ∃xx happy ∧ ¬x rich. This would say that there is a happy
individual, and, furthermore, somebody called x is poor. Yet another variation
is ∃xx happy ∧ ∃x¬x rich. (Again outermost parentheses are omitted.) This
says that there is a happy individual and there is also a poor individual. They
may or may not be the same.

Example: How about the formulas ∃x∃x (x happy∧¬x rich) and ∃x (∃xx happy∧
∃xx rich)? They both seem odd, but such formulas are allowed by the rules.
The initial existential quantifier is superfluous in both examples. On the other
hand, ∃x (∃xx happy∧ x rich) is logically equivalent to ∃xx happy∧ ∃xx rich.

It may seem odd to have a formula where the same variable is used both
as a free variable and as a bound variable, as in ∃xx happy ∧ x rich. While
the formula is legitimate, it would certainly be more clear to write this in the
equivalent form ∃y y happy ∧ x rich. One way out would be to use two alpha-
bets, one for free variables and one for bound variables. But this is not usual
mathematical practice. The present convention at least has the nice feature
that the rules for formation of formulas are simple and uniform.

A final important observation is that each formula of property logic has a
tree structure. The original formula is the root. The immediate successors of
a formula on the tree are obtained by using the appropriate formation rule to
decompose the formula into parts. The end points of the tree are the atomic
formulas.
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3.2 Lore of quantifiers

The quantifiers ∀ and ∃ are often called the universal quantifier and existential
quantifier.

Here are various equivalent ways of expressing the same mathematical ideas.
The universal quantified formula ∀xA could also be written

for all x A
for each x A
for every x A.
The existential quantified formula ∃xA may be expressed by
there exists x with A
for some x A.
Warning: It is wise to avoid the expression
for any x A.
The English word “any” does not serve as a quantifier, even in mathematics.

It does have a legitimate use, but this is complicated enough to deserve an
extended discussion. This will be given in a later section.

3.3 Semantics of property logic

The semantics of property logic is still comparatively simple. The fundamental
notion is a domain, which is a non-empty set. The domain could consist of
people or experimental outcomes or of natural numbers. These are the objects
that one intends to talk about.

One way to define an interpretation is to have each property symbol deter-
mine a subset of D. Thus, if p, q, r are property symbols, then there are three
corresponding subsets of D. Depending on the interpretation they may overlap
in various ways.

Sometimes in future work it will be convenient replace a subset of D by its
indicator function. This is the function defined on D with values in the set
{0, 1} that has the value 1 on the subset and 0 on its complement. Clearly,
there is a one-to-one correspondence between subsets of D and functions from
D to {0, 1}. Which representation is used is a matter of convenience.

For the moment, define the interpretation of a property symbol p to be a
subset of D. A property symbol by itself is not a formula, so this is only a start
on the project of interpreting formulas.

Consider an atomic formula such as x p. This says that x has property p,
but what is x? It is possible to assign x to stand for various elements of D, and
the truth of x p may depend on the assignment. Thus

x p is true for an assignment to variable x of the value d provided that d is
in the subset corresponding to p in the interpretation.

Example: As an example, take the formula x happy. Suppose the domain
D has five individual. Call them a, b, c, d, e. Suppose a, b, d are the happy
individuals. Then x happy is true for an assignment to x of one of the values
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a, b, d, and x happy is otherwise false. Suppose a, b, e are the rich individuals.
Then x happy ∧ ¬x rich is true when the assignment to x has value d and is
otherwise false.

Now consider a formula ∀xA. This formula is true in an interpretation if
and only if A is true for every assignment to x of an element of D. For instance,
∀x (x happy ∧ ¬x rich) is false in the above interpretation.

Similarly, consider a formula ∃xA. This formula is true in an interpretation
if and only if A is true for some assignment to x of an element of D. For instance,
∃x (x happy ∧ ¬x rich) is true in the above interpretation.

3.4 Logical implication

As before, we write A,B |= C to mean that for every interpretation (and every
assignment to x of an element of the domain), if A,B are true, then C is also
true.

To prove a logical implication like this, it would seem that one needs to
examine all interpretations. However, it turns out that one only needs to exam-
ine types of interpretations. Say, for instance, that one has a atomic property
symbols p1, . . . , pk. For each point in the domain D, there is a propositional
interpretation which is a list of k zeros and ones. The type of the interpreta-
tion is the set of all such propositional interpretations that occur. Since D is
non-empty, this set must be non-empty. (This notion of “type” is perhaps not
standard terminology, but it is convenient for our purposes.) It turns out that
the type of the interpretation is the only information that is needed to check
truth in property logic.

There are 2k propositional interpretations. Write n = 2k. Then there are
2n − 1 non-empty subsets. So the number of types to be checked is

N(k) = 2n − 1, (3.1)

where n = 2k.

For k = 1 there are three types of interpretations. They are {0, 1}, {0}, {1}.
Thus p1 is sometimes true and sometimes false, or p1 is always false, or p1 is
always true. These are the only possibilities.

For k = 2 there are 24 − 1 = 15 types of interpretations. They are listed
here:

{00, 01, 10, 11}
{01, 10, 11} {00, 10, 11} {00, 01, 11} {00, 01, 10}
{00, 01} {00, 10} {00, 11} {01, 10} {01, 11} {10, 11}
{00} {01} {10} {11}

(3.2)

Checking truth in 15 cases is tedious but routine. It is often easy to find
shortcuts.
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Example: Take the assertion that ∀x (p(x) ∧ q(x)) |= ∀x p(x). The left hand
side is true in just one type of interpretation, namely {11}. The right hand side
is true in three types of interpretations, namely {10, 11}, {10}, {11}. However,
the interpretation that makes the left hand side true is included among the
interpretations that make the right hand side true, and this is sufficient to
prove the logical implication.

For k = 3 (the case of the Aristotelian syllogism) there are 28 − 1 = 255
types of interpretations. In this case using the classification into types may be
a silly way to proceed, but it should work in principle. In practice one uses the
method of Venn diagrams. This simply means that one sketches the subsets
and uses the hypotheses to rule out certain cases. Then one checks that the
remaining cases force the conclusion to be true.

3.5 The syllogism

The logic of Aristotle ruled for almost two thousand years. Particular emphasis
was placed on sentences of the following forms.

A ∀x (x s⇒ x p)

I ∃x (x s ∧ x p)

E ∀x (x s⇒ ¬x p)

O ∃x (x s ∧ ¬x p)
These are universal and existentially quantified sentences concerning prop-

erty p (or its negation) with restrictions imposed by the property s. The im-
plication goes with the universal quantifier, and the conjunction goes with the
existential quantifier. This is the standard pattern for restrictions.

Note that O ≡ ¬A and E ≡ ¬I. Furthermore, I and E are symmetric in
the two properties.

The triumph of Aristotelian logic was the list of syllogisms. These are
inferences where two sentences of this general type imply a third such sen-
tence. For instance, a syllogism with the name Ferio states that the hypothesis
∀x (xm ⇒ ¬x p) together with the hypothesis ∃x (x s ∧ xm) logically implies
the conclusion ∃x (x s ∧ ¬x p).

There are quite a number of such syllogisms, so it is useful to have an abbre-
viated way of writing them. For instance, for Ferio we could write mEp, sIm |=
sOp. Certain of the syllogisms require an extra hypothesis of the form ∃xxm.
This will be abbreviated by ∃m.

There is a list of syllogisms in Table 1. They are classified into four figures,
according to the pattern in which the properties occur. Within each figure each
syllogism has a name that is intended to help recall the kind of sentence that
occurs. For instance, for Ferio the vowels e,i,o indicate the structure E,I,O of
the three sentences.

These syllogisms may all be proved semantically in a simple way. Take again
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1 Barbara mAp sAm sAp
1 Celarent mEp sAm sEp
1 Darii mAp sIm sIp
1 Ferio mEp sIm sOp
2 Cesare pEm sAm sEp
2 Camestres pAm sEm sEp
2 Festino pEm sIm sOp
2 Baroco pAm sOm sOp
3 Darapti ∃ m mAp mAs sIp
3 Disamis mIp mAs sIp
3 Datisi mAp mIs sIp
3 Felapton ∃ m mEp mAs sOp
3 Bocardo mOp mAs sOp
3 Ferison mEp mIs sOp
4 Bramantip ∃ p pAm mAs sIp
4 Camenes pAm mEs sEp
4 Dimaris pIm mAs sIp
4 Fesapo ∃ m pEm mAs sOp
4 Fresison pEm mIs sOp

Table 3.1: Aristotelian syllogisms

the example of Ferio. Suppose that ∀x (xm⇒ ¬x p) and ∃x (x s∧xm) are both
true. Then there is an element of the domain that makes both s and m true.
However every element of the domain for which m is true is also an element of
the domain for which p is false. So the element of the domain that makes s and
m true also makes s true and p false. This implies that ∃x (x s ∧ ¬x p) is true.

On the other hand, not every triple of sentences gives a logical implication.
Take, for instance, the example that might be called anti-Ferio, in which the
hypotheses are the same, but the conclusion is to be ∃x (x s ∧ x p). In other
words, the pattern is mEp, SIm, sIp. A counterexample may be constructed by
taking a domain with exactly one element, for which s,m are both true, but p
is false.

Aristotle’s theory of syllogisms is very special. The modern theory presented
in the following chapters is much more general and powerful, and now the only
role that the Aristotelian theory plays is historical.

3.6 Constants

Property logic as presented above is rather limited, in that the language is built
out of property symbols that serve as verbs, but there are no proper nouns. It
is easy to augment the language to include proper nouns. In logic these are
called constants. For instance, the language could have constants a, b, c. If the
language is talking about people, the constants could be Alice, Bob, Carol.
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The only syntactic change is that there is a new way of forming sentences.
If a is a constant, and p is a property symbol, then a p is a sentence. For
instance, if “Alice” is a proper noun of the language, and “rich” is a property
that individuals may or may not have, then “Alice rich” is the statement that
the individual named Alice is indeed rich.

There is also a semantic change. In an interpretation in domain D, each
property symbol is interpreted as a subset of D. Each constant is interpreted
as an element of D. So a p is true when the object denoted by a belongs to the
subset designated by p.

Again there is a classification of interpretations into types. Say that we have
property symbols p1, . . . , pk and constant symbols a1, . . . , am. There are n = 2k

possible propositional interpretations of p1, . . . , pk. The number of property
interpretations for which i of these propositional interpretations occur is the
number of i element subsets

(
n
i

)
. In such a situation there are im essentially

different ways of interpreting the constants. So the total number of property
plus constant interpretations is

N(k,m) =

n∑
i=1

im
(
n

i

)
, (3.3)

where n = 2k.

As a special case, take the case m = 1 of one constant symbol. Then
each property interpretation corresponds to a subset together with a designated
element. Alternatively, one can think of such a property interpretation as con-
sisting of the element indexed by the subset. In other words, it is the disjoint
union of the elements. The total number is

N(k, 1) =

n∑
i=1

i

(
n

i

)
= n2n−1, (3.4)

with n = 2k. One way to verify this formula is to note that for each of the n
elements there are 2n−1 subsets with this element in it.

As an example, take k = 2 and m = 1. Then N(2, 1) = 32. A classic ap-
plication is the inference: All men are mortal, Socrates is a man |= Socrates is
mortal. The domain is presumably men (humans) and gods. The 32 interpre-
tations of the two property symbols and the one constant correspond to the 32
elements in the disjoint union of the sets in (3.2).

The first premise says that the subset of men is included in the subset of
mortals. This excludes the possibility that there is an 10 element in the do-
main. So the 12 remaining interpretations correspond to the elements of the
disjoint union of {00, 01, 11}, {00, 01}, {00, 11}, {01, 11}, {00}, {01}, {11}. The
second premise says that the individual called Socrates belongs to the subset of
men. This narrows it down to the four configurations where Socrates has the
11 place in {00, 01, 11}, {00, 11}, {01, 11}, {11}. In all cases Socrates is mortal.
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Problems

1. Find the formation tree of the sentence (1) ∀x (x rich⇒ x happy).

2. Find the formation tree of the sentence (2) ∀xx rich⇒ ∀xx happy.

3. Find an interpretation in which (1) is true and (2) is true.

4. Find an interpretation in which (1) is false and (2) is true.

5. Find an interpretation in which (1) is false and (2) is false.

6. Show that ∃xx rich,∀x (x rich⇒ x happy) |= ∃xx happy is true.

7. Show that ∃xx happy,∀x (x rich⇒ x happy) |= ∃xx rich is not true.
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Predicate logic

4.1 Syntax of predicate logic

Propositional logic is the logic of combining sentences. The only semantic notion
is that of a sentence being true or false.

Property logic is the logic of sentences with subjects and verbs. The verbs
express properties. The semantic notion in this case is that of a subset of a
domain set.

Relational logic is the logic of subjects and verbs and objects. In this kind of
logic formulas may describe the relation between two objects. Thus “Tony loves
Maria” is a formula that describes a relation between two people. Similarly,
5 < 2 is a formula that describes a relation between two numbers. Both these
sentences happen to be false: the first one in the interpretation of West Side
Story, the second one in the interpretation of natural numbers. Nevertheless,
they are legitimate logical expressions. The relevant semantic notion is the
notion of relation on a domain set.

The general notion of predicate logic includes these various kinds of logic. A
specification of an object language includes a choice of certain predicate symbols.
A zero-place predicate symbol is a propositional symbol. A one-place predicate
symbol is a property symbol. A two-place predicate symbol is a relation symbol.
In principle one could allow three-place predicate symbols and so on, but these
are rare in mathematics. Once there is at least one two-place predicate symbol,
then logic becomes non-trivial.

Example: One useful 0-place symbol is ⊥, which is interpreted as always false.
Here is a 1-place symbol in arithmetic: even. For a 2-place symbol take: <.

The other ingredient in the language is a set V of variables x, y, z, x′, y′, z′, . . ..
Ordinarily we think of this as an infinite list, though in any one argument we
are likely to use only finitely many variables.

21
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4.2 Terms

It is possible to do logic and even substantial mathematics in a system where
the only terms are variables. However it is often convenient to allow more
complicated terms. These are constructed from a new set of function symbols.
These may be 0-place function symbols, or constants. These stand for objects
in some set. Or they may be 1-place functions symbols. These express functions
from some set to itself, that is, with one input and one output. Or they may
be 2-place function symbols. These express functions with two inputs and one
output.

Example: Here are symbols that occur in arithmetic. Constant symbol: 8.
1-place function symbol: square. 2-place function symbol: +.

Once the function symbols have been specified, then one can form terms. An
atomic term is a variable or a constant symbol. These are the building blocks
for general terms, according to the following scheme.

Variable Each variable is a term.

Constant Each constant symbol is a term.

Function symbol: 1 input If t is a term, and f is a 1-place function symbol,
then f(t) is a term.

Function symbol: 2 inputs If s and t are terms, and g is a 2-place function
symbol, then g(s, t) or (s g t) is a term.

Example: In an language with constant terms 1, 2, 3 and 2-place function
symbol + the expression (x+ 2) is a term, and the expression (3 + (x+ 2)) is a
term.

Convention 4.1 Omit outer parentheses used with a two-place function symbol
(s g t). That is, in this context s g t abbreviates (s g t). Restore the parentheses
when such a term is used as part of another term.

Example: With this convention x + 2 abbreviates (x + 2), while 3 + (x + 2)
abbreviates (3 + (x+ 2)).

Once the terms have been specified, then the atomic formulas are deter-
mined.

Propositional formula A propositional symbol is an atomic formula.

Property formula If p is a property symbol, and t is a term, then t p is an
atomic formula.
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Relational formula If s and t are terms, and r is a relation symbol, then s r t
is an atomic formula.

Example: The relational formula (x+2) < 3 is an atomic formula. This could
be abbreviated x+ 2 < 3.

4.3 Formulas

Finally there are logical symbols. Each of ∧, ∨, ⇒, ¬ is a logical connective.
The ∀, ∃ are each a quantifier. Once the atomic formulas are specified, then the
other formulas are obtained by logical operations. For instance ∃xx+ 2 < 3 is
an existential formula.

And If A and B are formulas, then so is (A ∧B).

Or If A and B are formulas, then so is (A ∨B).

Implies If A and B are formulas, the so is (A⇒ B).

Not If A is a formula, then so is ¬A.

All If x is a variable and A is a formula, then so is ∀xA.

Exists If x is a variable and A is a formula, then so is ∃xA.

In writing a formula, we often omit the outermost parentheses. However this
is just an abbreviation. The parentheses must be restored when the formula is
part of another formula.

4.4 Free and bound variables

In a formula each occurrence of a variable is either free or bound. The occurrence
of a variable x is bound if it is in a subformula of the form ∀xB or ∃xB. (In
mathematics there are other operations, such as the set builder construction,
that produce bound variables.) If the occurrence is not bound, then it is free.
A formula with no free occurrences of variables is called a sentence.

In general, a bound variable may be replaced by a new bound variable with-
out changing the meaning of the formula. Thus, for instance, suppose that there
are free occurrences of the variable y in formula B. Suppose that y′ is a variable
that does not occur in the formula, and let C be the result of replacing the free
occurrences of y by y′. Then ∀y B should have ∀y′ C as a logical equivalent.

Example: Let the formula be ∃y x < y. This says that there is a number
greater than x. In this formula x is free and y is bound. The formula ∃y′ x < y′

has the same meaning. In this formula x is free and y′ is bound. On the other
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hand, the formula ∃y x′ < y has a different meaning. This formula says that
there is a number greater than x′. Finally, the sentence ∀x∃y x < y says that
for every number there is a bigger number.

We wish to define careful substitution of a term t for the free occurrences
of a variable x in A. The resulting formula will be denoted Ax(t) There is no
particular problem in defining substitution in the case when the term t has no
variables that already occur in A. The care is needed when there is a subformula
in which y is a bound variable and when the term t contains the variable y. Then
mere substitution might produce an unwanted situation in which the y in the
term t becomes a bound variable. So one first makes a change of bound variable
in the subformula. Now the subformula contains a bound variable y′ that cannot
be confused with y. Then one substitutes t for the free occurrences of x in the
modified formula. Then y will be a free variable after the substitution, as
desired.

Example: Let the formula be ∃y x < y. Say that one wished to substitute
y+1 for the free occurrences of x. This should say that there is a number greater
than y + 1. It would be wrong to make the careless substitution ∃y y + 1 < y.
This statement is not only false, but worse, it does not have the intended mean-
ing. The careful substitution proceeds by first changing the original formula
to ∃y′ x < y′. The careful substitution then produces ∃y′ y + 1 < y′. This
says that there is a number greater than y + 1, as desired. The sentence that
says that for every number there is one that exceeds it by more than 1 is then
∀y ∃y′ y + 1 < y′.

The general rule is that if y is a variable with bound occurrences in the for-
mula, and one wants to substitute a term t containing y for the free occurrences
of x in the formula, then one should change the bound occurrences of y to bound
occurrences of a new variable y′ before the substitution. This gives the kind of
careful substitution that preserves the intended meaning.

It might be convenient to have two lists of variables, with the variables in
one list only used as free variables, and with the variables in the other list
only used as bound variables. For instance, one could take Latin letters for
free variables and Greek letters for bound variables. There would never be any
issue about careful substitution. One could substitute y + 1 for x in ∃β x < β
to get ∃β y + 1 < β. The sentence described in the example would then be
∀α ∃β α+ 1 < β. It would be tempting to adopt such a system for formulating
results of logic. For better or worse, it is not the custom in mathematics.

4.5 Restricted variables

Often a quantifier has a restriction. Let C be a formula that places a restriction
on the variable x. (Thus C could be a formula like x > 0.) The restricted univer-
sal quantifier is ∀x (C ⇒ A). The restricted existential quantifier is ∃x (C ∧A).
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It is common to have implicit restrictions. For example, say that the context
of a discussion is real numbers x. There may be an implicit restriction x ∈ R.
Since the entire discussion is about real numbers, it may not be necessary to
make this explicit in each formula. This, instead of ∀x (x ∈ R ⇒ x2 ≥ 0) one
would write just ∀xx2 ≥ 0.

Sometimes restrictions are indicated by use of special letters for the variables.
Often i, j, k, l,m, n are used for integers. Instead of saying that m is odd if and
only if ∃y (y ∈ N ∧m = 2y + 1) one would just write that m is odd if and only
if ∃km = 2k + 1.

The letters ε, δ are used for strictly positive real numbers. The corresponding
restrictions are ε > 0 and δ > 0. Instead of writing ∀x (x > 0⇒ ∃y (y > 0∧ y <
x)) one would write ∀ε∃δ δ < ε.

Other common restrictions are to use f, g, h for functions or to indicate sets
by capital letters. Reasoning with restricted variables should work smoothly,
provided that one keeps the restriction in mind at the appropriate stages of the
argument.

4.6 Semantics of predicate logic

The semantics of predicate logic is not difficult but can be frustrating to grasp.
Here is a quotation from a book on model theory [12] that captures the dilemma.

One of the author’s worst fears, ever since he has been teaching
elementary logic, has been of portraying model theorists as simple-
minded. “Not-f” is true if and only if f is not true, “there exists
x such that f” is true if and only if there exists an x such that
f , etc.. . . Do we go through this complicated formalism just to du-
plicate common sense? Yet even the definition of truth necessarily
involves such complexity; in particular, we have to convince our-
selves that to determine the truth or falsity of a sentence, we need
to consider subformulas that are not sentences.

The symbols of predicate logic may have many interpretations. Each propo-
sitional symbol may be treated as true or false. Each property symbol may be
treated as a subset of the domain D. Each relational symbol may be treated as
a relation between the elements of domain D (a set of ordered pairs).

When a formula has free variables, then the truth value of the formula also
depends on a variable assignment. This is an assignment to each variable of an
element of the domain D. The truth value only depends on the assignments
to the variables that occur free in the formula. The extreme case is that of a
sentence, a formula with no free variables. Then the truth value is independent
of the variable assignment.

Here is an informal description of the case when the only terms are variables.

And (A ∧B) is true when A is true and B is true, otherwise false.

Or (A ∨B) is true when A is true or B is true, otherwise false.
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Implies (A⇒ B) is true when A is false or B is true, otherwise false.

Not ¬A is true when A is false, otherwise false.

All ∀xA is true (for a given variable assignment) if A is true for all possible
reassignments to the variable x.

Exists ∃xA is true (for a given variable assignment) if A is true for some
possible reassignment to the variable x.

4.7 Interpretation of formulas

This section is a more technical description of interpretation of formulas. Let D
be a non-empty set (the domain). An interpretation attaches to each proposi-
tional symbol P a truth value φ[P ] in {0, 1}. An interpretation attaches to each
property symbol p a function φ[P ] from D to {0, 1}. An interpretation attaches
to each relational symbol P a function φ[P ] from D ×D to {0, 1}.

Let V be the set of variables. A variable assignment is a function α from V
to D. If α is a variable assignment, x is a variable, and d is an element of the
domain D, then αd

x is a new variable assignment, defined by

αd
x(x) = d

αd
x(y) = α(y) if y 6= x. (4.1)

In other words, one switches the assignment of x to d while leaving the assign-
ments of all other variables alone.

The interpretation φ[A] of a formula A is a function whose input is a variable
assignment α and whose output is a truth value φ[A](α) in {0, 1}. Here are the
interpretations of atomic formulas formed using variables.

Propositional formula φ[P ](α) = φ[P ].

Property formula φ[x p](α) = φ[p](α(x)).

Relational formula φ[x r y] = φ[r](α(x), α(y)).

formula.

Here are the interpretations of formulas defined by connectives and quanti-
fiers.

And φ[(A ∧B)](α) = min[φ[A](α), φ[B](α)].

Or φ[(A ∨B)](α) = max[φ[A](α), φ[B](α)].

Implies φ[(A⇒ B)](α) = max[1− φ[A](α), φ[B](α)].

Not φ[¬A](α) = 1− φ[A](α).

All φ[∀xA](α) = mind φ[A](αd
x)



4.8. INTERPRETATION OF TERMS 27

Exists φ[∃xA](α) = maxd φ[A](αd
x)

The only definitions in the above lists that are not routine are the last two,
involving the interpretations of universal and existential formulas. To interpret
such a formula for a given variable assignment it is necessary to interpret another
formula with many different variable assignments.

It turns out that if a formula is a sentence, then the truth value of the
formula does not depend on the variable assignment.

Example: Take the formula m < n with the interpretation that m,n are
natural numbers and < is the usual “less than” relation. (The symbol < in
the object language denotes the relation < for natural numbers.) The formula
m < n is true for variable assignment α if α(m) < α(n). The formula ∃nm < n
is true for all variable assignments. The sentence ∀m ∃nm < n is true for all
variable assignments. The formula ∃mm < n is true for variable assignments α
with α(n) 6= 0. The sentence ∀n ∃mm < n is false.

4.8 Interpretation of terms

This section is a rather dull technical distribution of the interpretation of terms
constructed from function symbols and of formulas built from terms. This is a
process that proceeds in stages.

The first stage is the interpretation of a function symbol as a function,
according to the following scheme.

Constant φ[c] is an element of D.

Function symbol: 1 input φ[f ] is a function from D to D.

Function symbol: 2 input φ[g] is a function from D ×D to D.

The second stage is the interpretation φ[t] of a term t. The result is a
function whose input is a variable assignment α and whose output is an element
φ[t](α) in D.

Variable φ[x](α) = α(x)

Constants φ[c](α) = φ[c]

Function: 1 input φ[f(t)](α) = φ[f ](φ[t](α)).

Function: 2 inputs φ[g(s, t)](α) = φ[g](φ[s](α), φ[t](α)).

The description above uses prefix notation for defining a 2 input term. With
infix notation (s g t) the interpretation is the same: φ[(s g t)](α) = φ[g](φ[s](α), φ[t](α)).

The third stage is the interpretation of predicate symbols, which we have
seen before. The fourth stage is the interpretation of atomic formulas formed
from predicate symbols and terms.
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Propositional formula φ[P ](α) = φ[P ].

Property formula φ[t p](α) = φ[p](φ[t](α)).

Relational formula φ[s r t](α) = φ[r](φ[s](α), φ[t](α)).

The fifth and final stage is the interpretation of general formulas built us-
ing connectives and quantifiers. This follows the same plan as in the previous
section.

4.9 Tree structure of terms and formulas

Each formula has a tree structure. The formula itself is the root. For each
formula on the tree, the immediate successor formulas are determined by the
logical type of the formula. The end points are the atomic formulas. The truth
of a formula in a given interpretation as a function of the variable assignment is
determined by the truth of the atomic formulas in the interpretation as functions
of the variable assignment.

Each term also has a tree structure. The term itself is the root. A term
is created by a function symbol together with appropriate terms that serve
as symbolic inputs to the function. For each term on the tree, the immediate
successor terms are these input terms. The end points are atomic terms, that is,
variables and constants. The interpretation of a term in a given interpretation
with a given variable assignment is determined by the interpretations of the
function symbols (including constants) together with the variable assignment.

The truth of an atomic formula for a given interpretation and variable as-
signment is determined by the interpretation of the predicate symbol together
with the interpretation of the terms in the atomic formula with this variable
assignment.

These syntactic trees are rather simple. However the semantics is compli-
cated, because of the fact that the fact that the truth of a quantified formula with
a given variable assignment may depend on the truth of constituent formulas
with other variable assignments. In other words, it is necessary to understand
truth of formulas as functions of variable assignments.

4.10 Logical implication

Let U be a set of formulas, and let C be a formula. Then U logically implies C
in the semantic sense provided that in every interpretation (and every variable
assignment) the truth of all the formulas in U implies the truth of the formula C.
In this case we may also say more informally that U gives C. The most common
symbolic notation for this is U |= C. If the members of U are H1, . . . ,Hk, then
this is often written in the following form:

H1, . . . ,Hk |= C (4.2)
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There are interesting special cases. The logical implication H |= C is a
relation between two formulas. The logical implication |= C says that C is true
in every interpretation (and with every variable assignment). In this case C is
said to be valid. Notice that H |= C is the same as saying that H ⇒ C is valid.

There is also a notion of logical equivalence. We write A ≡ B to mean
A |= B and B |= A. Notice that A ≡ B is the same as saying that A ⇔ B is
valid.

Here are some useful logical equivalences. De Morgan’s laws for quantifiers
state that

¬∀xA ≡ ∃x¬A (4.3)

and

¬∃xA ≡ ∀x¬A. (4.4)

Since ¬(C ⇒ A) ≡ (C ∧¬A) and ¬(C ∧A) ≡ (C ⇒ ¬A), De Morgan’s laws
continue to work with restricted quantifiers.

An important special case of logical implication is U |= ⊥. In this case the
set U is unsatisfiable. There is no interpretation φ and variable assignment that
makes all the formulas true.

The opposite situation is when there is an interpretation (and variable as-
signment) that makes all the formulas in U true. In that case U is said to be
satisfiable. Say that U is a set of sentences and φ is an interpretation that makes
all the formulas in U true. Then U is satisfied by φ. In another terminology, φ
is a model of U . In this account the relation φ models U is denoted φ U .

Remark: In model theory it is common to use the symbol |= with a double
meaning, to denote semantic logical implication and also to denote the modeling
relation that we have called . It may seem an excess of caution to introduce the

new symbol , but it avoids notational awkwardness later on in the treatment
of Gentzen deduction.

Problems

1. Consider the formula A: ∀xx loves y. Find the result Ay(z) of carefully
substituting z for the free occurrences of y in A.

2. Find the result Ax(z) of carefully substituting z for the free occurrences
of x in A.

3. Find the result Ay(x) of carefully substituting x for the free occurrences
of y in A.

4. Find the result Ax(y) of carefully substituting y for the free occurrences
of x in A.

5. Find the formula ∃y A and describe the free variables in this formula.



30 CHAPTER 4. PREDICATE LOGIC

6. Find the formula ∃y Ay(z) and describe the free variables in this formula.

7. Find the formula ∃y Ax(z) and describe the free variables in this formula.

8. Find the formula ∃y Ay(x) and describe the free variables in this formula.

9. Consider the sentences:

∀x∃y x loves y

∀x¬x loves x

∀x∀y (x loves y ⇒ ¬y loves x)

Find the smallest number k such that there is a model of these sentences
with k elements. Describe the structure of a model with k elements.

10. Prove or disprove:

∀w¬w < w, ∀p∀q (p < q ⇒ ¬q < p),∀u∃v u < v |= ⊥



Chapter 5

Natural deduction

5.1 Natural deduction principles

The formalization of logic that corresponds most closely to the practice of math-
ematical proof is natural deduction. Natural deduction proofs are constructed
so that they may be read from the top down. On the other hand, to construct a
natural deduction proof, it is often helpful to work from the top down and the
bottom up and try to meet in the middle.

In natural deduction each Suppose introduces a new hypothesis to the set
of hypotheses. Each matching Thus removes the hypothesis. Each line is a
claim that the formula on this line follows logically from the hypotheses above
that have been introduced by a Suppose and not yet eliminated by a matching
Thus .

Example: If one knows the algebraic fact ∀x (x > 0 ⇒ x + 1 > 0), then one
is forced by pure logic to accept that ∀y (y > 0 ⇒ (y + 1) + 1 > 0). Here is
the argument, showing every logical step. For clarity outermost parentheses are
omitted, both in formulas and in terms.

Suppose ∀x(x > 0⇒ x+ 1 > 0)
Suppose z > 0
z > 0⇒ z + 1 > 0
z + 1 > 0
z + 1 > 0⇒ (z + 1) + 1 > 0
(z + 1) + 1 > 0

Thus z > 0⇒ (z + 1) + 1 > 0
∀y (y > 0⇒ (y + 1) + 1 > 0

The indentation makes the hypotheses in force at each stage quite clear. On
the other hand, the proof could also be written in narrative form. It could go
like this.

Suppose that for all x, if x > 0 then x + 1 > 0. Suppose z > 0. By

31
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specializing the hypothesis, obtain that if z > 0, then z + 1 > 0. It follows
that z + 1 > 0. By specializing the hypothesis again, obtain that if z + 1 > 0,
then (z + 1) + 1 > 0. It follows that (z + 1) + 1 > 0. Thus if z > 0, then
(z + 1) + 1 > 0. Since z is arbitrary, conclude that for all y, if y > 0, then
(y + 1) + 1 > 0).

Mathematicians usually write in narrative form, but it is useful to practice
proofs in outline form, with proper indentation to show the subarguments.

The only axiom for natural deduction is that if A is among the hypotheses,
then A is also a conclusion. Here is an example that uses this repetition rule
explicitly.

Suppose Q
Suppose P
Q

Thus P ⇒ Q
Thus Q⇒ (P ⇒ Q)

In natural deduction there is only one axiom pattern, the one that says that
every formula is a consequence of itself. However there are a number of patterns
of inference, given by a rather long set of rules. The nice thing is that these
rules are on the whole rather close to those used in mathematical practice.

There is one headache in formulating natural deduction. In addition to
the formulas of the object language, one needs a method of indicating what
temporary hypotheses are in force at a given stage of the argument. There are
many ways of doing this, and the use of Suppose and Thus pairs are just
one possible mechanism. The reason they are used here is that they suggest
what one might say in mathematical practice. Logicians have invented all sorts
of alternatives, some of them quite at variance with mathematical practice. For
instance, they might require that a subargument be placed in a box. Or they
might number every hypothesis and at each line give a list of the numbers of
the hypotheses that are in force. Or they might write the entire proof as a tree.

It is sometimes required that every line of the proof be accompanied by a
justification. This is tedious and ultimately unnecessary, but it is a good idea
for beginners to do something like this.

5.2 Rules for natural deduction

There are systematic rules for logical deduction. This section presents these
rules. There are twelve rules that occur in pairs, plus a proof by contradiction
rule that does not fall into the same pattern.

In each of the paired rules there is a connective or quantifier that is the
center of attention. It may be in the hypothesis or in the conclusion, and this
explains the pairing. Each rule shows how to reduce an argument involving this
logical operation to one without the logical operation. To accomplish this, the
rule needs to be used just once, except for the “all in hypothesis” and “exists
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in conclusion” rules. If it were not for this exception, mathematics would be
simple indeed.

Natural deduction also makes use of a transitivity rule. Say that certain
hypotheses lead to a formula B. Say that in addition these hypotheses, together
with B as an additional hypothesis, lead to conclusion C. Then the original
hypotheses lead to C. The transitivity rule is very powerful; it allows the use
of a formula B that plays the role of a lemma. On the other hand, it may
be difficult to find the correct intermediate formula B. The attempt in the
following is to try to restrict the use of this rule, in order to avoid or postpone
guessing. This can be helpful in simple cases. In real mathematics, however, it
is difficult to get by without deeper insight, and finding the correct lemma may
be a crucial step.

Here are the natural deduction rules for the logical operations ∧, ∀, ⇒, ¬,
and the falsity symbol ⊥. The rules for ∨ and ∃ are treated in the following
section. Most of these rules gives a practical method for using a hypothesis or
for proving a conclusion that works in all circumstances. The exceptions are
noted, but the templates of the following chapter provide recipes for these cases
too.

In the statement of a rule, the last line is the conclusion. (Exception: In
the rule for using “and in hypothesis” it is convenient to draw two conclusions
at once.) In some of the rules there is a temporary hypothesis indicated by
Suppose . This must lead logically to a certain conclusion. The removal of
this temporary hypothesis is indicated by Thus .

In the natural deduction rules there is a crucial concept of “arbitrary vari-
able.” Roughly speaking, at a given stage in a proof a variable is arbitrary if it
does not occur as a free variable in any hypothesis (supposition) that is in force
at that stage in the proof. Thus if we can start with x > 1 and other hypotheses
not involving x and derive

√
x > 1, then the x in

√
x > 1 is not arbitrary. But if

we only have the other hypotheses, then the x in x > 1⇒
√
x > 1 is arbitrary.

This is what allows us to generalize to ∀x (x > 1⇒
√
x > 1).
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And in hypothesis

A ∧B
A
B

And in conclusion

A

B
A ∧B

All in hypothesis (specialization)

∀xA
Ax(t)

Note: This rule may be used repeatedly with various terms.

All in conclusion (arbitrary variable for generalization)

If z is a variable that does not occur free in a hypothesis in force or in
∀xA, then

Ax(z)
∀xA

Note: The restriction on the variable is usually signalled by an expression
such as “since z is arbitrary, conclude ∀xA.”
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Implication in hypothesis (modus ponens) See template.

A⇒ B

A
B

Implication in conclusion

Suppose A

B
Thus A⇒ B

The operation of negation ¬A is regarded as an abbreviation for A⇒ ⊥.
Thus we have the following two specializations of the implication rules.

Not in hypothesis See template.

¬A

A
⊥

Not in conclusion

Suppose A

⊥
Thus ¬A

Contradiction

Suppose ¬C

⊥
Thus C
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A contradiction is a formula or set of formulas that leads logically to ⊥.
The rule for proving a negated conclusion says that if supposing A gives a
contradiction, then ¬A follows logically. With this rule, the conclusion is always
a negation.

Proof by contradiction says that if supposing ¬C gives a contradiction, then
C follows logically. This is a famous law with a special status. The other laws
start with a hypothesis with a certain logical form, or with a conclusion with a
certain logical form. These laws thus occur in pairs. By contrast, in proof by
contradiction one is heading for a conclusion C. Nothing is assumed about the
logical form of C; it could be an atomic formula. (In a typical situation there is
a negated hypothesis ¬A, where A can have a complicated logical form, and the
goal is to prove C. To do this, temporarily suppose ¬C and attempt to derive
A. If this succeeds, then ¬A leads to C.)

Mathematicians sometimes feel that there is something artificial about proof
by contradiction and that it should be avoided or postponed. However it or
something like it is an essential part of classical logic. Its role will be clarified by
the later discussion of Gentzen deduction, which is a form of logical deduction
that allows multiple alternative conclusions. In Gentzen deduction the rules
occur in pairs; proof by contradiction is not needed.

Intuitionistic logic is a natural and beautiful generalization of classical logic.
In intuitionistic logic proof by contradiction is replaced by a weaker rule that
says that from ⊥ one can deduce C. If one has intuitionistic logic in mind, then
it is worth trying to avoid proof by contradiction. (Intuitionistic logic is briefly
discussed in an appendix.)

5.3 Additional rules for or and exists

So far there are no rules for A ∨B and for ∃xA. Classical logic could dispense
with such rules, because A ∨ B could always be replaced by ¬(¬A ∧ ¬B) and
∃xA could be replaced by ¬∀x¬A. Such a replacement is clumsy and is not
common practice. Also, it would not work in intuitionistic logic. The following
section gives additional rules that explicitly deal with A ∨B and with ∃xA.
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Or in hypothesis (cases)

A ∨B
Suppose A

C
Instead suppose B

C
Thus C

Or in conclusion See template.

A
A ∨B

together with

B
A ∨B

Exists in hypothesis (arbitrary variable for temporary name)

If z is a variable that does not occur free in a hypothesis in force, in ∃xA,
or in C, then

∃xA
Suppose Ax(z)

C
Thus C

Exists in conclusion See template.

A(t)
∃xA(x)
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The only rule that seems strange to a mathematician is the rule for an
existential hypothesis. However it is worth the effort to understand it before
taking shortcuts.

In using this rule the restriction on the variable could be signalled by an
expression such as “since z is arbitrary, conclude C on the basis of the existential
hypothesis ∃xA.” The idea is that if the existential hypothesis is true, then since
z is arbitrary the condition on it is true for at least one value of z. So if one
can reason from this to a conclusion not depending on z, then one did not need
to know what this value might be. So the same conclusion follows from the
existential hypothesis alone. The assumption on z did not really matter.

The rule is quite parallel to the rule of proof by cases, the “or in hypothesis”
rule. For that rule, if one knows A∨B is true, then one knows that at least one
of the two cases A,B is true. If one can reason from this to a conclusion not
depending on which case is true, then it did not matter whether it was A or B
that was true. The same conclusion follows from the disjunction alone.

Mathematicians tend not to use this version of the rule in practice. They
simply suppose that some convenient variable may be used as a name for the
thing that exists. They reason with this name up to a point at which they get
a conclusion that no longer mentions it. At this point they conveniently forget
the temporary supposition. Logicians have attempted to formulate rules for
forgetfulness, but this turns out to be a nuisance. The issue will be discussed
later on.

5.4 Examples

A natural deduction proof consists of a list of formulas of the object language.
These are augmented with Suppose and Thus expressions that indicate when
hypotheses are introduced or are no longer in force. Other expositions of nat-
ural deduction may use somewhat different ways of indicating precisely which
hypotheses are needed to obtain a given formula, but the basic device is always
the same.

Someone first learning natural deduction may find it useful to annotate each
line that does not have a Suppose with an indication of which logical rule was
used to justify this line as a new conclusion. Such indications are provided in
this section, but they are not needed as part of the proof. After all, in principle
one could examine all previous conclusions and all possible rules to see if there
is a justification.

With experience one should be able to provide natural deduction proofs
that are easy to read without such annotations. Even then, it is a considerable
kindness to the reader to adopt a convention where Suppose — Thus pairs
are indicated visually by indentation.

Example: Here is a natural deduction proof of the fact that ¬∃xx standard
logically implies ∀x¬x standard.
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Suppose ¬∃xx standard
Suppose w standard
∃xx standard exists in conclusion
⊥ not in hypothesis

Thus ¬w standard not in conclusion
∀x¬x standard all in conclusion

Example: Here is a natural deduction proof of the fact that ∀x¬x standard
leads to ¬∃xx standard.

Suppose ∀x¬x standard
Suppose ∃xx standard

Suppose z standard
¬z standard all in hypothesis
⊥ not in hypothesis

Thus ⊥ exists in hypothesis
Thus ¬∃xx standard not in conclusion

Example: Here is a degenerate example: a standard gives a > 0⇒ a standard.

Suppose a standard
Suppose a > 0
a standard repeat

Thus a > 0⇒ a standard implication in conclusion

Here is another possible style for the notation that indicates which rule
is used. The rule for “and in hypothesis” is indicated ∧ −→; while “and in
conclusion” is −→ ∧. Analogous notation is used for the other pairs. The
contradiction rule could be indicated by ¬¬ −→, since one can think of it in
two stages, going from ¬C to ¬¬C and then to C.

Example:

Here is a proof of the syllogism Baroco.
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Suppose ∀x (x p⇒ xm)
Suppose ∃x (x s ∧ ¬xm)

Suppose z s ∧ ¬z m
z s ∧ −→
¬z m ∧ −→
z p⇒ z m ∀ −→

Suppose z p
z m ⇒−→
⊥ ¬ −→

Thus ¬z p −→ ¬
z s ∧ ¬z p −→ ∧
∃x(x s ∧ ¬x p) −→ ∃

Thus ∃x (x s ∧ ¬x p) ∃ −→

5.5 Strategies for natural deduction

A natural deduction proof is read from top down. However it is often discovered
by working simultaneously from the top and the bottom, until a meeting in the
middle. The discoverer obscures the origin of the proof by presenting it from
the top down. This is convincing but not illuminating.

Example: Here is a natural deduction proof that ∀x (x rich⇒ x happy) leads
to ∀x (¬x happy⇒ ¬x rich).

Suppose ∀x (x rich⇒ x happy)
Suppose ¬w happy

Suppose w rich
w rich⇒ w happy
w happy
⊥

Thus ¬w rich
Thus ¬w happy⇒ ¬w rich
∀x (¬x happy⇒ ¬x rich)

There are 3 Suppose lines and 2 Thus lines. Each Thus removes a Suppose .
Since 3− 2 = 1, the bottom line follows from the top line alone.

Here is how to construct the proof. Start from the bottom up. To prove the
general conclusion, prove the implication for an arbitrary variable. To prove the
implication, make a supposition. This reduces the problem to proving a nega-
tion. Make a supposition without the negation and try to get a contradiction.
To accomplish this, specialize the hypothesis and use modus ponens.

Here is the same proof in narrative form.

Suppose ∀x (x rich ⇒ x happy). Suppose ¬w happy. Suppose w rich.
Specializing the hypothesis gives w rich ⇒ w happy. So w happy. This gives
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a false conclusion ⊥. Thus ¬w rich. Thus ¬w happy ⇒ ¬w rich. Since w is
arbitrary ∀x (¬x happy⇒ ¬x rich)

Example: Here is a natural deduction proof of the fact that ∃x (x happy ∧
x rich) logically implies that ∃xx happy ∧ ∃xx rich.

Suppose ∃x (x happy ∧ x rich)
Suppose z happy ∧ z rich
z happy
z rich
∃xx happy
∃xx rich
∃xx happy ∧ ∃xx rich

Thus ∃xx happy ∧ ∃xx rich

Here is the same proof in narrative form.
Suppose ∃x (x happy∧x rich). Suppose z happy∧ z rich. Then z happy

and hence ∃xx happy. Similarly, z rich and hence ∃xx rich. It follows that
∃xx happy∧∃xx rich. Thus , since z is an arbitrary name, the same conclusion
holds on the basis of the original supposition of existence.

Example: We could try to reason in the other direction, from the existence
of a happy individual and the existence of a rich individual to the existence of
a happy, rich individual. What goes wrong?

Suppose ∃xx happy∧∃xx rich. Then ∃xx happy, ∃xx rich. Suppose z happy.
Suppose w rich. Then z happy ∧ w rich. This approach does not work.

Here is another attempt at the other direction.
Suppose ∃xx happy∧∃xx rich. Then ∃xx happy, ∃xx rich. Suppose z happy.

Suppose z rich. Then z happy∧z rich. So ∃x (x happy∧x rich). So this proves
the conclusion, but we needed two temporary hypotheses on z. However we can-
not conclude that we no longer need the last temporary hypothesis z rich, but
only need ∃xx rich. The problem is that we have temporarily supposed also that
z happy, and so z is not an arbitrary name for the rich individual. All this proves
is that one can deduce logically from z happy, z rich that ∃x (x happy∧x rich).
So this approach also does not work.

Example: Here is a natural deduction proof that ∃y∀xx ≤ y gives ∀x∃y x ≤ y.
Suppose ∃y∀xx ≤ y

Suppose ∀xx ≤ y′
x′ ≤ y′
∃y x′ ≤ y

Thus ∃y x′ ≤ y
∀x∃y x ≤ y
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Here is the same proof in narrative form.

Suppose ∃y∀xx ≤ y. Suppose y′ satisfies ∀xx ≤ y′. In particular,
x′ ≤ y′. Therefore ∃y x′ ≤ y. Thus , since y′ is just an arbitrary name,
this same conclusion follows on the basis of the original existential supposition.
Finally, since x′ is arbitrary, conclude that ∀x∃y x ≤ y.

A useful strategy for natural deduction is to begin with writing the hypothe-
ses at the top and the conclusion at the bottom. Then work toward the middle.
Try to use the “all in conclusion” rule and the “exists in hypothesis” rule early
in this process of proof construction. This introduces new “arbitrary” variables.
Then use the “all in hypothesis” rule and the “exists in conclusion” rule with
terms formed from these variables. It is reasonable to use these latter rules later
in the proof construction process. They may need to be used repeatedly.

Example: Here is a proof that if everyone loves someone, and love is reciprocal,
then everyone belongs to a loving pair.

Suppose ∀x ∃y x loves y
Suppose ∀x ∀y (x loves y ⇒ y loves x)
∃y z loves y

Suppose z loves w
∀y (z loves y ⇒ y loves z)
z loves w ⇒ w loves z
w loves z
z loves w ∧ w loves z
∃y (z loves y ∧ y loves z)

Thus ∃y (z loves y ∧ y loves z)
∀x ∃y (x loves y ∧ y loves x)

The idea of the proof is the following. Everyone loves someone, so z loves
someone. Suppose that z loves w. It follows from the assumptions that w loves
z. So z loves w and w loves z. Therefore there is someone who z loves and
who loves z. This was deduced from the additional supposition that z loves w.
However w is arbitrary, so it is free to stand for the individual z loves. So all
we really need is that z loves someone to conclude that there is someone whom
z loves and who loves z. Since z is arbitrary, it is free to stand for anyone. This
shows that there is a loving pair.

5.6 The soundness theorem

The expression U |= C was defined to mean that for every interpretation (and
variable assignment), if all the formulas in U are true, then C is true. This
is a semantic notion. Let U be a finite set of formulas. If there is a natural
deduction proof starting with the hypotheses in U and concluding with C, then
we write U ` C and say that U logically implies C in the syntactic sense. We
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may also say less formally that that U gives C. This is a syntactic notion.
Again there are important special cases of this notion. If U ` ⊥, then U is

said to be a contradiction or to be inconsistent. In the opposite situation the
terminology is that U is consistent.

The soundness theorem says that if U ` C, then U |= C. In other words,
it says that the syntactic notion of derivation via natural deduction has conse-
quences for the semantic notion of logical consequence. In particular, if U is a
contradiction, then U is unsatisfiable. This proof of this theorem is comes from
the fact that the rules of natural deduction were designed at the outset to be
rules that lead to logical consequence. It is a rather unexciting result.

The completeness theorem due to Gödel is considerably deeper. This the-
orem says that if U |= C, then U ` C. In other words, the rules of natural
deduction are powerful enough to completely characterize logical consequence.
The proof and full consequences of the completeness theorem will be the subject
of considerable later discussion. A particular case, already highly interesting, is
that if U is consistent, then U is satisfiable.

The Gödel completeness theorem is a theorem that says that syntax has
implications for semantics. Syntactic logical deduction is semantically complete
in the sense that it encompasses semantic logical deduction. The Gödel com-
pleteness theorem could well be called the semantic completeness theorem.

5.7 Lore of free variables

In statements of mathematical theorems it is common to have implicit universal
quantifiers. For example, say that we are dealing with real numbers. Instead of
stating the theorem that

∀x∀y 2xy ≤ x2 + y2

one simply claims that
2uv ≤ u2 + v2.

Clearly the second statement is a specialization of the first statement. But it
seems to talk about u and v, and it is not clear why this might apply for someone
who wants to conclude something about p and q, such as 2pq ≤ p2 + q2. Why
is this permissible?

The answer is that the two displayed statements are logically equivalent,
provided that there is no hypothesis in force that mentions the variables u or
v. Then given the second statement and the fact that the variables in it are
arbitrary, the first statement is a valid generalization.

A special case of this type of statement is an identity A typical example is

(u− v)2 = u2 + 2uv + v2.

This is a general equality, but the universal quantifiers are implicit.
This should be contrasted with the situation in equation solving. Here is an

example. Suppose general principles ∀z (z2 = 0 ⇒ z = 0) and ∀x∀y (x − y =
0 ⇒ x = y). If the equation is (u − v)2 = 0 we can apply these principles to
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conclude that u−v = 0 and hence u = v. However u = v cannot be generalized,
because it depends on an assumption about u and v. On the other hand, we
can conclude

(u− v)2 = 0⇒ u = v,

as a statement subject to universal quantification. In equation solving it is the
implication that is general.

There is no similar principle for existential quantifiers. The statement

∃xx2 = x

is a theorem about real numbers, while the statement

u2 = u

is a condition that is true for u = 0 or u = 1 and false for all other real numbers.
It is certainly not a theorem about real numbers. It might occur in a context
where there is a hypothesis that u = 0 or u = 1 in force, but then it would be
incorrect to generalize.

One cannot be careless about inner quantifiers, even if they are universal.
Thus there is a theorem

∃xx < y.

This could be interpreted as saying that for each arbitrary y there is a number
that is smaller than y. Contrast this with the statement

∃x∀y x < y

with an inner universal quantifier. This is clearly false for the real number
system.

Here is a caution for mathematicians. There is no problem with expressions
of the form ∀xA or “for all x A” or “for every x A” or “for each x A”. These are
all universal quantifiers. There is also no problem with expressions of the form
∃xA or “for some x A” or “there exists x with A”. These are all existential
quantifiers. The trap to avoid is expressions of the form “for any x A.” The
word “any” does not function as a quantifier in the usual way.

For example, if one says “z is special if and only if for any singular x it is the
case that x is tied to z”, it is not clear which quantifier on x might be intended.

The correct usage of the word “any” in mathematical contexts is to indicate
a free variable. Consider the following sentences:

Anything is special.
Anything special is exceptional.
There is not anything that is special.
If anything is special, then the conclusion follows.
If the hypothesis is satisfied, then anything is special.
These would be translated as follows:
x special
x special ⇒ x exceptional
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¬ x special
x special ⇒ conclusion
hypothesis ⇒ x special
In the typical situation when there is no assumption that specifies x, these

are logically equivalent to the universally quantified sentences:
∀x x special
∀x (x special ⇒ x exceptional)
∀x ¬ x special
∀x (x special ⇒ conclusion)
∀x (hypothesis ⇒ x special)
These in turn are logically equivalent to:
∀x x special
∀x (x special ⇒ x exceptional)
¬ ∃x x special
∃x x special ⇒ conclusion
hypothesis ⇒ ∀x x special
Now return to the first, confusing example. Assuming that there are no

conditions imposed on z or x, this is
z special ⇔ x tied to z
A little thought will establish that this is equivalent to the conjunction of

the following two sentences:
z special ⇒ ∀x x tied to z
∃x x tied to z ⇒ z special
In this example the word “any” is functioning both as a universal quantifier

and as an existential quantifier. This explains why the sentence is so confusing.
Warning to mathematicians: avoid thinking of “any” as a quantifier. Use

“all, every” or “exists, some” in statements of theorems. Since theorems have
no free variables, this should suffice in all cases.

5.8 Equality

One way to introduce equality is to add axioms of the form

∀xx = x

and
∀x∀y (x = y ⇒ (Az(x)⇒ Az(y)).

The last axioms is actually a list of infinitely many axioms, one for each formula
A.

One consequence of these axioms is

∀x ∀y (x = y ⇒ y = x).

This may be proved as follows. Suppose x = y. Let A be the formula z = x.
Then x = y ⇒ (x = x ⇒ y = x). Then x = x ⇒ y = x. But we always have
x = x, so y = x. Thus x = y ⇒ y = x.
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Another consequence of these axioms is

∀x∀y ∀z ((x = y ∧ y = z)⇒ x = z)).

This may be proved as follows. Suppose x = y ∧ y = z. Then x = y and also
y = z. Let A be the formula x = w and substitute this time for w. Then
y = z ⇒ (x = y ⇒ x = z). Then x = y ⇒ x = z. Then x = z. Thus
(x = y ∧ y = z)⇒ x = z.

These deductions show that equality is an equivalence relation. It does not
follow that equality is interpreted as actual equality. However, it is possible to
modify the definition of interpretation to require that equality is interpreted as
actual equality. The completeness theorem continues to hold with this revised
definition.

Since equality is so fundamental in logic, it may be more natural to think of
new rules of inference instead of axioms. In natural deduction the rules would
be:

Equality in conclusion

t = t

Equality in hypothesis

s = t

Az(s)
Az(t)

Problems

The problems here are to be done using natural deduction. Indent. Justify
every logical step. Each step involves precisely one logical operation. The
logical operation must correspond to the logical type of the formula.

1. Prove that P ⇒ (Q ∧R) ` P ⇒ R.

2. Prove that P ⇒ Q,¬(P ∧Q) ` ¬P .

3. Prove that P ⇒ Q,R⇒ ¬Q,P ∧R ` ⊥.

4. Prove that

∀x (x rich⇒ x happy) ` ∀xx rich⇒ ∀xx happy.

5. Prove that

∀z z2 ≥ 0,∀x∀y ((x−y)2 ≥ 0⇒ 2·(x·y) ≤ x2+y2) ` ∀x∀y 2·(x·y) ≤ x2+y2.



Chapter 6

Natural deduction
templates

6.1 Templates

Constructing natural deduction proofs seems to require ingenuity. This is cer-
tainly true in complicated situations, but in most examples from elementary
logic there is a systematic procedure that makes proof construction rather
straightforward. This procedure is to write the hypotheses at the top and the
conclusions at the bottom. Then one tries to fill in the middle, working inward.
At each stage, the procedure is dictated by picking one of the connectives or
quantifiers, in hypothesis or conclusion, and applying the appropriate rule.

In some instances the rules as presented before show how to proceed. But
some of these rules leave too much freedom. This section presents templates
that show how to use the contradiction rule to remove the imperfections of these
excessively flexible rules. These templates are sometimes less convenient, but
they always work to produce a proof, if one exists.

The Gödel completeness theorem says that given a set of hypotheses and
a conclusion, then either there is a proof using the natural deduction rules, or
there is an interpretation in which the hypotheses are all true and the conclusion
is false. Furthermore, in the case when there is a proof, it may be constructed
via these templates. This will be demonstrated in a later chapter, after the
development of Gentzen deduction.

Why does this theorem not make mathematics trivial? The problem is that
if there is no proof, then the unsuccessful search for one may not terminate.
The problem is with the rule for “all in hypothesis”. This may be specialized in
more than one way, and there is no upper bound to the number of unsuccessful
attempts.

47
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Implication in hypothesis template This template reduces the task of us-
ing the hypothesis A⇒ B to obtain C to two tasks: Use ¬C to derive A,
use B to derive C.

A⇒ B
Suppose ¬C

A
B

C
⊥

Thus C

Negation in hypothesis template This template reduces the task of using
the hypothesis ¬A to obtain C to a seemingly equivalent task: Use ¬C to
derive A. This reduction is particularly useful when some other rule can
be used to derive A.

¬A
Suppose ¬C

A
⊥

Thus C

Note: The role of this rule to make use of a negated hypothesis ¬A. When
the conclusion C has no useful logical structure, but A does, then the rule
effectively switches A for C.
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Or in conclusion template This template reduces the task of proving A∨B
to the task of reasoning from ¬A ∧ ¬B to a contradiction.

Suppose ¬(A ∨B)
Suppose A
A ∨B
⊥

Thus ¬A
Suppose B
A ∨B
⊥

Thus ¬B
¬A ∧ ¬B

⊥
Thus A ∨B

Exists in conclusion template This template reduces the task of proving
∃xA to the task of reasoning from ∀x¬A to a contradiction.

Suppose ¬∃xA
Suppose A
∃xA
⊥

Thus ¬A
∀x¬A

⊥
Thus ∃xA
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Problems

The problems are to be done using natural deduction. Indent.

1. Show that

A⇒ (B ∨ C), B ⇒ ¬A,D ⇒ ¬C ` A⇒ ¬D.

2. Show that
P ∨Q,¬Q ∨R ` P ∨R.

3. Show that from the hypotheses n odd⇒ n2 odd, n odd∨n even, ¬(n2 odd∧
n2 even) it may be proved by natural deduction that n2 even⇒ n even.

4. Show that
∀xx happy ` ¬∃x¬x happy.

5. Show that

∀x∃y (x likes y ⇒ x adores y) ` ∃x∀y x likes y ⇒ ∃x∃y x adores y.

6. Here is a mathematical argument that shows that there is no largest prime
number. Assume that there were a largest prime number. Call it a. Then
a is prime, and for every number j with a < j, j is not prime. However,
for every number m, there is a number k that divides m and is prime.
Hence there is a number k that divides a! + 1 and is prime. Call it b. Now
every number k > 1 that divides n! + 1 must satisfy n < k. (Otherwise
it would have a remainder of 1.) Hence a < b. But then b is not prime.
This is a contradiction.

Use natural deduction to prove that

∀m∃k (k prime ∧ k divides m)

∀n∀k (k divides n! + 1⇒ n < k)

logically imply

¬∃n (n prime ∧ ∀j (n < j ⇒ ¬ j prime)).

6.2 Supplement: Short-cut existential hypothe-
ses rule

The one rule of natural deduction that seems unnatural to a mathematician
is the rule for an existential hypothesis. The official rule is to suppose that
an object denoted by a new free variable exists and satisfies the appropriate
condition. One reasons to a conclusion that does not mention this variable.
Then one can obtain the same conclusion without the supposition.
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Mathematical practice is somewhat different. One makes the supposition
that an object denoted by a new free variable exists and satisfies the appropriate
conclusion. One reasons to a conclusion that does not mention this variable.
However one does not explicitly state that the supposition is not needed. One
simply forgets about it.

There have been many attempts to formalize this procedure, and it is a
notorious topic in discussions of natural deduction. Here we give a rough way
to deal with this issue. The proposed rule is as follows.

If z is a variable that does not occur free in a hypothesis in force, in ∃xA,
or in C, then
∃xA
Let Ax(z)

C

From this point on treat C as a consequence of the existential hypothesis
without the temporary supposition Ax(z) or its temporary consequences.

The safe course is to take z to be a variable that is used as a temporary
name in this context, but which occurs nowhere else in the argument.

Example: Here is a natural deduction proof of the fact that ∃x (x happy ∧
x rich) logically implies that ∃xx happy ∧ ∃xx rich.

Suppose ∃x (x happy ∧ x rich)
Let z happy ∧ z rich
z happy
z rich
∃xx happy
∃xx rich
∃xx happy ∧ ∃xx rich

Here is the same proof in narrative form.
Suppose ∃x (x happy ∧ x rich). Let z happy ∧ z rich. Then z happy

and hence ∃xx happy. Similarly, z rich and hence ∃xx rich. It follows that
∃xx happy ∧ ∃xx rich.

Example: We could try to reason in the other direction, from the existence
of a happy individual and the existence of a rich individual to the existence of
a happy, rich individual? What goes wrong?

Suppose ∃xx happy∧∃xx rich. Then ∃xx happy, ∃xx rich. Let z happy.
Let w rich. Then z happy ∧ w rich. This approach does not work.

Here is another attempt at the other direction.
Suppose ∃xx happy∧∃xx rich. Then ∃xx happy, ∃xx rich. Let z happy.

Let z rich. Then z happy ∧ z rich. So ∃x (x happy ∧ x rich). This seems to
proves the conclusion, but it does not. The problem is that we have temporar-
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ily supposed also that z happy, and so z is not an arbitrary name for the rich
individual. All this proves is that one can deduce logically from z happy, z rich
that ∃x (x happy ∧ x rich). So this approach also does not work.

Example: Here is a natural deduction proof that ∃y∀xx ≤ y gives ∀x∃y x ≤ y.
Suppose ∃y∀xx ≤ y
Let ∀xx ≤ y′
x′ ≤ y′
∃y x′ ≤ y
∀x∃y x ≤ y

Here is the same proof in narrative form.
Suppose ∃y∀xx ≤ y. Let y′ satisfy ∀xx ≤ y′. In particular, x′ ≤ y′.

Therefore ∃y x′ ≤ y. Since x′ is arbitrary, conclude that ∀x∃y x ≤ y.

6.3 Supplement: Short-cut templates

Here are short-cut templates for natural deduction. While sometimes it is
straightforward to obtain a disjunction or an existentially quantified formula
in a conclusion, in general it can be a nuisance. These templates reduce such
problems to problems without the offending connective or quantifier. The price
is a negated hypothesis, which is still something of a bother. These templates
might seem like a cheat—essentially they are an appeal to de Morgan’s laws—
but they can be convenient.

Or in conclusion template Replace A ∨ B in a conclusion by ¬(¬A ∧ ¬B).
Thus the template is

¬(¬A ∧ ¬B)
A ∨B

Exists in conclusion template Replace ∃xA in a conclusion by ¬(∀x¬A).
Thus the template is

¬(∀x¬A)
∃xA

6.4 Supplement: Relaxed natural deduction

Mathematicians ordinarily do not care to put in all logical steps explicitly, as
would be required by the natural deduction rules. However there is a more
relaxed version of natural deduction that might be realistic in some contexts.
This version omits certain trivial logical steps. Here is an outline of how it goes.
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And The rules for eliminating “and” from a hypothesis and for introducing
“and” in the conclusion are regarded as obvious.

All The rule for using ∀xA in a hypothesis by replacing it with Ax(t) is regarded
as obvious. The rule for introducing ∀xA in a conclusion by first proving
Ax(z) is indicated more explicitly, by some such phrase as “since z is
arbitrary”, which means that at this stage z does not occur as a free
variable in any hypothesis in force.

Implies The rule for using ⇒ in a hypothesis is regarded as obvious. The rule
for introducing ⇒ in a conclusion requires special comment. At an earlier
stage there was a Suppose A. After some logical reasoning there is a
conclusion B. Then the removal of the supposition and the introduction
of the implication is indicated by Thus A⇒ B.

Not The rule for using ¬ in a hypothesis is regarded as obvious. The rule
for introducing ¬ in a conclusion requires special comment. At an earlier
stage there was a Suppose A. After some logical reasoning there is a false
conclusion ⊥. Then the removal of the supposition and the introduction
of the negation is indicated by Thus ¬A.

Contradiction The rule for proof by contradiction requires special comment.
At an earlier stage there was a Suppose ¬A. After some logical reasoning
there is a false conclusion ⊥. Then the removal of the supposition and the
introduction of the conclusion is indicated by Thus A.

Or The rule for using ∨ in a hypothesis is proof by cases. Start with A ∨ B.
Suppose A and reason to conclusion C. Instead suppose B and reason
to the same conclusion C. Thus C. The rule for starting with A (or with
B) and introducing A ∨B in the conclusion is regarded as obvious.

Exists Mathematicians tend to be somewhat casual about ∃xA in a hypothesis.
The technique is to Let Ax(z). Thus z is a variable that may be used as
a temporary name for the object that has been supposed to exist. (The
safe course is to take a variable that will be used only in this context.)
Then the reasoning leads to a conclusion C that does not mention z. The
conclusion actually holds as a consequence of the existential hypothesis,
since it did not depend on the assumption about z. The rule for starting
with Ax(t) and introducing ∃xA is regarded as obvious.

Rules for equality (everything is equal to itself, equals may be substituted)
are also used without comment.
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Chapter 7

Gentzen Deduction

7.1 Sequents

Gentzen deduction is a transparent formulation of logical reasoning. The rules
are symmetric and easy to recall. Working with it resembles systematic manipu-
lation of mathematical inequalities. The drawback is that one has to repeatedly
write the same formulas.

Gentzen deduction works with sequents. A sequent is an ordered pair U, V
of sets of formulas. In most practical reasoning each of these sets is a finite set.
For theoretical purposes it is useful to allow the possibility that these sets are
countably infinite. A sequent is written

U −→ V (7.1)

with an arrow separating the two sets. The formulas in U are hypotheses;
the formulas in V are alternative conclusions. In an interpretation a sequent
U −→ V is true if the truth of all the formulas in U implies the truth of some
formula in V . Equivalently, in an interpretation a sequent U −→ V is false
if all the formulas in U are true and all the formulas in V are false. In our
terminology each formula in U is a hypothesis, and each formula in V is an
alternative conclusion. There is no claim that this terminology is standard, but
it is reasonably close to what mathematicians might use.

It is common to use an abbreviated notation for sequents. If U = {A,B}
and V = {C,D,E}, then U −→ V is written

A,B −→ C,D,E (7.2)

This is true in an interpretation if when A,B are both true, then at least one of
C,D,E is true. If the set of hypotheses is empty, then we would write something
like

−→ C,D,E (7.3)
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This is true in an interpretation if at least one of C,D,E is true. Similarly, if
the set of conclusions is empty, then the corresponding expression might be

A,B −→ (7.4)

This is true in an interpretation if A,B are not both true.

Write ∼ V for the set of negations of the formulas in V . Then to say that
U −→ V is false in an interpretation is the same as saying that all the formulas
in U,∼ V are true in the interpretation. In this case we may also say that the
combined set of formulas U,∼ V is satisfied in the interpretation.

There are two situations of particular interest. One is when U −→ V is true
in every interpretation (and for every variable assignment). In this case we say
that the sequent is valid. Equivalently, we have a semantic logical implication
U |= V . It is important to understand that in Gentzen calculus to say that U
logically implies V means that the truth of all formulas in U implies the truth
of some formula in V .

The other situation is when there is some interpretation (and variable as-
signment) such that U −→ V is false. In this case we say that the sequent
U −→ V is falsifiable. Another way of saying this is that the set of formulas
U,∼ V is satisfiable.

There is an important special case in which the set of alternative conclusions
is empty. For simplicity consider the case when all formulas in U are sentences.
Then U −→ is false in the interpretation φ if the formulas in U are all true in
the interpretation φ. In this case we say that U is satisfied by φ. Alternatively,
we say that φ is a model for U . There is a special notation for this, in which
we write φ U to indicate that φ models U .

To continue this line of thought, if U −→ is valid, that is, if U |= is true,
then U is unsatisfiable, that is, U has no model. On the other hand, if U −→
is falsifiable, then U is satisfiable, that is, it has a model.

7.2 Gentzen rules

The syntactic notion of derivation is given by the notion of Gentzen rule. The
specific list of Gentzen rules is given below. Each rule has a sequent or pair of
sequents above the line, and a sequent below the line. A sequent above the line
will be called a premise. In our terminology the sequent below the line is called
a consequent. (This terminology is not standard, but it seems reasonable in this
context.) The rule is designed so that if the premises above the line are valid,
then the consequent below the line is valid. Equivalently, if the consequent
below the line is falsifiable, then at least one of the premises above the line is
falsifiable.

A Gentzen tree is a rooted binary tree of sequents in which the immediate
successors of each sequent, if they exists, are given by applying one of the rules.
In the application of the rule the consequent is below the line, and the immediate
successor premisses are above the line. A Gentzen tree is allowed to be infinite.
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The basic axiom scheme of the Gentzen calculus is U,A −→ A, V . A sequent
is closed if it is of this form, that is, has a formula repeated in hypotheses and
conclusion. A branch of a Gentzen tree is closed if there is a closed sequent in
the set. Otherwise it is open. A Gentzen tree is closed if every branch is closed.

A Gentzen proof is a closed Gentzen tree. The notation U ` V means that
there is a Gentzen proof with U −→ V as the root. In this case we say that U
logically implies V in the syntactic sense.

Each Gentzen rule reduces exactly one formula in the consequent. With the
four connectives and two quantifiers there are twelve rules. They may be paired
in a natural way, according to whether the relevant logical operation is in the
hypothesis part or the conclusion part of the sequent.

A deeper analysis of the rules classifies them into α, β, γ, and δ rules. The
α and β rules treat connectives; the γ and δ rules are corresponding rules for
quantifiers.

Each α rule reduces the consequent to a single premise. Each β rule reduces
the consequent to a pair of premises. There is one exception: the rule for
a negated hypothesis is a special case of the rule for an implication in the
hypothesis, so it is natural to regard it as a β rule.

Each γ rule reduces the consequent to a single premise. The quantifier is
repeated in the premise, so the rule may be used repeatedly with various terms.
Each δ rule reduces the consequent to a premise with an arbitrary free variable.
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α rules: ∧ −→, −→ ∨, −→⇒, −→ ¬

U,A,B −→ V

U,A ∧B −→ V

U −→ A,B, V

U −→ A ∨B, V

U,A −→ B, V

U −→ A⇒ B, V

U,A −→ V

U −→ ¬A, V

β rules: −→ ∧, ∨ −→, ⇒−→, ¬ −→

U −→ A, V | U −→ B, V

U −→ A ∧B, V

U,A −→ V | U,B −→ V

U,A ∨B −→ V

U −→ A, V | U,B −→ V

U,A⇒ B −→ V

U −→ A, V

U,¬A −→ V

γ rules: ∀ −→, −→ ∃

U,∀xA,Ax(t) −→ V

U,∀xA −→ V

U −→ Ax(t),∃xA, V
U −→ ∃xA, V

δ rules: −→ ∀, ∃ −→
If z is a variable that does not occur free in U , V , or ∀xA, then

U −→ Ax(z), V

U −→ ∀xA, V

U,Ax(z) −→ V

U,∃xA −→ V
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Here is a scheme for remembering the four patterns. Since the only effect of a
rule is to perform a reduction on one formula in the consequent, the scheme only
describes what is done to this formula. The relevant formula is called α, β, γ, δ
according to its logical type and its position in hypothesis or conclusion.

α rules: ∧ −→, −→ ∨, −→⇒, −→ ¬
If the sequent with α1, α2 is valid, then the sequent with α is valid.

α1, α2

α

β rules: −→ ∧, ∨ −→, ⇒−→, ¬ −→
If the sequents with β1 and β2 are both valid, then the sequent with β is

valid.
β1 | β2
β

γ rules: ∀ −→, −→ ∃
If the sequent with γ(t) is valid, then the sequent with γ is valid. The

repetition of γ is to allow the rule to be applied repeatedly with various terms.

γ, γ(t)

γ

δ rules: −→ ∀, ∃ −→
Suppose z is a new variable. If the sequent with δ(z) is valid, then so is the

sequent with δ.
δ(z)

δ

When a rule is used only one formula is affected. The other formulas are
simply recopied. This suggests that a more economical notation might be found
in which one only notes the formulas that change from step to step. The tableau
method is based on this idea. A useful reference for the tableau method is the
book [17]. The lecture notes [16] give a particularly readable account.

7.3 Examples

In building a Gentzen tree, it is important to try as far as possible to use the δ
rules before using the γ rules. Generally new variables are introduced by the δ
rules and subsequently, higher up on the tree, used by the γ rules. The difficulty
in logical deduction is due to the γ rules. The reason is that the γ rules may
need to be used repeatedly. There is no upper limit to the terms that one might
have to try.

A Gentzen proof is usually discovered by working bottom up. However a
Gentzen proof can be read either bottom up or top down.

Example: Here is a Gentzen proof of the syntactic logical implication ∃x (x happy∧
x rich) ` ∃xx happy ∧ ∃xx rich.
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z happy, z rich −→ z happy,∃xx happy | z happy, z rich −→ z rich,∃xx rich
z happy, z rich −→ ∃xx happy | z happy, z rich −→ ∃xx rich
z happy, z rich −→ ∃xx happy ∧ ∃xx rich
z happy ∧ z rich −→ ∃xx happy ∧ ∃xx rich
∃x (x happy ∧ x rich) −→ ∃xx happy ∧ ∃xx rich

Example: Here is a Gentzen proof of ∃y∀xx ≤ y ` ∀x∃y x ≤ y.
∀xx ≤ y′, x′ ≤ y′ −→ x′ ≤ y′,∃y x′ ≤ y
∀xx ≤ y′, x′ ≤ y′ −→ ∃y x′ ≤ y
∀xx ≤ y′ −→ ∃y x′ ≤ y
∃y∀xx ≤ y −→ ∃y x′ ≤ y
∃y∀xx ≤ y −→ ∀x∃y x ≤ y

7.4 The soundness theorem

The method is based on the following semantic observations. Consider a fixed
interpretation and variable assignment.

α formulas If A ∧ B is true, then A,B are both true. If A ∨ B is false, then
A,B are both false. If A ⇒ B is false, then A is true and B is false. If
¬A is false, then A is true.

β formulas If A∧B is false, then either A or B is false. If A∨B is true, then
either A is true or B is true. If A⇒ B is true, then A is false or B is true.
If ¬A is true, then A is false.

γ formulas If ∀xA is true, then Ax(z) is true for every reassignment of z. If
∃xA is false, then Ax(z) is false for every reassignment of z.

δ formulas If ∀xA is false, then Ax(z) is false for some reassignment of z. If
∃xA is true, then Ax(z) is true for some reassignment of z.

These observations may be summarized as follows.

• If the sequent with α is falsified, then the sequent with α1, α2 is falsified.

• If the sequent with β is falsified, then either the sequent with β1 is falsified,
or the sequent with β2 is falsified.

• If the sequent with γ is falsified, then for each reassignment of z the sequent
with γ(z) is falsified.

• If the sequent with δ is falsified, then for some reassignment of z the
sequent with δ(z) is falsified.
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These arguments show that each of the Gentzen rules preserves validity. This
is a routine observation for the α and β rules involving only connectives, but
the quantifier rules deserve comment.

If the sequent with γ is false in some interpretation and variable assignment,
then the sequent with γ(t) is false with this interpretation and variable assign-
ment. This shows that if the sequent with γ(t) is valid, then the sequence with
γ is valid.

If the sequent with δ is false in some interpretation and variable assignment,
then there is some reassignment to z that makes the sequent with δ(z) false
with this interpretation and new variable assignment. This shows that if the
sequent with δ(z) is valid, then the sequent with δ is valid.

Recall that a Gentzen proof is a closed Gentzen tree. We write U ` V if
there is a Gentzen proof with root U −→ V .

Proposition 7.1 (Finiteness of proofs) If there is a Gentzen proof of U `
V , then there is a Gentzen proof of U ` V with a finite Gentzen tree.

Proof: Consider the Gentzen proof tree. Every branch has a least closed
sequent. The sequents that are below these least closed sequents form a Gentzen
proof tree. In this tree every branch is finite. By König’s lemma the entire tree
is finite. �

Theorem 7.2 (Soundness theorem) If U ` V , then U |= V .

Proof: Consider a finite Gentzen proof tree with a closed sequent at each
end point. Each closed sequent is automatically valid. Since the Gentzen rules
preserve validity, it follows that every sequent in the tree is valid. �

7.5 The cut rule

The cut rule is a statement of transitivity. It says that

U −→ A, V | S,A −→W

U,S −→ V,W

Start with hypotheses U, S. First use U to prove a lemma A, possibly with al-
ternatives V . Then use S together with A to conduct an independent derivation
of alternative conclusions W . The cut rule says that U, S leads to alternative
conclusions V,W without having to mention the lemma.

Example: The cut rule says that it is not necessary to write the entire proof
in one uninterrupted chain of reasoning. Say for instance that U is a collection
of sentences in a calculus book (and V = ∅). Say that from U one can prove the
lemma A stating that ∀x > 0 (x irrational⇒

√
x irrational). Then it is easy to

construct a separate proof that the conjunction S stating that π > 0, π irrational
together with A leads to the conclusion W stating that

√
π irrational. The cut

rule says that it then follows that U together with π > 0, π irrational leads
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logically to
√
π irrational. In short, the cut rule says that one can rely on

previously proved lemmas.

The cut rule is very powerful, and it can shorten proofs. However it takes
imagination to use it—one has to guess the right lemma. It is remarkable that
one can dispense with the cut rule and get the same logical implications. In fact,
Gentzen showed that cuts may be eliminated by a systematic process. (There
is a corresponding process of normalization in natural deduction.) There are a
number of books on proof theory. The book by [19] is a good reference. Other
useful books include [18, 2, 9]. See [13] for a focus on natural deduction.

Problems

All the problems except the last are to be done using Gentzen deduction. Each
step involves precisely one logical operation. The logical operation must corre-
spond to the logical type of the formula.

1. Show that from the hypotheses P ⇒ Q, P ∨R, ¬(Q∧S) it may be proved
by Gentzen deduction that S ⇒ R.

2. Show that from the hypotheses P ⇒ Q, P ∨ R, ¬(Q ∧ S) it there is no
proof by Gentzen deduction that R⇒ S. Use a branch of the failed proof
to construct a truth-value assignment in which the hypotheses are all true,
but the conclusion is false.

3. Show that
P ∨Q,¬Q ∨R ` P ∨R.

4. Show by using Gentzen deduction that

P ∨Q,¬Q ∨R ` P ∧R

is false. Find a branch that closes in atomic formulas but not in an axiom.
Use this branch to construct an example that shows that

P ∨Q,¬Q ∨R |= P ∧R

is false.

5. It is a well-known mathematical fact that
√

2 is irrational. In fact, if it
were rational, so that

√
2 = m/n, then we would have 2n2 = m2. Thus

m2 would have an even number of factors of 2, while 2n2 would have an
odd number of factors of two. This would be a contradiction.

Use natural deduction to show that

∀i i2 even-twos

and
∀j (j even-twos⇒ ¬ 2 · j even-twos)

give
¬∃m∃n 2 · n2 = m2.
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7.6 Appendix: Adjointness

This appendix is an attempt to exhibit a deeper structure to the Gentzen rules.
The idea is that an operation on one side of a sequent corresponds to another
operation on the other side of a sequent. One such operation is said to be adjoint
to the other operation.
∧ Conjunction in conclusion is right adjoint to constant hypothesis.

U−→A,V
U−→B,V

U −→ A ∧B, V

∨ Disjunction in hypothesis is left adjoint to constant conclusion.

U,A−→V
U,B−→V

U,A ∨B −→ V

∀ The universal quantifier in conclusion is right adjoint to constant hypoth-
esis.

U −→ Ax(z), V

U −→ ∀xA, V
∃ The existential quantifier in hypothesis is left adjoint to constant conclu-

sion.
U,Ax(z) −→ V

U,∃xA −→ V

A ⇒ Implication in conclusion is right adjoint to conjunction with hypoth-
esis.

U,A −→ B, V

U −→ A⇒ B, V

A ⇒ Implication in hypothesis is left adjoint to disjunction with constant
conclusion.

U−→A,V
U,B−→V

U,A⇒ B −→ V

There is no special name for the operation in logic corresponding to a left
adjoint for disjunction with B in conclusion. The natural operation would seem
to be the one that sends A to A ∧ ¬B. Then U,A −→ B, V would transform
to U,A ∧ ¬B −→ V . This certainly works in classical logic, but there is no
standard symbol for this excision operation. One could propose A \B.

There is an explanation for this lack of symmetry. Intuitionistic logic is a
beautiful and natural extension of classical logic. (See the appendix on intu-
itionistic logic.) In this logic proof by contradiction is not allowed. Only some
rules of classical logic apply, and there is a particular problem with disjunctions
in the conclusion. As a result, intuitionistic logic has less symmetry than classi-
cal logic. A tendency to think in the framework of intuitionistic logic may have
affected the traditions of classical logic.

There are two reasons why this might happen. One is that people may
unconsciously slip into thinking in the intuitionistic framework. Intuitionistic
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logic is about stages of development, and this dynamic way of thinking is in
some ways more natural than the static formulation of classical logic.

The other reason is that inference is ordinarily conducted in a framework
similar to natural deduction. Natural deduction is similar to Gentzen deduc-
tion, but the symmetry is less apparent. The main difference is that there are
typically several hypotheses in force, but at any one point there is only one
conclusion. While in a Gentzen proof alternative conclusions are allowed, in a
natural deduction argument one uses proof by contradiction to replace conclu-
sion C by hypothesis ¬C. In natural deduction there is a willingness to argue
using intuitionistic rules as far as possible and adopt proof by contradiction
only as a last resort. So in this context intuitionistic logic affects the spirit of
classical logic, if not the substance.



Chapter 8

The completeness theorem

8.1 The satisfaction theorem

This section presents a method for attempting to prove that a sequent U −→ V
is falsifiable, that is, that U,∼ V is satisfiable. The discussion is in the context
of a language with predicate symbols but no function symbols. This is merely
for technical convenience.

The method is based on the following semantic observations. Consider a
fixed interpretation and variable assignment.

α formulas If formula A,B are both true, then A ∧ B is true. If a formulas
A,B are both false, then A ∨ B is false. If A is true and B is false, then
A⇒ B is false. If A is true, then ¬A is false.

β formulas If either formula A or formula B is false, then formula A ∧ B is
false. If either formula A or formula B is true, the formula A ∨B is true.
If formula A is false or formula B is true, then A⇒ B is true. If formula
A is false, then ¬A is true.

γ formulas If Ax(z) is true for every reassignment of z, then ∀xA is true. If
Az(z) is false for every reassignment of z, then ∃xA is false.

δ formulas If Ax(z) is false for some reassignment of z, then ∀xA is false. If
Ax(z) is true for some reassignment of z, then ∃xA is true.

These observations may be summarized as follows.

• If the sequent with α1, α2 is falsified, then the sequent with α is falsified.

• If either the sequent with β1 is falsified, or the sequent with β2 is falsified,
then the sequent with β is falsified.

• If for each reassignment of z the sequent with γ(z) is falsified , then the
sequent with γ is falsified.

65
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• If for some reassignment of z the sequent with δ(z) is falsified, then the
sequent with δ is falsified.

Now return to syntax. A branch of a Gentzen tree is a complete branch if it
has the following properties.

• For every α formula in a sequent on the branch the corresponding rule is
used for some successor sequent on the branch.

• For every β formula in a sequent on the branch the corresponding rule is
used for some successor sequent on the branch with either β1 or β2.

• For every γ formula in a sequent on the branch the corresponding rule is
used in successor sequents for all free variables that occur on the branch.
(It is assumed that there is at least one such free variable.)

• For every δ formula in a sequent on the branch the corresponding rule is
used for some successor sequent on the branch with a new free variable.

The completeness condition is stronger than it first appears. When a γ rule
is used with a variable, the result may well be a δ formula. When a δ rule is
subsequently used, it requires a new free variable. It is necessary to use the γ
with this free variable as well.

Theorem 8.1 (Satisfaction theorem) Suppose a Gentzen tree has a com-
plete open branch. Then there is an interpretation that falsifies each sequent in
the branch.

Proof: The syntax is used to define the semantics. That is, the domain of
the interpretation consists of the free variables that occur anywhere along the
branch. Define the variable assignment that assigns to each variable the same
variable regarded as an element of the domain. Define the interpretation of the
predicate symbols so that in each sequent along the branch the atomic formulas
among the hypotheses are true. All other atomic formulas are false. Since the
branch is open, this makes the atomic formulas among the conclusions false.

Other formulas along the branch are built up in stages from atomic for-
mulas. Since the search is complete, the semantic observations above may be
reformulated as follows.

• If a sequent with α1, α2 is falsified, then the sequent with α is falsified.

• If either a sequent with β1 is falsified, or a sequent with β2 is falsified,
then the sequent with β is falsified.

• If the sequents with γ(z) are falsified for each free variable that occurs on
the branch, then the sequent with γ is falsified.

• If the sequents with δ1, δ2 are falsified for some free variable z that occurs
on the branch, then the sequent with δ is falsified.
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From this we conclude that the sequents on the branch are all falsified in
this interpretation. �

Example: Here is a complete open branch that shows that the semantic logical
implication ∃xx happy ∧ ∃xx rich |= ∃x(x happy ∧ x rich) is false.

y happy, z rich −→ z happy, y rich,∃x (x happy ∧ x rich)
y happy, z rich −→ z happy, y happy ∧ y rich,∃x (x happy ∧ x rich)
y happy, z rich −→ z happy,∃x (x happy ∧ x rich)
y happy, z rich −→ z happy ∧ z rich,∃x (x happy ∧ x rich)
y happy, z rich −→ ∃x (x happy ∧ x rich)
y happy,∃xx rich −→ ∃x (x happy ∧ x rich)
∃xx happy,∃xx rich −→ ∃x (x happy ∧ x rich)
∃xx happy ∧ ∃xx rich −→ ∃x (x happy ∧ x rich)
This shows that the domain consists of y, z. The individual y is happy but

not rich, while the individual z is rich but not happy.

Example: Here is a complete open branch that shows that ∀x∃y x < y is
satisfiable. We show only the lower part of the infinite search.
∀x∃y x < y, x0 < x1, x1 < x2, x2 < x3 −→
∀x∃y x < y, x0 < x1, x1 < x2,∃y x2 < y −→
∀x∃y x < y, x0 < x1, x1 < x2 −→
∀x∃y x < y, x0 < x1,∃y x1 < y −→
∀x∃y x < y, x0 < x1 −→
∀x∃y x < y,∃y x0 < y −→
∀x∃y x < y −→
The domain of the interpretation is x0, x1, x2, x2, . . .. The formulas x0 <

x1, x1 < x2, x2 < x3, . . . are all true.

8.2 The Gödel completeness theorem

A complete Gentzen tree is a Gentzen tree such that every open branch is
complete.

Lemma 8.2 (Completeness lemma) For every sequent there is a complete
Gentzen tree with that sequent as root.

The idea of the proof is to start with the sequent and construct a Gentzen
tree with that sequent as root. The problem is that this is an infinite process.
Each γ formula can be used with infinitely many variables. Even if the initial
supply of variables in finite, it may turn out that infinitely many δ formulas are
uncovered along the way, and this creates an infinite supply of variables.

If one starts with a γ formula and then tries to use it with infinitely many
variables, this will construct a tree with a single branch that ignores all other
formulas. So this strategy is futile. A better strategy is to limit the use of a γ
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formula to finitely many variables at the time. The following construction may
not be particularly efficient, but it works.

Proof: Let x1, x2, x3, . . . be an infinite list of variables. The first m variables
in the list are the free variables that occur in the formulas in the sequent. Some
of the variables after the first m may be used as new variables in applications
of δ rules.

The construction is in stages. Start at stage 0 with the original sequent at
the root. Say that a finite tree has been constructed up to stage n − 1. Each
end point of that finite tree is a sequent. For each such sequent make a finite
extension of the tree to obtain stage n. This is done in steps as follows.

• Consider the γ formulas in the sequent. For each such formula use the γ
rule with each of the variables x1, x1, . . . , xn. The result is a finite linear
extension of the tree.

• For each end point of this extended tree consider the α formulas in the
sequent that were copied. For each such formula use the α rule. The result
is a further finite linear extension of the tree.

• For each end point of this extended tree consider the δ formulas that were
copied. For each such formula use the δ rule. Again the result is a finite
linear extension of the tree.

• For each end point of this extended tree consider the β formulas that were
copied. For each such formula use the β rule in each branch into which
the formula is copied. This gives finite extension of the tree.

The final Gentzen tree is obtained by taking the union of all these finite trees.
Various γ formulas are uncovered at various stages of this process. However once
a γ formula appears, it continues higher in the tree. Thus in this construction
every branch with a γ formula is infinite. Furthermore, each γ formula is used
further out on the tree with every variable on the list. Each α, β, or δ formula
is also used somewhere further out on the tree. It follows that the Gentzen tree
is complete. �

Theorem 8.3 (Gödel completeness theorem) If U |= V , then U ` V .

Proof: Consider the sequent U −→ V . By the completeness lemma there
is a complete Gentzen tree with U −→ V as the root. Suppose that U ` V
is false. Then the Gentzen tree cannot be closed. So it has at least one open
branch. By the satisfaction theorem this gives an interpretation that falsifies
each sequent in the branch. In particular, it falsifies U −→ V . Thus U |= V is
false. �

Theorem 8.4 (Löwenheim-Skolem theorem) If U is satisfiable, then U is
satisfiable in some countable domain.
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Proof: If U is satisfiable, then U |= is false. By the soundness theorem U `
is false. But then by the proof of the completeness theorem, U is satisfiable in
some countable domain, namely a set of terms in the language. �

The significance of the Löwenheim-Skolem Theorem is profound. Consider
a theory that purports to describe properties of the set R of real numbers. The
set of real numbers is uncountable. Yet the theory has another model with a
countable domain.

Remark: The completeness theorem continues to hold when the language is
allowed to have terms formed using function symbols. See for instance [6].

Remark: The Löwenheim-Skolem theorem continues to hold when the language
is allowed to have terms formed from function symbols.

Remark: Suppose that the language has an equality relation =. It is easy
to see that in every interpretation the equality relation = is interpreted as
an equivalence relation on the domain. Define an equality interpretation to
be an interpretation for which the equality relation = is interpreted as actual
equality. Define a new relation of semantic consequence |= where interpretations
are replaces by equality interpretations. With this new relation the completeness
theorem continues to hold, that is, U |= V implies U ` V . Also the Löwenheim-
Skolem theorem continues to hold. That is, if U ` is false, then U is satisfiable
with an equality interpretation in a countable domain.

Problems

1. Consider the hypotheses ∀x (x happy ⇒ x rich), ∃x (x happy ∧ x wise).
The conclusion is ∃x (x rich ∧ x wise). Find a Gentzen proof.

2. Consider the hypotheses ∀x (x rich⇒ x happy), ∃xx rich, ∃x (x happy ∧
x wise). The conclusion is ∃x (x rich∧x wise). Attempt a Gentzen proof.
If the proof fails, use this proof attempt to construct a domain and an
interpretation of the three predicate symbols that makes the hypotheses
true and the conclusion false.

3. If X is a set, then P (X) is the set of all subsets of X. If X is finite with
n elements, then P (X) is finite with 2n elements. A famous theorem of
Cantor states that there is no function f from X to P (X) that is onto
P (X). Thus in some sense there are more elements in P (X) than in X.
This is obvious when X is finite, but the interesting case is when X is
infinite.

Here is an outline of a proof. Consider an arbitrary function f from X
to P (X). We want to show that there exists a set V such that for each
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x in X we have f(x) 6= V . Consider the condition that x /∈ f(x). This
condition defines a set. That is, there exists a set U such that for all x,
x ∈ U is equivalent to x /∈ f(x). Call this set S. Let p be arbitrary.
Suppose f(p) = S. Suppose p ∈ S. Then p /∈ f(p), that is, p /∈ S. This
is a contradiction. Thus p /∈ S. Then p ∈ f(p), that is, p ∈ S. This is a
contradiction. Thus f(p) 6= S. Since this is true for arbitrary p, it follows
that for each x in X we have f(x) 6= S. Thus there is a set that is not in
the range of f .

Prove using natural deduction that from

∃U ∀x ((x ∈ U ⇒ ¬x ∈ f(x)) ∧ (¬x ∈ f(x)⇒ x ∈ U))

one can conclude that
∃V ∀x¬f(x) = V.



Chapter 9

The compactness theorem

9.1 Infinite sequents

A countable sequent is a pair U −→ V , where U is a countable set of formulas,
and V is another countable set of formulas. The theory of countable sequents
parallels the theory of finite sequents.

In particular, the semantic notions are essentially the same. For instance, if
U −→ V is a countable sequent, then U |= V means that for every interpretation
(and for every variable assignment), if all the formulas in U are true, then some
formula in V is true. The syntactic notions are also very similar. Thus, if
U −→ V is a countable sequent, then U |= V means that there is a closed
Gentzen tree with the sequent as root. Again there is a soundness theorem.

Lemma 9.1 (Completeness lemma for countable infinite sequents) For
every sequent there is a complete Gentzen tree with that sequent as root.

Proof: Let x1, x2, x3, . . . be an infinite list of variables. There could be
infinitely many free variables in the original sequent, so to make sure to get
them all, alternate these original free variables with new variables to be used
with δ rules. Also, enumerate the formulas in the sequent.

The construction is in stages. Start at stage 0 with the original sequent at
the root. Say that a finite tree has been constructed up to stage n− 1 using the
rules only with successors of the first n− 1 formulas in the enumeration. Each
end point of that finite tree is a sequent. For each such sequent make a finite
extension of the tree to obtain stage n. In this stage the rules are only applied
to successors of the first n−1 formulas in the enumeration or to the nth formula
in the enumeration.

• Consider the γ formulas among these formulas. For each such formula use
the γ rule with each of the variables x1, x1, . . . , xn. The result is a finite
linear extension of the tree.
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• For each end point of this extended tree consider the α formulas among
these formula that occur in the sequents that were copied. For each such
formula use the α rule. The result is a further finite linear extension of
the tree.

• For each end point of this extended tree consider the δ formulas among
these formula that were copied. For each such formula use the δ rule.
Again the result is a finite linear extension of the tree.

• For each end point of this extended tree consider the β formulas among
these formulas that were copied. For each such formula use the β rule in
each branch into which the formula is copied. This gives finite extension
of the tree.

The final Gentzen tree is obtained by taking the union of all these finite
trees. �

Theorem 9.2 (Gödel completeness theorem for countably infinite sequents)
Consider a countable sequent U −→ V . If U |= V , then U ` V .

Proof: The proof is as before. �

9.2 Compactness

Proposition 9.3 (Syntactic compactness theorem) Consider a countable
sequent U −→ V . If U ` V , then there are finite subsets U0 and V0 of U and V
such that U0 ` V0.

Proof: Consider the Gentzen proof tree for U ` V . Every branch has a least
closed sequent. The sequents that are below these least closed sequents form a
Gentzen proof tree. In this tree every branch is finite. By König’s lemma the
entire tree is finite. In particular, there are only many finitely many applications
of Gentzen rules in the construction of this finite tree and the production of the
closed sequents at the end points of this tree. Also, there are only finitely many
formulas in the original sequent to which the rules have been applied. If the
other formulas are deleted from all the sequents, then the resulting tree is a
closed tree with a finite sequent U0 ` V0 at the root. �

Theorem 9.4 (Semantic compactness theorem) If U |= V , then there are
finite subsets U0 and V0 of U and V such that U0 |= V0.

Proof: This follows from the syntactic compactness theorem, the complete-
ness theorem, and the soundness theorem. �

The following corollary is the usual statement of the compactness theorem.

Corollary 9.5 If for all finite subsets U0 of U the set U0 is satisfiable, then the
set U is satisfiable.
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The significance of the compactness Theorem is profound. Consider a theory
that purports to describe properties of the natural numbers. Let c be a new
constant symbol. Consider the axioms c > 0, c > 1, c > 2, c > 3, . . .. Every finite
subset has a model. By the Compactness Theorem, the whole collection has a
model. Thus there is a model of the theory in which there are non-standard
natural numbers.

Remark: The completeness and compactness theorems for countably infinite
sequents continue to hold when the language is allowed to have terms formed
using function symbols.

Remark: The Löwenheim-Skolem theorem holds for countably infinite sequents
with a language that is allowed to have terms formed from function symbols.

Remark: Up to now we have been assuming that there are finitely many or at
most countably many predicate symbols and function symbols. The complete-
ness and compactness theorems hold even more generally. The language can
have uncountably many constant symbols. For instance, one could imagine a
constant symbol naming each real number. Such symbols could not be written
in any reasonable way, but perhaps one could take the symbol to be the real
number itself. Furthermore, the theorems hold when the sequents themselves
are uncountable. In the real number example there could be a hypothesized
property that holds for each real number, producing uncountably many formu-
las. These generalizations of the theorems are standard results in mathematical
logic that are useful in theoretical investigations of models. A straightforward
proof of this version of the compactness theorem may be found in [16].

Problems

1. Often quantifiers are restricted by some condition such as ∀ε (ε > 0⇒ x p)
or ∃ε (ε > 0 ∧ x q). The implication restriction goes with the univer-
sal quantifier, while the conjunction restriction goes with the existential
quantifier. Show by natural deduction that

¬∀ε (ε > 0⇒ ε p) ` ∃ε (ε > 0 ∧ ¬ε p).

2. Show by Gentzen deduction that

¬∀ε (ε > 0⇒ ε p) ` ∃ε (ε > 0 ∧ ¬ε p).

3. Use the failure of a Gentzen deduction to construct an interpretation that
shows that

¬∀ε (ε > 0 ∧ ε p) |= ∃ε (ε > 0 ∧ ¬ε p)
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is false. Specify domain (variables introduced by δ rules) and interpreta-
tions of p, >, and 0. (There can be more than one such interpretation.)

4. Here is an argument that if f and g are continuous functions, then the
composite function g ◦ f defined by (g ◦ f)(x) = g(f(x)) is a continuous
function.

Assume that f and g are continuous. Consider an arbitrary point a′

and an arbitrary ε′ > 0. Since g is continuous at f(a′), there exists
a δ > 0 such that for all y the condition |y − f(a′)| < δ implies that
|g(y)− g(f(a′))| < ε′. Call it δ1. Since f is continuous at a′, there exists a
δ > 0 such that for all x the condition |x−a′| < δ implies |f(x)− f(a′)| <
δ1. Call it δ2. Consider an arbitrary x′. Suppose |x′ − a′| < δ2. Then
|f(x′)− f(a′)| < δ1. Hence |g(f(x′))− g(f(a′))| < ε′. Thus |x′ − a′| < δ2
implies |g(f(x′))− g(f(a′))| < ε′. Since x′ is arbitrary, this shows that for
all x we have the implication |x−a′| < δ2 implies |g(f(x))−g(f(a′))| < ε′.
It follows that there exists δ > 0 such that all x we have the implication
|x − a′| < δ implies |g(f(x)) − g(f(a′))| < ε′. Since ε′ is arbitrary, the
composite function g ◦ f is continuous at a′. Since a′ is arbitrary, the
composite function g ◦ f is continuous.

In the following proof the restrictions that ε > 0 and δ > 0 are implicit.
They are understood because this is a convention associated with the use
of the variables ε and δ.

Prove using natural deduction that from

∀a∀ε∃δ∀x (|x− a| < δ ⇒ |f(x)− f(a)| < ε)

and

∀b∀ε∃δ∀y (|y − b| < δ ⇒ |g(y)− g(b)| < ε)

one can conclude that

∀a∀ε∃δ∀x (|x− a| < δ ⇒ |g(f(x))− g(f(a))| < ε).

9.3 Appendix: Translating Gentzen deduction
to natural deduction

In the Gentzen calculus presented above, at each stage there can be multiple
simultaneous hypotheses and multiple alternative conclusions. In natural de-
duction, at a given stage there are multiple hypotheses, but a single conclusion.

The following observations will explain the relation between the two systems.
The Gentzen rule for ¬ in hypothesis has a special case

U −→ A

U,¬A −→
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If we run this rule backward, we get a special case of the proof by contradiction
rule

U,¬C −→
U −→ C

These rules can be used together to reduce a negated hypothesis ¬A with con-
clusion C to a negated hypothesis ¬C with conclusion A.

Here is a method of converting a Gentzen proof of U ` C to a natural
deduction proof of U ` C. The idea is clear: replace multiple conclusions with
negated hypotheses; swap them back and forth as needed.

• Use de Morgan’s laws to eliminate ∨ and ∃ in conclusion.

• Avoid multiple conclusions. Prepare by replacing conclusion C by hypoth-
esis ¬C with empty conclusion.

• Work on negated hypotheses. Reduce a negated hypothesis ¬A with con-
clusion C to negated hypothesis ¬C with conclusion A.

• Avoid empty conclusions. Replace them by ⊥.

• Write the resulting tree of sequents with single conclusions. Convert to
natural deduction with templates.

Example: Consider P ∨Q,¬Q ∨R,¬R ` P . Here is a Gentzen tree after the
transformation to single conclusions.

Q,R,¬P −→ R
Q,¬R,¬P −→ Q Q,¬R,R,¬P −→ ⊥

Q,Q⇒ R,¬R,¬P −→ ⊥
P,Q⇒ R,¬R −→ P Q,Q⇒ R,¬R −→ P

P ∨Q,Q⇒ R,¬R −→ P
The proof branches once, then the right side branches again. Here is the

corresponding natural deduction proof.
Suppose P ∨Q
Suppose Q⇒ R
Suppose ¬R

Suppose P
P
Instead suppose Q

Suppose ¬P
Q
R
⊥

Thus P
Thus P

The first P ∨Q branch is to the parts from P to P and from Q to P . The
second Q⇒ R branch is to the parts from ¬P to Q and from R to ⊥
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Chapter 10

Theories

10.1 Theories and models

From now on the setting is a logical language with specified predicate and func-
tion symbols. A sentence is a formula in this language without free variables. Its
truth value depends on an interpretation of the predicate symbols and function
symbols, but not on a variable assignment.

An axiom set is a set U of sentences. A theory T is a set of sentences closed
under logical implication. The axiom set U is an axiom set for the theory T if
T consists of all the logical consequences of U .

A theory is consistent if there is no sentence such that A,¬A are both in
the theory. This is a syntactic notion.

A theory is complete if for every sentence A, either A or ¬A is in the theory.
This is a syntactic notion of completeness. To emphasize this, it might be useful
to say that the theory is syntactically complete. This notion should not confused
with semantic completeness.

Consider an interpretation M of the language. This consists of a non-empty
domain and of an interpretation of each predicate symbol and function symbol
by a predicate or function associated with the domain. If each sentence of U is
true in the interpretation M , we say that M is a model of U . When M models
U we write M U . If U is an axiom set for the theory T , then M U if and

only if M T .

If M is an interpretation, then Th(M), the theory of M , is the set of all
sentences true in M . Thus Th(M) is always consistent and complete, and

M Th(M).

The soundness theorem says that if a theory has a model, then it is con-
sistent. The semantic completeness theorem says that if a theory is consistent,
then it has a countable model. (The word complete in this context refers to a
semantic result, the existence of a model. It has no relation to the syntactic
notion of complete theory.)

In the subsequent treatment of theories and models the notion of equality
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plays an essential role. It is assumed that the language has a relation symbol
= and that the usual reasoning with equality is valid. This is enough to en-
sure that in every model the relation symbol = is interpreted as an equivalence
theorem. The interpretation is an equality interpretation if the relation sym-
bol = is interpreted as actual equality. Throughout the discussion the notion
of interpretation will be taken in this sense, that is, interpretation will mean
equality interpretation. Fortunately, the semantic completeness theorem and its
consequences remain true in this context.

Let M1 and M2 be two models. We say that M1 is isomorphic to M2 if
there is a bijection γ from the domain of M1 to the domain of M2 such that
each predicate in M1 is true precisely when the corresponding predicate in M2

is true, and each function in M1 is taken to the corresponding function in M2.
Thus for a relation r

xR1y if and only if γ(x)R2γ(y)

and for a 1-place function f

γ(f1(x)) = f2(γ(x)).

Isomorphic models have the same true sentences. That is, if M1 is isomorphic
to M2, then Th(M1) = Th(M2).

A theory is categorial if each every pair of models are isomorphic. It would
be nice to have categorial theories in mathematics, since they would uniquely
characterize the subject matter. It turns out, however, that this condition is
very strong; one can hope for a categorial theory only for finite models.

10.2 Theory of a mathematical structure

Given a mathematical structure M , the theory T = Th(M) consists of all
sentences that are true in this model. This is always a complete theory. In the
following we want to look at five such theories.

1. The theory of successor. This is a theory where the only non-logical sym-
bols are a constant symbol 0 and a 1-place function symbol s. Each atomic
sentence is an equality. It is the theory of all sentences that are true in
the model where the domain is N and 0 is zero and s is the operation of
adding one.

2. The theory of dense linear order without minimum or maximum. This is
a theory where the only non-logical symbol is <. Each atomic sentence is
an equality or an inequality. It is the theory of all sentences that are true
in the model where the domain is Q and < is the usual inequality.

3. The theory of discrete linear order with minimum but no maximum. This
is a theory where the only non-logical symbols are a constant symbol 0 and
a relation symbol <. Each atomic sentence is an equality or an inequality.
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It is the theory of all sentences that are true in the model where the
domain is N and < is the usual inequality and 0 is the minimal element.

4. The theory of addition. This is a theory where the only non-logical sym-
bols are constant symbols 0 and 1 and a two-place function symbol +.
Each atomic sentence is an equality. It is the theory of all sentences that
are true in the model where the domain is N and + is usual addition.

5. The theory of addition and multiplication. This is a theory where the only
non-logical symbols are constant symbol 0 and 1 and two-place function
symbols + and ·. Each atomic sentence is an equality. It is the theory of
all sentences that are true in the model where the domain is N and + and
· are the usual addition and multiplication.

Problems

1. Say that a language has variables z1, z2, z3, . . . and a single constant sym-
bol 0 and a single 1-place function symbol s.

a. Describe all terms in the language.

b. Prove that the set of terms in the language is countable by describing
a one-to-one correspondence between the set of natural numbers N =
{0, 1, 2, 3, . . .} and the set of terms.

2. If a theory has only one model (up to isomorphism), then it is said to
be categorical. Show that if a theory is categorical, then it is complete.
Hint: Assume the theory has only one model. Suppose the theory T is
not complete. Then there is a sentence A such that T ` ¬A is false and
T ` A is false. First show that T,A ` ⊥ is false and that T,¬A ` ⊥ is
false. Is there a way to establish that T,A and T,¬A each have models?
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Chapter 11

Complete theories

11.1 The theory of successor

The language of the theory has a single constant symbol 0 and a single 1-place
function symbol s.

We begin with the following axiom.

1. ∀x∀y (sx = sy ⇒ x = y)

This axiom says that s is an injective function. There are many non-
isomorphic models for this axiom. Consider an arbitrary number of disjoint
copies of N and Z and Zn for various n ≥ 1. (You can label them in order to
make sure there are no overlaps in the different copies.) In each copy take s
to be interpreted as adding one. (In Zn we add one modulo n.) This gives an
injective function.

2. ∀x¬sx = 0

3. ∀y (¬y = 0⇒ ∃x sx = y)

These next two axioms say that the range of s omits a single element 0.
Thus the only models are the ones where there is precisely one copy of N.

4. An infinite sequence of axioms ∀x¬sx = x,∀x¬ssx = x, ∀x¬sssx = x,
and so on.

These axioms rule out any other possibility other than N together with a
number of copies of Z, at least up to isomorphism. Recall that two models M1

and M2 are isomorphic if there is a bijection γ : D1 → D2 of the domains such
that the two constants 01 and 02 are related by γ(01) = 02 and such that the
two functions are related by γ(s1(d)) = s2(γ(d)) for all d in D1.

Theorem 11.1 Every countable model of the theory of successor (axioms 1
through 4) is isomorphic to N together with some countable number of copies of
Z.
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We call the model N together with 0 and s the standard model. All other
models are regarded as non-standard models. Thus each non-standard model
is a disjoint union of N together with some number of copies of Z. Two such
models are isomorphic if and only if they have the same number of copies of Z.

This usage is considerably more general. Say that we have a theory (prefer-
ably a complete theory). Then there may be an intended model, the system that
we are attempting to describe. A model other than the intended model would
be called non-standard.

Say that in the present instance we wanted to recognize non-standard mod-
els. We could extend the language to have a sequence of new constants c1, c2, c3, . . ..
We could then add an infinite set of axioms:

5. ¬ci = 0,¬ci = s0,¬ci = ss0,¬ci = sss0, . . . together with ¬ci = cj ,¬ci =
scj ,¬ci = sscj ,¬ci = ssscj , . . ..

These axioms say that the c1, c2, c3, . . . denote elements that are not stan-
dard and also that different constants c1, c2, c3 belong to different copies of the
integers.

Theorem 11.2 Every countable model of the theory of successor with named
constants (axioms 1 through 5) has the property that the 0 and s parts of the
model (axioms 1 through 4) are isomorphic to N together with countably in-
finitely many copies of Z.

Proof: The extended theory with axioms 1 through 5 not only describes
each standard natural number in N but also describes each non-standard natural
number in countably many disjoint copies of Z. Each of the non-standard natu-
ral numbers in these copies may be described by a condition such as ss · · · ssci =
x or x = ss · · · ssci. There could be other non-standard natural numbers that
have no description, but that does not change the fact that there are a countable
infinite number of copies of Z. �

Theorem 11.3 The theory of successor (axioms 1 through 4) is a complete
theory. It is the theory of N together with 0 and s.

Proof: Let T be the theory in the language of 0 and s generated by axioms
1 through 4. It is consistent, since all the sentences in the theory are true.
Suppose it is not complete. Then there is a sentence A in this language such
that neither ¬A nor A is in the theory. Let T+ be the T together with A,
and let T− be T together with ¬A. These theories are each consistent. By the
semantic completeness theorem they have countable models M+ and M−. Let
T̂+ and T̂− be the same theories in an extended language with extra constants
c1, c2, c3, . . .. Enumerate all the axioms 1 through 5 in some order. Let T̂+

n

and T̂−n be the theories with the first n axioms. These theories have countable
models M̂+

n and M̂−n . For each n such a model is obtained by taking 0 and s
interpreted as in M+ and M−. The interpretation of the finitely many constants
mentioned by the axioms may denote large standard natural numbers separated
by large amounts (depending on n).
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By the compactness theorem, T̂+
∞ and T̂−∞ have countable models M̂+

∞ and
M̂−∞. These theories describe non-standard natural numbers in countably infi-
nite many different copies of Z. In particular, the theories T+ and T− in the
original language have models M+

∞ and M−∞ with countably infinite many copies
of Z. These models are isomorphic. But A is true in one model and ¬A is true
in the other model. Since isomorphic models have the same true sentences, this
is a contradiction. �

11.2 The theory of dense linear order

A theory of linear order has the following axioms:

1. ∀x∀y ∀z ((x < y ∧ y < z)⇒ x < z) (transitivity)

2. ∀x¬x < x (non-reflexivity)

3. ∀x∀y(¬x = y ⇒ (x < y ∨ y < x)) (linear ordering)

Dense linear order is described by the following axiom:

4. ∀x∀z(x < z ⇒ ∃y (x < y ∧ y < z)) (density)

No maximum and no minimum are expressed by:

5. ∀x∃y x < y (no max)

6. ∀y∃xx < y (no min)

Theorem 11.4 (Cantor theorem on dense linear order) Let A and B be
two sets, each with a dense linear order < with no maximum or minimum
elements. If A and B are each countable, then there is an isomorphism f from
A to B. That is, there is a bijection f : A→ B that is strictly increasing. Thus
for all x and y in A we have x < y in A if and only if f(x) < f(y) in B.

Proof: Since A is countable, we can let a0, a1, a2, a3, . . . be an enumeration
of A. Similarly, since B is countable, we can let b0, b1, b2, b3, . . . be an enumer-
ation of A. Let An = {a0, a1, a2, . . . , an} and let Bn = {b0, b1, b2, . . . , bn}.

For each n we shall define finite setsDn andRn and a function fn : Dn → Rn.
They shall have the following properties:

An ⊆ Dn

Bn ⊆ Rn

fn : Dn → Rn is a bijection that is strictly increasing.
Furthermore, we shall have that Dn ⊆ Dn+1 and Rn ⊆ Rn+1 and fn+1

agrees with fn on Dn.
We start by setting D0 = A0 and R0 = B0 and defining f0(a0) = b0.
To continue, we use induction. We assume that we have fn : Dn → Rn. The

goal is to construct the next fn+1 : Dn+1 → Rn+1. This is done in two steps,
by a back and forth method.
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The forth part is to define sets D′n+1 and R′n+1 and a strictly increasing
bijection f ′n+1 : D′n+1 → R′n+1 extending fn. If an+1 is in Dn, then D′n+1 = Dn

and R′n+1 = Rn and f ′n+1 = fn. Otherwise, we take D′n+1 to consist of Dn

together with an+1. The function f ′n+1 is defined by taking f ′n+1(an+1) = rn+1,
where rn+1 is chosen so that the function f ′n+1 is increasing. The hypothesis
that B has a dense linear order without maximum or minimum ensures that
the inequalities that say that this function is increasing may always be solved.
Then R′n+1 is taken to be Rn together with rn+1.

The back part is to define sets Dn+1 and Rn+1 and a strictly increasing
bijection fn+1 : Dn+1 → Rn+1 extending f ′n+1. If bn+1 is in R′n+1, then
Dn+1 = D′n+1 and Rn+1 = R′n+1 and fn+1 = f ′n+1. Otherwise, we take Rn+1

to consist of R′n+1 together with bn+1. The function fn+1 is defined by taking
fn+1(dn+1) = bn+1, where dn+1 is chosen so that the function fn+1 is increasing.
Again the hypothesis on A ensures that this may always be done. Then Dn+1

is taken to be D′n+1 together with dn+1.
To conclude the proof, note that the union of the Dn is all of A, and the

union of the Rn is all of B. Let f : A→ B be the common extension of all the
fn. Then f is the desired isomorphism. �

The Cantor theorem just proved has an important consequence. A theory is
categorical for countable models if each two countable models are isomorphic.

Theorem 11.5 The theory of dense linear order without max or min is cate-
gorical for countable models.

The obvious countable model is Q with the usual order <. Notice that there
are uncountable models. The most obvious example is R with the usual order
<. The following theorem is relevant to this example. Its proof is a problem in
this chapter.

Theorem 11.6 A theory that is categorical for countable models is complete.

Corollary 11.7 The theory of dense linear order without max or min is com-
plete. It is the theory of Q with the relation <.

11.3 The theory of discrete linear order

A theory of linear order has the following axioms.

1. ∀x∀y ∀z ((x < y ∧ y < z)⇒ x < z) (transitivity)

2. ∀x¬x < x (non-reflexivity)

3. ∀x∀y(¬x = y ⇒ (x < y ∨ y < x)) (linear order)

To get a theory of discrete linear order with min but no max, take the
following axioms.

4. ∀x¬x < 0 (min)
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5. ∀x∃y (x < y ∧ ¬∃w (x < w ∧ w < y)) (successor)

6. ∀y (¬y = 0⇒ ∃x (x < y ∧ ¬∃w (x < w ∧ w < y))) (predecessor)

Each model of this theory is of the form N followed by Z × C with the
lexicographic order. Here C is some linearly ordered set. The lexicographic
order is defined by 〈m, s〉 < 〈n, t〉 in Z × C if and only if either s < t or else
s = t and m < n.

There is a countable model that is universal in the sense that every countable
model is isomorphic to part of it. This universal model is N followed by Z×Q.

It may be shown that the theory of discrete linear order with min but no
max is complete. It is the theory of N with the usual 0 and the relation <.

11.4 The theory of addition

The language of the theory of addition has constant symbols 0 and 1 and a
two-place function symbol +. One possible set of axioms is the following:

1. ∀x∀y x+ y = y + x (commutative law)

2. ∀x∀y∀z (x+ y) + z = x+ (y + z) (associative law)

3. ∀xx+ 0 = 0 (additive identity)

4. ∀x¬x+ 1 = x

5. ∀x∀y (x+ y = 1⇒ (x = 0 ∨ x = 1))

6. ∀x∀y∃z (x = y + z ∨ y = x+ z)

7. ∀x∀y∀u∀v((x = y + u ∧ y = x+ v)⇒ x = y))

If we define
∀x∀y (x ≤ y ↔ ∃z x+ z = y)

then the last three axiom take forms that are more transparent.

5. ∀x (x ≤ 1⇒ (x = 0 ∨ x = 1)).

6. ∀x∀y (x ≤ y ∨ y ≤ x)

7. ∀x∀y ((y ≤ x ∧ x ≤ y)⇒ x = y)

It may be shown that if we define

∀x sx = x+ 1

then the theory of the successor is included in the theory of the sum. Similarly,
it may be shown that if we define

∀x (x < y ↔ ∃z (¬z = 0 ∧ x+ z = y))

then the theory of discrete linear order is also included.
The theory is completed by an infinite sequence of axioms:
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8. ∀x∃y (x = y + y ∨ x = y + y + 1)

∀x∃y (x = y + y + y ∨ x = y + y + 1 ∨ x = y + y + y + 1 + 1)

and so on.

These axioms say that every number is either even or odd, every number
is either a multiple of three, a multiple of three with a remainder of one, or a
multiple of three with a remainder of two, and so on.

It may be shown that this theory is a complete theory. It is the theory of N
with 0, 1, and +. There are many countable models of the theory, and they are
too complicated to describe in totality. However it is possible to see what the
order < must be in a countable model. The order must be either isomorphic to
that of N, or it must be isomorphic to that of N followed by Z×Q. The latter
is the universal countable model of discrete order.

An example of a countable non-standard model is to take all the elements
〈m, t〉 in Z × Q with 〈0, 0〉 ≤ 〈m, t〉 in the lexicographic ordering. The zero
element is 〈0, 0〉 and the one element is 〈1, 0〉. Addition is defined by 〈m, t〉 +
〈m′, t′〉 = 〈m + m′, t + t′〉. This has the order structure described above. The
elements of the form 〈m, 0〉 with 0 ≤ m are order isomorphic to N, while the
elements of the form 〈m, t〉 with 0 < t are order isomorphic to Z×Q.

Problems

1. Consider the following set of hypotheses for a theory: ∀x¬ sx = x, ∀x¬ ssx =
x, ∀x sssx = x. These are hypotheses for the theory of a function with
period three. Note that in this theory the only relation symbol is = and
the only function symbol is s.

Recall that a model for a theory given by axioms is an interpretation in
which all the axioms (and their consequences) are true. Throughout we
consider models in which the = relation symbol is interpreted as equal-
ity. Also recall that the Gödel semantic completeness theorem is true
for such models: Every consistent theory has a countable model. (The
proof involves an extra construction in which an equivalence relation on
the original domain is replaced by equality on a smaller domain.) An ex-
ample of a model of the above theory is where the domain is three points
D = {d1, d2, d3} and the function symbol s is represented as the function
f with f(d1) = d2, f(d2) = d3, and f(d3) = d1.

a. Describe all models of the theory of a function with period three.

b. In these models must the function be an injection?

c. Must it be onto D?

d. What is the smallest model?

Hint: Consider a function f of period three with domain D. All one knows
about such a function is that for all d in D we have f(d) 6= d, f(f(d)) 6= d,
and f(f(f(d))) = d. Take an element in D and describe what happens
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when one repeatedly applies f . Take another element and do the same
thing. What pattern emerges? If D is finite, what can you say about the
number of points in D?

2. Show that the theory of a function with period three is not complete.
(Hint: Find a closed sentence that is true in the smallest model but is not
true in all other models.)

3. Find an additional axiom that makes the theory of a function with period
three categorical.

4. If a theory has only one countable model (up to isomorphism), then it
is said to be categorical for countable models. Show that if a theory is
categorical for countable models, then it is complete.
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Chapter 12

Incomplete theories

12.1 Decidable and enumerable sets

This chapter is an overview of results involving computability. It makes no claim
to rigor or to full coverage of the topics. At best it is an orientation that may
lead the reader to other accounts.

Let S be a countable infinite set, such as the set of natural numbers, or a set
of character strings. In any case we assume that there is a computer program
that translates between S and N. Let S′ be another such set. A function
f : S → S′ is said to be computable if there is a computer program (in some
reasonable programming language) that defines f . That is, the program has an
input that belongs to S. It defines a calculation that terminates with an output
in S′. The mapping between the input and the output is the function.

If U is a subset of S, then U is said to be decidable if its indicator function
1U : S → {0, 1} is computable. Here as usual the indicator function 1U is
defined so that 1U (s) = 1 if s is in U and 1U (s) = 0 if s is not in U .

Proposition 12.1 If U is finite, then U is decidable.

Proof: If U is finite, then there is a list s1, . . . , sn of the elements of U . The
computer program checks an arbitrary input to see if it is one of these. If so,
the program outputs 1. Otherwise, it outputs 0. �

Proposition 12.2 If U is decidable, then its complement S\U in S is decidable.

Proof: If χ is the indicator function of U , then χ is computable. If s is an
arbitrary input, then 1 − χ(s) is 1 if s is in the complement of U , and is 0 if s
is not in the complement of U . �

If U is a subset of S, then U is said to be effectively enumerable if it is empty
or if there is a computable function f : N→ S such that U is the range of f . In
the following we may for brevity refer to such a set as enumerable.

Proposition 12.3 If U is decidable, then U is enumerable.

89
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Proof: Suppose U is decidable. Then there is a computable function χ :
S → {0, 1} such that χ is 1 on each element of S and 0 on each element of S.
If U is finite, then U is enumerable. Otherwise let g : N → S be a computable
bijection. Set k = 0 and m = 0. While m ≤ n replace m by m+ χ(g(k)) and k
by k + 1. At the end of this loop the value of k is the number of elements of U
that were encountered. Set f(n) = g(k − 1). �

Proposition 12.4 If U and its complement S \ U in S are enumerable, then
U is decidable.

Proof: Let f : N → S be a computable function that enumerates U . Let
g : N→ S be a computable function that enumerates S \U . Suppose that both
U and S \ U are non-empty. For each s in S, define χ(s) as follows. Set n to
have the value 0. While both f(n) 6= s and g(n) 6= s, replace n by n+ 1. At the
end of this loop, either f(n) = s or g(n) = s, but not both. If f(n) = s then
χ(s) = 1, else χ(s) = 0. �

Remark: If f : S → S′ is a function, then the graph of f is a subset of the
Cartesian product S × S′. It is natural to ask what happens if the function is
thought of in this way as a subset. Here is the answer.

If f : S → S′ is a function, then f is computable if and only if the graph of
f is decidable if and only if the graph of f is enumerable.

Here is the proof. Suppose f is computable. Define χ by χ(s, s′) = 1 if
f(s) = s′. So the graph of f is decidable. Suppose the graph of f is decidable.
Then the graph of f is enumerable. Suppose the graph of f is enumerable. Let
g enumerate the graph of f . Let s be in S. Set m = 0. While m 6= (s, f(s))
replace m by m + 1. Then f(s) is the second component of g(m). So f is
computable.

Theorem 12.5 (Church’s theorem) Consider predicate logic with at least
one non-logical relation symbol. Then the set of valid sentences (sentences that
are true in every interpretation) is enumerable, but not decidable.

Church’s theorem may be thought of as a result for a theory with no axioms.
The proof of Church’s theorem will not be attempted here.

Recall that a theory T may be defined by giving an axiom set U . Then T
consists of all logical consequences of U . If the axiom set is decidable, then this
allows a computer program to check whether a purported proof is a proof. If
the axiom set U is decidable, then U is also enumerable.

Theorem 12.6 If a theory T has an enumerable axiom set U , then the theory
T itself is enumerable.

Proof: Enumerate the axiom set and enumerate the sentences. For each
n, consider all proofs using only the first n sentences and depending on the
first n axioms. There are only finitely many such proofs. By increasing n one
gets an enumeration of all proofs. In particular, one gets an enumeration of all
consequences of the axioms. �
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Theorem 12.7 (Craig) If a theory T has an enumerable axiom set U , then it
has a decidable axiom set V .

Proof: Let A0, A1, A2, A3, . . . , be an enumeration of U . Let V = A0 ∧
A1, (A0 ∧ A1) ∧ A2, ((A0 ∧ A1) ∧ A2) ∧ A3, . . .. It is clear that U and V define
the same theory T . Let C be a sentence. If C is not a conjunction, then it is
not in V . If C is a k-fold iterated conjunction, then to check whether or not C
is in V , one only has to check whether C is one of the first k in the listing of V .
�

Theorem 12.8 (Turing) If a theory T is enumerable and complete, then T is
decidable.

Proof: If the theory T is enumerable, then the negations ∼ T of the
sentences in the theory are enumerable. If the theory is complete, then the
set ∼ T is the complement T c of the set of sentences in the theory. But if the
set and its complement are enumerable, then the set is decidable. �

From the above results we see that there are the three following possibilities
for a theory T . For a complete theory the second possibility is excluded.

1. T is decidable.

2. T is not decidable, but it has an axiom set U that is decidable. In that
case T is enumerable.

3. T is not enumerable.

The theories we have examined up to now fall into the first category. Most
realistic theories in mathematics are in the second category. There are also
theories in the third category, but they have more theoretical than practical
importance.

12.2 The theory of addition and multiplication

We formulate arithmetic in a language with constant symbols 0 and 1 and with
two-place function symbols + and ·. The intended model is the natural numbers
N with ordinary addition and multiplication.

Theorem 12.9 (Gödel incompleteness theorem) If an axiom set U for arith-
metic is enumerable, then the resulting theory T is not complete.

This famous result is purely syntactic, and so it might well be called the
syntactic incompleteness theorem. A proof may be found in [14]. There is
a decidable axiom set U for arithmetic that generates a theory T known as
Peano arithmetic. By the Gödel incompleteness theorem, Peano arithmetic is
incomplete. It is known that Peano arithmetic is enumerable, but not decidable.
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Corollary 12.10 The theory T = Th(N) of all true statements of arithmetic
in the language with 0, 1, + and · is complete, but not enumerable.

Proof: The theory of all true statements of arithmetic is complete. Suppose
it were enumerable. By the Gödel incompleteness theorem, the theory would
not be complete. This is a contradiction. �

The fact that the theory T of all true statements of arithmetic is not enu-
merable and has no decidable axiom set means that it is very difficulty to know
the theory entirely. Still, it is a complete theory. Furthermore, the natural
numbers are a model, that is, N T . Does that mean that it uniquely defines
the number system N? The answer is no.

Theorem 12.11 The theory T of all true statements of arithmetic has non-
standard models N∗ such that N∗ T .

Proof: Let T be the theory of all true sentences of arithmetic. Consider
an extended language with a new constant symbol c. Let T∞ be T together
with the axioms ¬c = 0,¬c = 1,¬c = 1 + 1,¬c = 1 + 1 + 1, · · ·. Enumerate the
axioms of T∞. Let Tn be the first n axioms. Then Tn has a model, namely the
standard model N. Hence by the compactness theorem T∞ has a model. This
model must be non-standard. �

The countable non-standard models of the theory of arithmetic are extraor-
dinarily complicated. A useful reference for model theory is the book [12].

Problems

1. Consider the theory of a dense linear order with greatest element and with
least element. Is this theory categorical for countable models? Prove that
your answer is correct.

2. Is it categorical? Prove that your answer is correct.

3. Is it complete? Prove that your answer is correct.

4. Consider a logical language with relation symbols , `, and ∼=. Suppose
that it also has a one-place function symbol ∼ and a two-place function
symbol &.

Consider the following hypotheses:

∀M∀B(M T&B ⇒M T )

and
∀M∀B(M T&B ⇒M B)

and
∀M∀C ¬(M C ∧M ∼ C)

and
∀M∀N(M ∼= N ⇒ ∀A(M A⇒ N A))
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and
∀C (¬T ` C ⇒ ∃MM T& ∼ C)

Use natural deduction to show that

∀M∀N ((M T ∧N T )⇒M ∼= N)⇒ ∀A (T ` A ∨ T `∼ A)
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Chapter 13

Sets and Cardinal Number

13.1 Sets

The purpose of this chapter is to record terminology about sets and functions
and numbers and to establish basic facts about infinite cardinal numbers.

It is natural to begin with sets. If A is a set, the expression

t ∈ A (13.1)

can be read simply “t in A”. Alternatives are “t is a member of A, or “t is an
element of A”, or “t belongs to A”, or “t is in A”. The expression ¬t ∈ A is
often abbreviated t /∈ A and read “t not in A”.

If A and B are sets, the expression

A ⊆ B (13.2)

is defined in terms of membership by

∀t (t ∈ A⇒ t ∈ B). (13.3)

This can be read simply “A subset B.” Alternatives are “A is included in B”
or “A is a subset of B”. It may be safer to avoid such phrases as “t is contained
in A” or “A is contained in B”, since here practice is ambiguous. Perhaps the
latter is more common.

The axiom of extensionality says that a set is determined by its members. In
other words, if A ⊆ B and B ⊆ A, then A = B. Thus, if A is the set consisting
of the digits that occur at least once in my car’s license plate 5373, and if B is
the set consisting of the odd one digit prime numbers, then A = B is the same
three element set. All that matters are that its members are the numbers 7,3,5.

Consider an arbitrary condition p(x) expressed in the language of set theory.
If B is a set, then the subset S ⊆ B consisting of elements in B that satisfy
that condition is denoted by

S = {x ∈ B | p(x)} (13.4)

95
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and is characterized by the condition that for all y

y ∈ S ⇔ (y ∈ B ∧ p(y))). (13.5)

The intersection A ∩B is characterized by saying that for all x

x ∈ A ∩B ⇔ (x ∈ A ∧A ∈ B). (13.6)

The union A ∪B is characterized by saying that for all x

x ∈ A ∪B ⇔ (x ∈ A ∨ x ∈ B). (13.7)

The relative complement X \A is characterized by saying that for all x

x ∈ X \A⇔ (x ∈ X ∧ x /∈ A). (13.8)

Sometimes when the set X is understood the complement X \A of A is denoted
Ac.

If Γ 6= ∅ is a set of sets, then the intersection
⋂

Γ is defined by requiring
that for all x

x ∈
⋂

Γ⇔ ∀A (A ∈ Γ⇒ x ∈ A) (13.9)

If Γ is a set of sets, then the union
⋃

Γ is defined by requiring that for all x

x ∈
⋃

Γ⇔ ∃A (A ∈ Γ ∧ x ∈ A)) (13.10)

There is a peculiarity in the definition of
⋂

Γ when Γ = ∅. If there is a
context where X is a set and every set in Γ is a subset of X, then we can define⋂

Γ = {x ∈ X | ∀A (A ∈ Γ⇒ x ∈ A)}. (13.11)

If Γ 6= ∅, then this definition is independent of X and is equivalent to the
previous definition. On the other hand, by this definition

⋂
∅ = X. This

might seem strange, since the left hand side does not depend on X. However in
most contexts there is a natural choice of X, and this is the definition that is
appropriate to such contexts.

The constructions A∩B, A∪B,
⋂

Γ,
⋃

Γ, and X \A are means of producing
objects that have a special relationship to the corresponding logical operations
∧,∨,∀,∃,¬. A look at the definitions makes this apparent.

Two sets A,B are disjoint if A ∩ B = ∅. More generally, a set Γ of subsets
of X is disjoint if for each A in Γ and B ∈ Γ with A 6= B we have A∩B = ∅. A
partition of X is a set Γ of subsets of X such that Γ is disjoint and ∅ /∈ Γ and⋃

Γ = X.

13.2 Ordered pairs and Cartesian product

The simplest set is the empty set ∅. Then there are sets with one element a;
such a set is denoted {a}. Next there are sets {a, b}; such a set has one element
if a = b and two elements if a 6= b. A two element set {a, b} is a pair.
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There is also a very important ordered pair construction. If a, b are objects,
then there is an object 〈a, b〉. This ordered pair has the following fundamental
property: For all a, b, p, q we have

〈a, b〉 = 〈p, q〉 ⇔ (a = p ∧ b = q). (13.12)

If y = 〈a, b〉 is an ordered pair, then the first coordinates of y is a and the second
coordinate of y is b.

There are also ordered triples and so on. The ordered triple 〈a, b, c〉 is equal
to the ordered triple 〈p, q, r〉 precisely when a = p and b = q and c = r. If
z = 〈a, b, c〉 is an ordered triple, then the coordinates of z are a, b and c. The
ordered n-tuple construction has similar properties.

There are degenerate cases. There is an ordered 1-tuple 〈a〉. If x = 〈a〉, then
its only coordinate is a. Furthermore, there is an ordered 0-tuple 〈 〉 = ∅.

Corresponding to these constructions there is a set construction called Carte-
sian product. If A,B are sets, then A × B is the set of all ordered pairs 〈a, b〉
with a ∈ A and b ∈ B.

One can also construct Cartesian products with more factors. Thus A×B×C
consists of all ordered triples 〈a, b, c〉 with a ∈ A and b ∈ B and c ∈ C.

The Cartesian product with only one factor is the set whose elements are
the 〈a〉 with a ∈ A. There is a natural correspondence between this somewhat
trivial product and the set A itself. The correspondence associates to each 〈a〉
the corresponding coordinate a. The Cartesian product with zero factors is a
set {∅} with precisely one element ∅.

There is a notion of sum of sets that is dual to the notion of product of
sets. This is the disjoint union of two sets. The idea is to attach labels to the
elements of A and B. Thus, for example, for each element a of A consider the
ordered pair 〈0, a〉, while for each element b of B consider the ordered pair 〈1, b〉.
Even if there are elements common to A and B, their tagged versions will be
distinct. Thus the sets {0} ×A and {1} ×B are disjoint. The disjoint union of
A and B is the set

A+B = {0} ×A ∪ {1} ×B. (13.13)

One can also construct disjoint unions with more summands in the obvious way.

13.3 Relations

A relation R between sets A and B is a subset of A × B. In this context one
often writes xRy instead of 〈x, y〉 ∈ R and says that x is related to y by the
relation R. A relation between A and A is called a relation on the set A.

There are two common ways of picturing a relation R between A and B.
The first is the graph of the relation. This is the subset of the product space
A × B consisting of the points 〈x, y〉 in R. In the special case of a relation on
A, the elements 〈x, x〉 belong to the diagonal. This diagonal corresponds to the
identity relation on A.
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The other picture is the cograph of the relation. In the case of a relation R
between A and B, draw the disjoint union A + B. For each 〈x, y〉 in R sketch
an arrow from the tagged x to the tagged y. In the special case of a relation on
A, it is sufficient to draw A. Then for each 〈x, y〉 in R sketch an arrow from x
to y. The elements on the diagonal correspond to arrows from x to itself.

Consider a relation R on A. The relation R is reflexive if for each x in A we
have xRx. For a reflexive relation the diagonal is a subset of the graph. The
cograph of a relation known to be reflexive may be sketched omitting the arrows
from a point to itself, since their inclusion is automatic.

The relation R is symmetric if for each x and y in A we have that xRy implies
yRx. For a symmetric relation the graph is symmetric across the diagonal. The
cograph of a relation known to be reflexive may be sketched using lines instead
of arrows.

The relation R is transitive if for each x, y, z in A the conjunction xRy, yRz
implies xRz. The transitivity condition may be checked in the cograph by
following along the arrows.

A relation that is reflexive, symmetric, and transitive (RST) is called an
equivalence relation.

Theorem 13.1 Consider a set A. Let Γ be a partition of A. Then there is
a corresponding equivalence relation E, such that 〈x, y〉 ∈ E if and only if for
some subset U in Γ both x in U and y in U . Conversely, for every equivalence
relation E on A there is a unique partition Γ of A that gives rise to the relation
in this way.

The sets in the partition defined by the equivalence relation are called the
equivalence classes of the relation. The partition of A defined by an equivalence
relation E is called the quotient and is denoted A/E.

A relation R on A is antisymmetric if for each x, y in A the conjunction
xRy, yRx implies x = y. A ordering of A is a relation that is reflexive, anti-
symmetric, and transitive (RAT). Ordered sets will merit further study.

13.4 Functions

A function f : A → B with domain A and target (or codomain) B assigns to
each element x of A a unique element f(x) of B. The graph of a function is the
subset of the Cartesian product A×B consisting of all ordered pairs 〈x, y〉 with
x ∈ A and y = f(x).

Sometimes a function is regarded as being identical with its graph as a subset
of the Cartesian product. On the other hand, there is something to be said for
a point of view that makes the notion of function as fundamental as the notion
of set. In that perspective, each function from A to B has a graph that is a
subset of A × B. The function is an operation with an input and output, and
the graph is a set that describes the function.
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There is a useful function builder notation that corresponds to the set builder
notation. Say that it is known that for every x in A there is another correspond-
ing object φ(x) in B. The notation is

f = {x 7→ φ(x) : A→ B}. (13.14)

As a graph this is defined by

f = {〈x, φ(x)〉 ∈ A×B | x ∈ A}. (13.15)

This is an explicit definition of a function from A to B. It could be abbreviated
as {x 7→ φ(x)} when the restrictions on x and φ(x) are clear. The variables
in such an expression are of course bound variables. For instance, the squaring
function u 7→ u2 is the same as the squaring function t 7→ t2.

There are other binding operations in mathematics. The integral of the
function t 7→ t2 from 1 to 2 is ∫ 2

1

t2 dt =
7

3
.

The variable of integration t is a bound variable.
There is a general framework for bound variables in which the fundamental

notion is the function builder notation. The set builder and even the quantifiers
are then special cases. It is called lambda calculus and is usually presented in
somewhat unfamiliar notation. It has even been proposed as a framework for
mathematics in place of set theory [1].

The set of values f(x) for x in A is called the range of f or the image of A
under f . In general for S ⊆ A the set f [S] of values f(x) in B for x in A is
called the image of S under f . On the other hand, for T ⊆ B the set f−1[T ]
consisting of all x in A with f(x) in T is the inverse image of T under f . In
this context the notation f−1 does not imply that f has an inverse function.

The function is injective (or one-to-one) if f(x) uniquely determines x, and
it is surjective (or onto) if each element of B is an f(x) for some x, that is, the
range is equal to the target. The function is bijective if it is both injective and
surjective. In that case it has an inverse function f−1 : B → A.

If f : A→ B and g : B → C are functions, then the composition g ◦ f : A→
C is defined by (g ◦ f)(x) = g(f(x)) for all x in A.

Say that r : A → B and s : B → A are functions and that r ◦ s = IB , the
identity function on B. That is, say that r(s(b)) = b for all b in B. In this
situation r is a left inverse of s and s is a right inverse of r.

Theorem 13.2 If r has a right inverse, then r is a surjection.

Theorem 13.3 If s has a left inverse, then s is an injection.

Theorem 13.4 Suppose s : B → A is an injection. Assume that B 6= ∅. Then
there exists a function r : A→ B that is a left inverse to s.
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Proof: Since B is not empty, there is an element b ∈ B. For each y = s(x)
in the range of s define r(y) = x. For each y not in the range of s define r(y) = b.
�

Theorem 13.5 Suppose r : A→ B is a surjection. Then there is a function s
that is a right inverse to r.

Proof: For every b in N there is a set of x with r(x) = b, and since r is a
surjection, each such set is non-empty. The function s makes a choice s(b) of
an element in each set. �

13.5 Cartesian powers

The set of all subsets of A is called the power set of A and is denoted P (A).
Thus S ∈ P (A) is equivalent to S ⊆ A.

The set of all functions from A to B is denoted BA and is called a Cartesian
power. If we think of n as the set {1, . . . , n}, then Rn is a Cartesian power.

Write 2 = {0, 1}. Each element of 2A is the indicator function of a subset
of A. There is a natural bijective correspondence between the 2A and P (A). If
χ is an element of 2A, then χ−1[1] is a subset of A. On the other hand, if X is
a subset of A, then the indicator function 1X that is 1 on X and 0 on A \ X
is an element of 2A. (Sometimes an indicator function is called a characteristic
function, but this term has other uses.)

13.6 Number systems

This section is a quick review of the number systems commonly used in math-
ematics. Here is a list.

• The set N = {0, 1, 2, 3, . . .} is the set of all natural numbers. It is used to
count finite sets. For each finite set there is an associated natural number
that describes how many elements are in the set. For the empty set ∅ the
associated number is of course 0. It is sometimes useful to consider the set
of natural numbers with zero removed. In this following we denote this
set by N+ = {1, 2, 3, . . .}.

• The set Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is the set of all integers. The
name for this set comes from the German word zahlen, meaning numbers.

• The set Q of rational numbers consists of all quotients of integers, where
the denominator is not allowed to be zero.

• The set R is the set of real numbers. The transition from Q to R is the
transition from algebra to analysis. The result is that it is possible to
solve equations by approximation rather than by algebraic means.
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• The set C is the set of all complex numbers. Each complex number is of
the form a+ bi, where a, b are real numbers, and i2 = −1.

• The set H is the set of all quaternions. Each quaternion is of the form
t + ai + bj + ck, where t, a, b, c are real numbers. Here i2 = −1, j2 =
−1, k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. A
pure quaternion is one of the form ai+ bj + ck. The product of two pure
quaternions is (ai+ bj + ck)(a′i+ b′j + c′k) = −(aa′ + bb′ + cc′) + (bc′ −
cb′)i+ (ca′− ac′)j+ (ab′− ba′)k. Thus quaternion multiplication includes
both the dot product and the cross product in a single operation. The
letter H in the notation is used in honor of Hamilton, who discovered
these numbers.

In summary, the number systems of mathematics are N,Z,Q,R,C,H. The
systems N,Z,Q,R each have a natural linear order, and there are natural order
preserving injective functions from N to Z, from Z to Q, and from Q to R. The
natural algebraic operations in N are addition and multiplication. In Z they
are addition, subtraction, and multiplication. In Q,R,C,H they are addition,
subtraction, multiplication, and division by non-zero numbers. In H the multi-
plication and division are non-commutative. The number systems R,C,H have
the completeness property, and so they are particularly useful for analysis.

13.7 Cardinality and Cantor’s theorem on power
sets

Say that a set A is countable if A is empty or if there is a surjection f : N→ A.

Theorem 13.6 If A is countable, then there is an injection from A→ N.

Proof: This can be proved without the axiom of choice. For each a ∈ A,
define g(a) to be the least element of N such that f(g(a)) = a. Then g is the
required injection. �

There are sets that are not countable. For instance, P (N) is such a set. This
follows from the following theorem of Cantor.

Theorem 13.7 (Cantor) Let X be a set. There is no surjection from X to
P (X).

The proof that follows is a diagonal argument. Suppose that f : X → P (X).
Form an array of ordered pairs 〈a, b〉 with a, b in X. One can ask whether
b ∈ f(a) or b /∈ f(a). The trick is to look at the diagonal a = b and construct
the set of all a where a /∈ f(a).

Proof: Assume that f : X → P (X). Let S = {x ∈ X | x /∈ f(x)}.
Suppose that S were in the range of f . Then there would be a point a in X
with f(a) = S. Suppose that a ∈ S. Then a /∈ f(a). But this means that a /∈ S.
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This is a contradiction. Thus a /∈ S. This means a /∈ f(a). Hence a ∈ S. This
is a contradiction. Thus S is not in the range of f . �

One idea of Cantor was to associate to each set A, finite or infinite, a cardinal
number #A. Each number in N is a finite cardinal number. If there is a bijection
between two sets, then they have the same cardinal number. If there is no
bijection, then the cardinal numbers are different. That is, the statement #A =
#B is equivalent to saying that there is a bijection from A to B.

The two most important infinite cardinal numbers are ω0 = #N and c =
#P (N). The Cantor theorem shows that these are different cardinal numbers.
The cardinal number ω0 is the smallest infinite cardinal number; sometimes it is
called the countable infinite cardinal number. The countable cardinal numbers
are the natural numbers together with ω0.

13.8 Bernstein’s theorem for sets

If there is an injection f : A → B, then it is natural to say that #A ≤ #B.
Thus, for example, it is easy to see that ω0 ≤ c. In fact, by Cantor’s theorem
ω0 < c. The following theorem is proved in the problems.

Theorem 13.8 (Bernstein) If there is an injection f : A → B and there is
an injection g : B → A, then there is a bijection h : A→ B.

It follows from Bernstein’s theorem that #A ≤ #B and #B ≤ #A together
imply that #A = #B. This result gives a way of calculating the cardinalities
of familiar sets.

Theorem 13.9 The set N2 = N× N has cardinality ω0.

Proof: It is sufficient to count N2 via a bijection f : N→ N2. Think of N2

as arranged in rows and columns. It would be futile to try to count the rows
in order, and it would be equally futile to try to count the columns in order.
But a limited search does what is wanted. For each n = 0, 1, 2, 3, . . . consider
the set An consisting of the 2n+ 1 ordered pairs 〈i, j〉 with max(i, j) = n. It is
sufficient to count these in order. �

Corollary 13.10 A countable union of countable sets is countable.

Proof: Let Γ be a countable collection of countable sets. Then there exists
a surjection u : N → Γ. For each S ∈ Γ choose a function that assigns to each
S in Γ a surjection vS : N→ S. Let w(m,n) = vu(m)(n). Then v is a surjection
from N2 to

⋃
Γ. It is a surjection because each element q of

⋃
Γ is an element

of some S in Γ. There is an m such that u(m) = S. Furthermore, there is an
n such that vS(n) = q. It follows that w(m,n) = q. However once we have the
surjection w : N2 →

⋃
Γ we also have a surjection N→ N2 →

⋃
Γ. �

Theorem 13.11 The set Z of integers has cardinality ω0.
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Proof: There is an obvious injection from N to Z. On the other hand, there
is also a surjection (m,n) 7→ m − n from N2 to Z. There is a bijection from N
to N2 and hence a surjection from N to Z. Therefore there is an injection from
Z to N. This proves that #Z = ω0. �

Theorem 13.12 The set Q of rational numbers has cardinality ω0.

Proof: There is an obvious injection from Z to Q. On the other hand,
there is also a surjection from Z2 to Q given by (m,n) 7→ m/n when n 6= 0
and (m, 0) 7→ 0. There is a bijection from Z to Z2. (Why?) Therefore there
is a surjection from Z to Q. It follows that there is an injection from Q to Z.
(Why?) This proves that #Q = ω0. �

Theorem 13.13 The set R of real numbers has cardinality c.

Proof: First we give an injection f : R→ P (Q). In fact, we let f(x) = {q ∈
Q | q ≤ x}. This maps each real number x to a set of rational numbers. If x < y
are distinct real numbers, then there is a rational number r with x < r < y.
This is enough to establish that f is an injection. From this it follows that there
is an injection from R to P (N).

Recall that there is a natural bijection between P (N) (all sets of natural
numbers) and 2N (all sequences of zeros and ones). For the other direction, we
give an injection g : 2N → R. Let

g(s) =

∞∑
n=0

2sn
3n+1

. (13.16)

This maps 2N as an injection with range equal to the Cantor middle third set.
This completes the proof that #R = c. �

Theorem 13.14 The set RN of infinite sequences of real numbers has cardinal-
ity c.

Proof: Map RN to (2N)N to 2N×N to 2N. �
The cardinal number c is also called the cardinality of the continuum, since

c = #R. The continuum hypothesis is that there are no cardinal numbers
strictly larger than ω0 and strictly smaller then c. It was shown in remarkable
work by Gödel and even more remarkable work by Cohen that it is impossible
to determine whether the continuum hypothesis is true or false on the basis of
the usual principles of set theory.

Problems

Let A be a set and let f : A → A be a function. An orbit is a set of points
obtained in the following way. Start with a point a in A. The orbit of a is the
smallest set with the following three properties. First, a is in A. Second, if x is
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in the orbit, then f(x) is also in the orbit. Third, if f(x) is in the orbit, then x
is also in the orbit.

Theorem 1. Let A be a set and let f : A→ A be a bijection. Then A is the
disjoint union of orbits with the following structure. The action on each orbit
is either isomorphic to the shift on Zn for some n ≥ 1 or to the shift on Z.

Theorem 2. Let A be a set and let f : A→ A be an injection. Then A is the
disjoint union of orbits with the following structure. The action on each orbit
is either isomorphic to the shift on Zn for some n ≥ 1 or to the shift on Z or to
the shift on N.

1. My social security number is 539681742. This defines a function defined
on 123456789. It is a bijection from a nine point set to itself. What are
the orbits? How many are they? How many points in each orbit?

2. Let f : R→ R be defined by f(x) = x+1. What are the orbits? How many
are they (cardinal number)? How many points in each orbit (cardinal
number)?

3. Let f : R→ R be defined by f(x) = 2 arctan(x). (Recall that the deriva-
tive of f(x) is f ′(x) = 2/(1 + x2) > 0, so f is strictly increasing.) What
is the range of f? How many points are there in the range of f (cardinal
number)? What are the orbits? How many are there (cardinal number)?
How many points in each orbit (cardinal number)? Hint: It may help to
use a calculator or draw graphs.

4. Let f : A → A be an injection with range R ⊆ A. Let R′ be a set with
R ⊆ R′ ⊆ A. Show that there is an injection j : A → A with range R′.
Hint: Use Theorem 2.

5. Bernstein’s theorem. Let g : A → B be an injection, and let h : B → A
be an injection. Prove that there is a bijection k : A→ B. Hint: Use the
result of the previous problem.



Chapter 14

Ordered sets

14.1 Ordered sets and linearly ordered sets

The purpose of this chapter is to review terminology for ordered sets [15]. This
will help distinguish concepts that could easily be confused, such as maximal
element and greatest element.

An pre-ordered set is a set W and a binary relation ≤ that is a subset of
W ×W . The pre-order relation ≤ must satisfy the first two of the following
properties:

1. ∀p p ≤ p (reflexivity)

2. ∀p ∀q ∀r ((p ≤ q ∧ q ≤ r)⇒ p ≤ r) (transitivity)

3. ∀p ∀q ((p ≤ q ∧ q ≤ p)⇒ p = q) (antisymmetry)

If it also satisfies the third property, then it is an ordered set. An ordered set is
often called a partially ordered set or a poset. In an ordered set we write p < q
if p ≤ q and p 6= q. Once we have one ordered set, we have many related order
sets, since each subset of an ordered set is an ordered set in a natural way.

In an ordered set we say that p, q are comparable if p ≤ q or q ≤ p. An ordered
set is linearly ordered (or totally ordered) if each two points are comparable.
(Sometime a linearly ordered set is also called a chain.)

Here is another equivalent definition of ordered set. The axioms are

1. ∀p¬p < p (irreflexivity)

2. ∀p ∀q ∀r ((p < q ∧ q < r)⇒ p < r) (transitivity)

The asymmetry property ∀p∀q ¬(p < q ∧ q < p) is a consequence of these two
axioms. The relation between these two notions is that p ≤ q is equivalent to
p < q or p = q, while p < q is equivalent to p ≤ q and p 6= q.

For each m ∈ N there is a finite linearly ordered set with m elements.
These all look the same. They may be realized as {0, 1, 2, . . . ,m − 1} or as
{1, 2, 3, . . . ,m}.
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Infinite linearly ordered sets are more interesting. Standard examples are
obtained by looking at the ordering of number systems. Thus we shall denote
by N a set that is ordered in the same way as N or N+. Thus it has a discrete
linear order with a least element but no greatest element. Similarly, Z is a set
ordered the same way as the integers. It has a discrete linear order but without
either greatest or least element. The set Q is ordered like the rationals. It is
a countable densely ordered set with no greatest or least element. Finally, R
is a set ordered like the reals. It is an uncountable densely ordered set with no
greatest or least element.

Examples:

1. The ordered sets N, Z, Q, and R are linearly ordered sets.

2. Let I be a set and let W be an ordered set. Then W I with the pointwise
ordering is an ordered set.

3. In particular, RI , the set of all real functions on I, is an ordered set.

4. In particular, Rn is an ordered set.

5. If X is a set, the power set P (X) with the subset relation is an ordered
set.

6. Since 2 = {0, 1} is an ordered set, the set 2X with pointwise ordering is
an ordered set. (This is the previous example in a different form.)

14.2 Greatest and least; maximal and minimal

Let W be an ordered set. An element p of W is the least element of W if
∀r ∈W p ≤ r. An element q of W is the greatest element of W if ∀r ∈W r ≤ q.

An element p of W is a minimal element of W if ∀r ∈ W (r ≤ p ⇒ r = p).
An element q of W is a maximal element of W if ∀r ∈W (q ≤ r ⇒ r = q).

Theorem 14.1 If p is the least element of W , then p is a minimal element of
W . If q is the greatest element of W , then a is a maximal element of W .

In a linearly ordered set a minimal element is the least element and a maximal
element is the greatest element.

If W is an ordered set, and S ⊆ W , then S may also be regarded as an
ordered set. There are various constructions that produce subsets. One is the
closed interval construction, for which [a, b] is the set of r with a ≤ r ≤ b. In
this case a is a least element and b is a greatest element of [a, b].
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Rooted Trees

15.1 Rooted tree concepts

A rooted tree is an ordered set with a least element r (the root) such that for
each t in the set the interval [r, t] is a finite linearly ordered set. If s < t in the
rooted tree, then we say that s precedes t and that t is a successor of s. It is
clear that the root precedes each other element of the rooted tree. The interval
[r, t] consists of t and its predecessors.

It follows from this definition that each element of the rooted tree, other than
the root, has a unique immediate predecessor. On the other hand, each element
may have a number of immediate successors. If an element has no successors,
then it is a maximal element. It this context a maximal element may also be
called an end element. Another term for a maximal element is leaf. A finite
rooted tree will have maximal elements, but an infinite rooted tree need not
have maximal elements.

A rooted tree has a recursive structure. It may be thought of as a root
element, together with a collection (possibly empty) of new rooted trees. These
new rooted trees have roots that are the immediate successors of the root of the
original rooted tree.

The notion of rooted tree occurs in set theory, in graph theory, and in com-
puter science. Because it occurs in so many domains there are multiple variants
of terminology. The reader should always check to see what terms are being
used in a given context. While drawing a rooted tree it might seem natural to
place the root at the bottom, but the opposite convention is also common.

15.2 König’s lemma

A rooted tree is binary if each element has zero, one, or two successors. A
rooted tree is finitely generated if each point has at most finitely many imme-
diate successors. A rooted tree is countably generated if each point has at most
countably many immediate successors.
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A branch of a rooted tree is a maximal linearly ordered subset. A branch
is either finite running from the root to an end point, or it is ordered like the
natural numbers starting from the root. It is possible to have an infinite rooted
tree with only finite branches. König’s lemma gives a condition that rules this
out.

Theorem 15.1 (König’s lemma) If a rooted tree is finitely generated, then
if each branch is finite, the rooted tree is finite.

Proof: Consider a finitely generated rooted tree. Suppose it is infinite.
Define a branch inductively as follows. Start with the root. There are infinitely
many elements above the root. Having reached an element with infinitely many
elements above it, look at the finitely many trees rooted in the immediate suc-
cessors of this element. At least one of these must be infinite. Choose such an
infinite tree. Its root is the next element, and it continues to have infinitely many
elements above it. This inductive construction produces an infinite branch. �

15.3 Search of a rooted tree

A search of a rooted tree is a sequence (finite or infinite) of distinct points in
the rooted tree that starts at the root and such that no point on the rooted
tree is in the sequence before its immediate predecessor is in the sequence. The
range of a search is a subtree of the original rooted tree. The search provides
an increasing function from this subtree to a linearly ordered set. The search is
complete if it succeeds in searching the entire rooted tree.

Consider a rooted tree. There are two obvious kinds of searches.
A depth-first search may be conducted by the following procedure. Start

with the root. When the search reaches a certain point on the rooted tree, then
search in turn each of the subtrees corresponding to immediate successors. This
kind of search is complete when the rooted tree is finite.

A breadth-first search may be conducted as follows. Start with the root at
level 0. Then search all points at level n before searching all points at level
n+1. This kind of search is complete when the rooted tree is finitely generated.

Example: Consider the rooted tree consisting of words on an alphabet with
two letters, 0 and 1. A depth-first search would start with the root (the empty
word) and then continue with 0, 00, 000, 0000, and so on. It would never
get to 1. On the other hand, a breadth-first search would start with the root,
the continue with 0,1, 00,01,10,11, 000, 001,010,011,100,101, 110,111, and so on.
The breadth-first search is complete. In particular, the rooted tree has countably
many points. Notice, however, that the number of branches is uncountable. This
is because each branch is given by an infinite sequence of 0’s and 1’s, and there
are uncountably many such infinite sequences.

If a rooted tree is countably generated, then the situation is more compli-
cated. Arrange the immediate successors of each element in a sequence starting
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with 0. Start with the root at stage 0. Say that the search has been conducted
through stage n. At stage n+ 1 search all the remaining points at level ≤ n+ 1
that are ≤ n + 1 in the appropriate sequences. This might be called a limited
search.

Example: Consider the rooted tree consisting of words on an alphabet
0, 1, 2, 3, 4, . . . that is countably infinite. The breadth-first search would start
with the root (the empty word) and then continue with 0, 1, 2, 3, 4, . . . and never
get to 00. The limited search is more complicated. At stage 0 it counts
the root. At stage 1 it counts 1. At stage 2 it counts 11,12, 2, 21, 22. At
stage 3 it counts 111,112,113,121,122,123,13,131,132,133,211,212,213 and then
23,231,232,233 and finally 3,31,311,312,313,32,321,322,323,33,331,332,333. The
words get longer, and they use more letters, but in a limited way. The limited
search is complete. In particular, this rooted tree has countably many points.
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Chapter 16

Appendix: Intuitionistic
logic

16.1 Propositional logic

This chapter is a brief sketch of intuitionistic logic, designed to point out the
contrast with classical logic. Intuitionistic logic is more general; while many of
the rules of classical logic continue to hold, some rules fail in interesting ways.
This puts classical logic in a richer context. Some references are [20, 3, 8]

Intuitionistic logic arose from an idea in philosophy of mathematics called
intuitionism. This is sometimes regarded as a form of constructivism. However,
there is another view of intuitionistic logic: it is a logic of evolution. The truth
value of a sentence evolves as a function of time. If it is false at one time, it
may be true at a later time. Once it becomes true, then it remains true in the
future.

The notion of time is convenient in explaining the theory, but the formulation
is considerably more general. There is a fixed partially ordered set T . Each t
in T is thought of as a time, or more generally, as a stage of development.

First consider propositional logic in the framework of intuitionism. The truth
of a sentence is an increasing function of time. Thus if t ≤ t′, and a sentence A
is true at time t, then it is true at t′.

Example: A rather simple example is the linearly ordered set {1, 2, 3, . . . ,m}
with m stages of development. The possible sets on which a sentence can be
true are of the form {k, . . . ,m} with 1 ≤ k ≤ m together with the empty set ∅.
There are m+ 1 possible truth values, corresponding to these truth sets.

The simplest non-trivial case is when m = 2. In this case the possible truth
sets are {0, 1}, {1}, and ∅. These correspond to always true, eventually (but
not always) true, and never true.
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Example: Another example has a first stage that may develop in one of two
ways. Thus there is a stage t and two later stages with t < t′ and t < t′′. The
stages t′, t′′ are not comparable. There are five possible truth sets: all three
stages, both future stages t, t′, the future stage t′ alone, the future stage t′′

alone, and no stages.

The semantics of intuitionistic logic is called Kripke semantics. Here are the
rules for the connectives.

• A ∧B is true at t iff A true at t and B true at t.

• A ∨B is true at t iff A true at t or B true at t.

• A⇒ B is true at t iff for all t′ with t ≤ t′, A true at t′ implies B true at
t′.

The third definition is crucial. To say that the formula A ⇒ B is true at
some time is a promise about the future; it says that by the time A becomes
true B will also come true. In particular, A⇒ B may be false at time t even if
A is false at time t.

Define ¬A to be A⇒ ⊥.

• ⊥ is never true at t.

• ¬A is true at t iff for all t′ with t ≤ t′, A is not true at t′.

Thus negation is also about the future. To say that ¬A is true at some
time is to say that A will never become true in the future. In other words, in
intuitionistic logic ¬ means never.

• ¬A false at s iff there exists s′ with s ≤ s′ with A true at s′.

• ¬¬A true at t iff for all t′ with t ≤ t′ there exists t′′ with t′ ≤ t′′ such that
A is true at t′′.

In simple language, ¬¬A is true at a time means that A will eventually be
true in every future.

In intuitionistic logic the logical implication A |= C means that if A is true
at t, then also C is true at t. In particular, |= C means that C is true for all t.

There are theorems of classical logic that are not true for intuitionistic logic.
For instance, it is possible that A ∨ ¬A is not true for some t. This is because
A could be false for this t, but true for some t′ > t. So at time t it is neither
the case that A is true nor that A will never be true.

Here are some theorems of intuitionistic logic.

• A |= ¬¬A

• ¬A ∨B |= A⇒ B

• A⇒ B |= ¬B ⇒ ¬A
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• A ∨B |= ¬(¬A ∧ ¬B)

• ¬A ∨ ¬B |= ¬(A ∧B)

There are counterexamples for the inferences going the other way. For in-
stance, take the case when there are two time instants t < t′, A,B both false at
t, true at t′.

• ¬¬A is true at t, while A is not true at t

• A⇒ B is true at t, while ¬A ∨B is not true at t

• ¬(¬A ∧ ¬B) is true at t, while ¬A ∨ ¬B is not true at t

Another interesting example is when t < t′, A is true at t, B is false at t but
true at t′.

• ¬B ⇒ ¬A is true at t, but A⇒ B is false at t

Here is a more complicated situation. Say that there is a present t and two
different futures, t′ and t′′, so that t < t′ and t < t′′. Say that A is true only at
t′ and B is true only at t′′. The following example provides a pair of sentences
that distinguish the two possible worlds.

• ¬(A ∧B) is true at t, but ¬A ∨ ¬B is not true at t.

The rules of natural deduction for intuitionistic logic are the same as for
classical logic, except that the law of contradiction is replaced by the weaker
law that says that from ⊥ one can deduce an arbitrary formula. Alternatively,
there is an intuitionistic version of Gentzen deduction where the special feature
is that a sequent can have only one conclusion. Either formulation defines the
notion of derivability A ` B. As before there is a soundness theorem that says
that A ` B implies A |= B and a completeness theorem that says that A |= B
implies A ` B.

Example: Here is a typical natural deduction proof. It shows that in intu-
itionistic logic ¬B ⇒ ¬A ` ¬¬A⇒ ¬¬B

Suppose ¬B ⇒ ¬A
Suppose ¬¬A

Suppose ¬B
¬A
⊥

Thus ¬¬B
Thus ¬¬A⇒ ¬¬B

Example: Say that one wanted to deduce that ¬B ⇒ ¬A leads to A ⇒ B.
The obvious strategy is to suppose A. Then suppose ¬B. Then one gets ¬A and
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then ⊥. However there is no contradiction rule to remove the last supposition
and get B.

16.2 Predicate logic

Intuitionistic logic also works for predicate logic. In an interpretation there is a
domain D(t) for each t. It is required that t ≤ t′ implies D(t) ⊆ D(t′). Objects
can come into existence, but they can never vanish.

• ∀xA(x) is true at t iff for all t′ with t ≤ t′ and for every element of D(t′),
the formula A is true at t′ when x is assigned to that element.

• ∃xA(x) is true at t iff for some element of D(t), the formula A is true at
t when x is assigned to that element.

The universal statement is about everything that will come to exist in the
future. The existential statement also has implications for the future, since if
something exists at time t it will automatically continue to exist at all times t′

with t ≤ t′.

Example: Here is a failure of one of de Morgan’s laws. It is possible that
¬∀x¬A is true at some instant when ∃xA is false. As an instance, take A to be
x2 + 1 = 0. Take D(now) = R, D(later) = C. Then ∃xx2 + 1 is false now, since
the equation has no real solutions. On the other hand, ∀x¬x2 + 1 = 0 is always
false, since complex solutions later on cannot be excluded. Thus ¬∀x¬x2+1 = 0
is true now.

Sometimes it is said that intuitionistic logic is related to constructive meth-
ods in mathematics. This at first seems reasonable, since various assertions
become more and more true with time, and occasionally new objects pop into
existence. On the other hand, there is a problem with this claim. An intuition-
istic statement such as A ⇒ B is a promise about the future: B will be true
by the time A is true. However it does not come equipped with a mechanism
to show why this comes about. So the connection with constructive methods is
far from clear.

Intuitionistic logic is a logic of systems that are undergoing some kind of
development. It arises in set theory in situations involving forcing, and it is
basic in topos theory [7]. Furthermore, Gödel discovered a method of translating
classical logic into intuitionistic logic. It follows that all results of classical logic
can also be derived in the intuitionistic framework. The logician trained in
intuitionistic logic has a more powerful tool than the classical logician.

In addition, intuitionistic logic explains a quirk of mathematical practice.
Mathematicians often find proofs by contradiction awkward or even unnatural.
From the point of intuitionistic logic it is quite natural to avoid proofs by con-
tradiction. In fact, they are not valid, for the simple reason that a sentence that
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is eventually true is not guaranteed to be true now. The intuitionistic spirit is
congenial, even when it is not recognized.
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Notation

Object language symbols
∧ and
∨ or
⇒ implies
⊥ false statement
¬ not (⇒ ⊥)
∀ for all
∃ for some, there exists

Metalanguage symbols
∼ negation (set of formulas)
−→ sequent implication
|= logically implies (semantic)
` logically implies (syntactic)

models
∼= isomorphic

Sets
∈ in
⊆ subset
∅ empty set
∩ intersection (of two sets)
∪ union (of two sets)
\ relative complement (of two sets)⋂

intersection (of collection of sets)⋃
union (of collection of sets)

{ , } unordered pair
〈 , 〉 ordered pair
× Cartesian product (of two sets)
+ disjoint union construction (two sets)
P power set (all subsets of set)
/ quotient (of set by equivalence relation)
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Number systems
N natural numbers starting at 0
N+ natural numbers starting at 1
Z integers
Zn integers modulo n
Q rational numbers
R real numbers
C complex numbers
H quaternions

Cardinalities
ω0 countable infinite cardinality
c cardinality of the continuuum, 2ω0

Ordered sets
≤ generic order relation
< strict order relation
N set ordered like N or N+

Z set ordered like Z
Q set ordered like Q
R set ordered like R



Index

all, 15
alternative conclusion, 55
antisymmetric relation, 98
any, 44
arbitrary variable, 33
atomic formula, 7, 22
atomic term, 22
axiom of extensionality, 95
axiom set, 77

Bernstein’s theorem, 102
bijection, 99
binary rooted tree, 107
bound variable, 23
branch of rooted tree, 108
breadth-first search, 108

Cantor set, 103
Cantor’s theorem on power sets, 101
cardinal number, 102
cardinal of the continuum, 103
careful substitution, 24
Cartesian power, 100
Cartesian product, 97
cases, 37
categorial theory, 78
chain, see linearly ordered set
characteristic fcn, see indicator func-

tion
closed branch, 57
closed Gentzen tree, 57
closed sequent, 57
codomain, see target
cograph, 98
compactness theorem, 72
comparable elements, 105
complement (of set), 96

complete branch, 66
complete theory, 77
completeness theorem, 43
complex numbers, 101
composition, 99
computable function, 89
conjunction, 8
connective, 7, 23
consequent, 56
consistent set of formulas, 43
consistent theory, 77
constant symbol, 22
continuum hypothesis, 103
contradiction, 35, 43
contrapositive, 8
converse, 8
countable infinite cardinal, 102
countable sequent, 71
countable set, 101
countably generated rooted tree, 107
cut rule, 61

De Morgan’s laws (connectives), 12
De Morgan’s laws (quantifiers, 29
decidable subset, 89
depth-first search, 108
diagonal, 97
disjoint, 96
disjoint union, 97
disjunction, 8
domain, 15, 98
double negation, 12

each, 15
effectively enumerable subset, 89
empty set, 96
end element, 107
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enumerable subset, 89
equality, 45
equality interpretation, 69, 78
equation solving, 43
equivalence class, 98
equivalence relation, 98
equivalent, 7
every, 15
existential quantifier, 15
exists, 15

falsifiable sequent, 56
finite cardinal, 102
finitely generated rooted tree, 107
formula (predicate logic), 23
formula (propositional logic), 7
free variable, 23
function, 98
function symbol, 22

Gödel completeness theorem, 68
Gödel incompleteness theorem, 91
generalization, 34
Gentzen proof, 57
Gentzen rule, 56
Gentzen tree, 56
gives, 28, 43
graph, 97
greatest element, 106
Gödel completeness theorem, 43

hypothesis, 55

identity, 43
identity relation, 97
if, 8
if, then, 8
image, 99
implication, 8
in (set membership), 95
inconsistent set of formulas, 43
indicator function, 100
injection, 99
integers, 100
intended model, 82
interpretation (function symbol), 27

interpretation (predicate formula), 26
interpretation (predicate symbol), 26
interpretation (propositional formula),

9
interpretation (propositional symbol),

9
interpretation (term), 27
intersection (of collection of sets), 96
intersection (of sets), 96
intuitionistic logic, 111
inverse function, 99
inverse image, 99
isomorphic models, 78

König’s lemma, 108
Kripke semantics, 112

Löwenheim-Skolem theorem, 69
leaf, 107
least element, 106
left inverse, 99
limited search, 109
linearly ordered set, 105
logically implies (semantic), 11, 28, 56
logically implies (syntactic), 42, 57

maximal element, 106
metalanguage, 4
minimal element, 106
model, 29, 56, 77
models, 29, 56
modus ponens, 11, 35

natural deduction, 31
natural numbers, 100
negation, 8
non-standard model, 82

object language, 3
only if, 8
open branch, 57
ordered pair, 97
ordered set, 98, 105

pair, 96
partially ordered set, see ordered set
partition, 96
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poset, see partially ordered set
power set, 100
pre-ordered set, 105
predicate logic, 21
predicate symbol, 21
premise, 56
property logic, 21
propositional logic, 7, 21

quantifier, 15, 23
quaternions, 101
quotient set, 98

range, 99
rational numbers, 100
real numbers, 100
reflexive relation, 98
relation, 97
relational logic, 21
relative complement (of sets), 96
repetition rule, 32
right inverse, 99
rooted tree, 107

satisfiable set of formulas, 29, 56
satisfied set of formulas, 56
search, 108
semantic completeness theorem, 43, 68
semantically complete, 43
semantics, 2
sentence, 23, 77
sequent, 55
some, 15
soundness theorem, 43, 61
specialization, 34
subset, 95
substitution, 24
surjection, 99
symmetric relation, 98
syntactic incompleteness theorem, 91
syntactically complete, 77
syntax, 2

tableau, 59
target, 98
term, 22

theory, 77
totally ordered set, see linearly ordered

set
transitive relation, 98
transitivity (natural deduction), 33
tree, 107
truth semantics, 2
type (property interpretation), 16

union (of collection of sets), 96
union (of sets), 96
universal quantifier, 15
unsatisfiable set of formulas, 29

valid formula, 29
valid sequent, 56
variable, 21
variable assignment, 26


