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Preface

These lecture notes were distributed to students in the second year probability course at the Higher
Mathematics College, Independent University of Moscow, during the spring semester, 1996. They are an
introduction to standard topics in theoretical probability, including the laws of large numbers and the
central limit theorem. The plan was to create a course that would cover this material without being a boring
duplication of existing standard courses. Hence came the idea of organizing the course around the concept
of martingale. The elementary examples of martingales in the first part of the lectures are obtained by
applying gambling schemes to sums of independent random variables. The entire exposition makes no use of
the concept of conditional probability and exposition, although these would be central to a more advanced
development.

Alexander Shen and Alexei Melnikov were both helpful in the development of the course. In particular,
Shen read an early version of the notes and contributed many insights. The students came up with several
original solutions of the problems; among the most surprising were those by Kostya Petrov. Several of the
students in the course helped with the final version of the notes. These included Alexander Cherepanov,
Sam Grushevsky, Kostya Rutin, Dmitry Schwarz, Victor Shuvalov, and Eugenia Soboleva. Victor Shuvalov
deserves special mention; he was the organizer and a most able and enthusiastic participant.

The author was a Fulbright Lecturer at the Independent University of Moscow during the 1995–1996
academic year. He thanks the faculty members of the university for their skillful arrangements and gen-
erous hospitality. Alexei Roudakov, Yulii Ilyashenko, and Sergei Lando were extraordinarily helpful, and
Alexei Sossinsky was particularly ingenious in solving all sorts of problems. Askol’d Khovanski and Nikolai
Konstantinov were kind enough to include the author as a participant in their calculus seminar. It was a
constant pleasure to deal with such intelligent and well-organized people.
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Lecture 1. Winning a fair game

Summary: Symmetric random walk is perhaps the most basic example of a fair game. For this game
the strategy “play until you win a fixed amount” always succeeds in the long run. (Unfortunately one needs
infinite reserves and unlimited time to make this work in practice.)

I have no interest in games or gambling. However I am interested in probability models, especially in
physics, and hence in the notion of random fluctuation. One of the most important methods of studying
random fluctuations is to think of them as successive values of a fair game. Such a game is called a martingale,
for reasons having to do with certain gambling schemes known by that name.

One of the most important ideas of this theory is that one cannot make gains without risk. We shall
see this illustrated over and over in the following lectures.

One unusual feature of these lectures is that I will develop martingale theory without the concept of
conditional expectation. Since the emphasis will be on simple concrete examples, there will not be much
emphasis on developing the theory of measure and integration. However the basic limit theorems will be
presented and illustrated.

Perhaps the most important probability model is that of Bernoulli trials. In this model there is an
experiment with various possible outcomes. Each such outcome is a sequence of values which are either a
success S or a failure F . In other words, an outcome is a function from the indexing set of trials {1, 2, 3, . . .}
to the two element set {S, F}.

We first consider the most symmetric version of the model. An event is a set of outcomes to which a
probability is assigned. Consider a given function from the first n trials {1, 2, . . . n} to {S, F}. Consider the
event A consisting of all outcomes that agree with this given function on the first n trials. This event is
given probability 1/2n.

In general, if an event is a finite or countably infinite union of disjoint events, then the probability of
this event is the corresponding sum of the probabilities of the constituent events.

Let Nn be the function from the set of outcomes to the natural numbers 0, 1, 2, 3, . . . that counts the
number of successes in the first n elements of the outcome. Consider k with 0 ≤ k ≤ n. Let Nn = k denote
the event consisting of all outcomes for which the value of the function Nn is k. We have the fundamental
formula for the probability of k successes in n trials:

P[Nn = k] =
(
n

k

)
1
2n
. (1.1)

The derivation of this formula is simple. There is a bijective correspondence between the functions from
{1, . . . , n} to {S, F} with exactly k successes and the subsets of the set {1, . . . , n} with exactly k elements.
The function corresponds to the subset on which the S values are obtained. However the number of k element
subsets of an n element set is the binomial coefficient

(
n
k

)
. So the event Nn = k is the disjoint union of

(
n
k

)
events each of which have probability 1/2n.

If one plots P[Nn = k] as a function of k for a fixed reasonably large value of n one can already start
to get the impression of a bell-shaped curve. However we want to begin with another line of thought.

Let Sn = 2Nn − n. This is called symmetric random walk. The formula is obtained by counting 1 for
each success and −1 for each failure in the first n trials. Thus Sn = Nn − (n − Nn) which is the desired
formula. It is easy to see that

P[Sn = j] = P[Nn =
n+ j

2
] (1.2)

when n and j have the same parity.

We can think of Sn as the fortune at time n in a fair game. Of course Sn is a function from the set of
outcomes to the integers.
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However this immediately gives

P[Tr ≤ n] = P[Sn > r] + P[Sn ≥ r]. (2.4)

This is the desired formula.

We can now see directly why P[Tr <∞] = 1. We simply take the limit in the above formula and note
that the right hand side goes to 1/2 + 1/2 = 1.

Exercise 2.1. Give a completely elementary derivation of this limiting behavior of the right hand side.

Next we calculate P[Tr = n]. We could do this by a subtraction, but it is more instructive to do this
directly by the reflection principle. We have that

P[Sn−1 = r − 1, Yn = 1] = P[Sn−1 = r − 1, Yn = 1, Tr = n] + P[Sn−1 = r − 1, Yn = 1, Tr < n]. (2.5)

However the event Sn−1 = r − 1, Yn = 1, Tr = n is the same as the event Tr = n. Furthermore, by the
reflection principle

P[Sn−1 = r − 1, Yn = 1, Tr < n] = P[Sn−1 = r + 1, Yn = −1, Tr < n], (2.6)

since for each path that crosses r before n there is a corresponding path that is reflected across r after
the crossing time. Furthermore the event that Sn−1 = r + 1, Yn = −1, Tr < n is the same event as
Sn−1 = r + 1, Yn = −1, since a path that takes on the value r + 1 at n − 1 has to cross r before n. So we
obtain

P[Sn−1 = r − 1, Yn = 1] = P[Tr = n] + P[Sn−1 = r + 1, Yn = −1]. (2.7)

We can write this in the final form

P[Tr = n] =
1
2
P[Sn−1 = r − 1]− 1

2
P[Sn−1 = r + 1]. (2.8)

This is a particularly elegant formulation of the result. Notice that it expresses a probability as a difference
of probabilities.

Exercise 2.2. Show that this is equivalent to the formula for P[Tr = n] = r/nP[Sn = r] given before.

Exercise 2.3. Consider the case of non-symmetric random walk. Show that the formula P[Tr = n] =
r/nP[Sn = r] of the preceding exercise is also true for this case. Hint: This can be done with little or no
computation.

Exercise 2.4. Consider the case of non-symmetric random walk. Find the formula for P[Tr = n] as a
difference of probabilities.

Lecture 3. Martingales

Summary: A martingale is a fair game. One can construct interesting examples of martingales by
combining symmetric random walk with a gambling scheme.

The symmetric random walk is an example of a kind of fair game called a martingale. We now give
examples of other related martingales. Rather than define the general concept of martingale at this point,
we will define an elementary class of martingales. These are the martingales that are derived from symmetric
random walk by a gambling scheme.

In each case we will have a sequence Xn = x0 + gn(Y1, . . . , Yn) of functions of the first n steps in a
random walk. We think of Xn as the value of a game at stage n where the starting capital is x0. The game
is said to be fair if for each n the sum

1
2n

∑
y1=±1,...,yn=±1

gn(y1, . . . , yn) = 0. (3.1)
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Examples 3.2 and 3.3 above are obtained by the same construction. Let T be the appropriate stopping
time. Take Wi = 1 if i ≤ T and Wi = 0 if i > T . Notice that one can see whether i > T by looking at the
values of Y1, . . . , Yi−1.

Exercise 3.2. Can one see whether i ≤ T by looking at the values of Y1, . . . , Yi−1?

Exercise 3.3. Can one see whether i ≥ T by looking at the values of Y1, . . . , Yi−1?

Exercise 3.4. Say that one were fortunate enough to have miraculous schemes in which Wi is allowed to
be a function of Y1, . . . , Yn. Show that the resulting Xn game could be quite unfair.

Now we give some more examples of martingales.

Example 3.4. Let Wi = 2Si−1 be the gambling scheme. Then

Xn = 2S1Y2 + 2S2Y3 + · · · 2Sn−1Yn = S2
n − n. (3.4)

Exercise 3.5. Prove the last equality.

This example shows that S2
n − n is also a fair game. This is perhaps one of the most fundamental and

useful principles of probability: random fluctuations of a sum of independent variables grow on the average
so that the square of the displacement is proportional to the number of trials.

Exercise 3.6. Prove that
1
2n

∑
y1=±1,...,yn=±1

(y1 + · · ·+ yn)2 = n. (3.5)

Example 3.5. Let Wi = 1/i. Then

Xn = Y1 +
1
2
Y2 +

1
3
Y3 + · · ·+ 1

n
Yn. (3.6)

This example will turn out to be fundamental for understanding the “law of averages.” It is not a
bounded martingale, since if the Yi were all 1 the series would be a divergent series. However we shall see
later that the variance is bounded, and under this circumstances the martingale must converge. Therefore
we see that the sum

X = Y1 +
1
2
Y2 +

1
3
Y3 + · · ·+ 1

n
Yn + · · · (3.7)

converges with probability one.

Exercise 3.7. In the preceding example, calculate Ȳn = Xn−(1/n)(X1 + · · ·+Xn−1) in terms of Y1, . . . , Yn.

Exercise 3.8. Does Ȳn arise as a martingale from the gambling scheme construction?

Exercise 3.9. Let xn → x as n→∞. Find the limit of zn = (1/n)(x1 + · · ·+ xn−1) as n→∞.

Example 3.6. Here is an example of the kind of gambling scheme that was called a “martingale”. Let
Yi = ±1 be the steps in a symmetric random walk. Let T be the first i such that Yi = 1. Let T ∧ n the
minimum of T and n. Then

Zn = Y1 + 2Y2 + 4Y3 + . . . 2T∧n−1YT∧n. (3.8)

Thus one doubles the bet until a final win.

If T ≤ n then Zn = 1, since the last gain more than compensates for all the previous losses. This has
probability 1 − 1/2n. However, if T > n, then Zn = 1 − 2n, which is a catastrophe. This has probability
1/2n. The game is fair at each n. However the limit as n→∞ is 1, so in the limit it is no longer fair, just
as in the case of random walk. (It converges faster than the random walk, but the risks of a long wait are
also greater.)

Example 3.7. Consider repeated trials of the gambling martingale of the last example with n = 1, 2, 3, . . .
trials. This is a new martingale Z1, Z2, Z3, . . .. Observe that Zn = 1 with probability 1−1/2n and Zn = 1−2n
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Lecture 4. The probability framework

Summary: The standard framework for probability experiments is a probability space. This consists
of a set of outcomes, a σ-field of events, and a probability measure. Given a probability space describing one
trial of an experiment, there is a standard construction of a probability space describing an infinite sequence
of independent trials.

We now describe the three elements of a probability space in some detail. First one is given a set Ω.
Each point ω in Ω is a possible outcome for the experiment.

Second, one is given a σ-field of F subsets of Ω. Each subset A in F is called an event. Recall that
a σ-field of subsets is a collection of subsets that includes ∅ and Ω and is closed under countable unions,
countable intersections, and complements.

The event ∅ is the impossible event, and the event Ω is the sure event. (This terminology derives from
the fact that an experiment is sure to have an outcome.)

Third and finally, one is given a probability measure P. This is a function that assigns to each event A
a probability P[A] with 0 ≤ P[A] ≤ 1. This is the probability of the event A. The probability measure must
satisfy the properties that P[∅] = 0, P[Ω] = 1. It also must satisfy countable additivity: for every disjoint
sequence An of events P[

⋃
nAn] =

∑
n P[An]. It follows from this that the probability of the complement

Ac of an event A is given by P[Ac] = 1−P[A].

Exercise 4.1. Show that A ⊂ B implies P[A] ≤ P[B].

Exercise 4.2. Show that P[A ∪B] = P[A] + P[B]−P[A ∩B].

Exercise 4.3. Events A and B are said to be independent if P[A ∩B] = P[A]P[B]. Show that if A and B
are independent, then so are A and Bc.

Exercise 4.4. Show that if An are a sequence of events, the one has countable subadditivity

P[
⋃
n

An] ≤
∑
n

P[An]. (4.1)

We define the convergence of a sequence of events. We say that An → A if for every ω there exists an
N such that for all n ≥ N , ω ∈ An if and only if ω ∈ A.

Exercise 4.5. Let An be an increasing sequence of events. Show that An → A as n → ∞ implies
P[An]→ P[A].

Exercise 4.6. Let An be a decreasing sequence of events. Show that An → A as n→∞ implies P[An]→
P[A].

Exercise 4.7. Let An be a sequence of events. Show that An → A as n→∞ implies P[An]→ P[A].

We often indicate an event A (a subset of Ω) by a corresponding condition α (true or false depending on
the particular outcome ω ∈ Ω). The condition that α is true for the outcome ω is that ω ∈ A. Conversely,
the subset A corresponding to the condition α is {ω | α(ω)}. When conditions are combined by the logical
operations α or β, α and β, not α, the corresponding sets are combined by the set theoretical operations of
union, intersection, and complement: A ∪ B, A ∩ B, Ac. Similarly, for an existential condition ∃nαn or a
universal condition ∀nαn the corresponding set operations are the union

⋃
nAn and intersection

⋂
nAn.

In this context we often denote a conjunction or the intersection of sets by a comma, so that for instance
P[A,B] is the probability of the conjunction or intersection of the events A and B. Thus we might for instance
write a special case of the additivity law as

P[A] = P[A,B] + P[A,Bc]. (4.2)

An event A is said to be an almost sure event if P[A] = 1. A large part of the charm of probability
is that one can show that various interesting events are almost sure. Thus an event that is not a logical
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necessity can nevertheless be a sure bet. Similarly, we could call an event A such that P[A] = 0 an almost
impossible event; this terminology is not as common, but it is quite natural.

Exercise 4.8. The event that An occurs infinitely often as n→∞ is
⋂
k

⋃
n≥k An. The condition that the

outcome ω ∈ ⋂k
⋃
n≥k An is the same as the condition that ∀k∃nω ∈ An, so this event is the set of outcomes

for which the events in the sequence happen for arbitrarily large index. Prove the first Borel-Cantelli lemma:
If
∑
n P[An] < ∞, then the event that An occurs infinitely often is almost impossible. Hint: For each k,

P[
⋂
k

⋃
n≥k An] ≤ P[

⋃
n≥k An].

Exercise 4.9. Do Exercise 3.7 using explicitly the first Borel-Cantelli lemma.

When an experiment is performed it has an outcome ω. If A is an event and ω is in A, then the event
is said to happen. The probability of an event A is a mathematical prediction about the proportion of times
that an event would happen if the experiment were repeated independently many times. Whether or not
the event actually happens on any particular experiment is a matter of fact, not of mathematics.

Example 4.1. Discrete space; one trial. Let Ω1 be a countable set. Let F1 consist of all subsets of Ω1. Let
p : Ω1 → [0, 1] be a function such that

∑
x∈Ω1

p(x) = 1. This is called a discrete density. Define

P1[A] =
∑

x∈A
p(x). (4.3)

This is a basic example of a probability space.

Example 4.2. Continuous space; one trial. Let Ω1 be the real line. Let F1 be the smallest σ-field containing
all intervals. Let ρ ≥ 0 be an integrable function such that

∫∞
−∞ ρ(x) dx = 1. This is called a density. Let

P1[A] =
∫

A

ρ(x) dx. (4.4)

This is a second basic example.

Independent trial construction

Let Ω1 be a probability space for one trial of an experiment, say as in example 4.1 or example 4.2. Let
Ω∞ be the set of all functions from the set of trials {1, 2, 3, . . .} to Ω1. Each outcome ω in Ω∞ is a sequence
of outcomes ωi for i = 1, 2, 3, . . . in the space Ω1. The set Ω∞ is the set of outcomes for the repeated trials
experiment. For each i, let Xi be the function from Ω∞ to Ω1 given by Xi(ω) = ωi.

If A is an event in F1 describing what happens on one trial, then for each i the event Xi ∈ A is an event
in the repeated trials experiment defined by what happens on the ith trial. Explicitly this event is the set
of all sequences ω such that Xi(ω) = ωi is in A. Let F∞ be the smallest σ-field of subsets of Ω∞ containing
all such events Xi ∈ A.

Let A1, A2, A3, . . . be a sequence of single trial events in F1. Then the events Xi ∈ Ai are each in F∞
and specify what happens on the ith trial. The event

⋂
i[Xi ∈ Ai] is an event in F∞ that specifies what

happens on each trial. The probability measure P∞ for independent repeated trials is specified by

P∞[
⋂

i

[Xi ∈ Ai]] =
∏

i

P1[Ai]. (4.5)

This says that the probability of the conjunction or intersection of events defined by distinct trials is the
product of the probabilities of the events for the single trial experiments.

Note that if Ai = Ω1 is the sure event for one trial, then its probability is one, and so it does not
contribute to the product. Similarly, the event Xi ∈ Ω1 is the sure event for repeated trials, and so it does
not change the intersection. This definition is typically used when all but finitely many of the events are the
sure event; in this case all but finitely many of the factors in the product are one.
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Example 4.3. Discrete space; independent trials. In this case the set of outcomes Ω∞ consists of all
sequences of points each belong to the countable set Ω1. The probability of the set of all sequences whose
initial n values are x1, . . . , xn is the product p(x1) · · · p(xn).

Example 4.4. Continuous space: independent trials. In this case the set of outcomes Ω∞ consists of all
sequences of real numbers. The probability of the set Bn of all sequences ω whose initial n values lie in a
set B in n dimensional space is P∞[Bn] =

∫
B
ρ(x1) · · · ρ(xn) dx1 · · · dxn.

Example 4.5. Bernoulli trials. This is the special case where the discrete space has two points. We begin
with the space {S, F} consisting of the possible outcomes from one trial, a success or a failure. The σ-field
consists of all four subsets ∅, {S}, {F}, and {S, F}. The discrete density assigns probability p to S and
probability q = 1− p to F .

Next we consider independent trials of this experiment. An outcome is a sequence of S or F results.
Among the events are success on the ith trial and failure on the ith trial. We can also specify what happens
on a sequence of trials. If we take any finite subset of the trials and specify success or failure on each of the
elements of the subset, then the probability of this is pkqm−k, where k is the number of successes and m− k
is the number of failures.

Let Nn be the number of successes on the first n trials. If we ask what is the probability of the event
Nn = k of having k successes on the first n trials, then one should realize that this event is the union of

(
n
k

)
events where the subset of the first n trials on which the k successes occur is specified. Thus the probability
is obtained by adding pkqn−k that many times. We obtain the famous binomial distribution

P[Nn = k] =
(
n

k

)
pkqn−k. (4.6)

Example 4.6. Normal trials. This is the classical example for continuous variables. Let

ρ(x) =
1√

2πσ2
exp(− (x− µ)2

2σ2
). (4.7)

This is the Gaussian or normal density with mean µ and variance σ2. Consider independent trials where
this density is used on each individual trial. An outcome of this experiment is a sequence of real numbers,
and the probabilities of events are given by multiple integrals involving this Gaussian density.

This example is much used in statistics, in large part for convenience. However it also has a fundamental
theoretical justification. We shall see later that martingales that are the sum of many contributions of
comparable magnitude (and consequently do not converge) tend to have their behavior characterized by the
Gaussian law.

Exercise 4.10. Discrete waiting times. The probability space for one trial consists of the numbers
{1, 2, 3, . . .}. Fix p with 0 < p ≤ 1 and let q = 1 − p. The probability of {r} is pqr−1. This rep-
resents the waiting time for the next success. The probability space for repeated trials is all sequences
of such numbers. For each sequence ω let Wk(ω) be the kth number in the sequence. This represents
the additional waiting time for the next success after k − 1 previous successes. For each trial we have
P[Wk = r] = pqr−1. It follows by summation that P[Wk > r] = qr. Furthermore, by the independent trial
construction P[W1 = r1, . . . ,Wn = rn] = P[W1 = r1] · · ·P[Wn = rn].

Let Tk = W1 + · · ·+Wk. This is the total waiting time for the kth success. Find P[Tk = r]. Hint: Sum
over all possible values of W1, . . . ,Wn.

Exercise 4.11. Let Nn = max{m | Tm ≤ n} be the number of successes up to time n. Find P[Nn = k].
Hint: Nn = k is the same as Tk ≤ n,Wk+1 > n− Tk. Sum over all possible values of W1, . . . ,Wn.

Exercise 4.12. Continuous waiting times. The probability space for one trial consists of the real numbers
s ≥ 0. Fix λ > 0. The probability density is λ exp(−λs). The probability of waiting more than t is the integral
ds of this from t to infinity, which is exp(−λt). The probability space for repeated trials is all sequences of
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positive real numbers. For each sequence ω, let Wk(ω) be the kth number in the sequence. This is the waiting
time for the next arrival after k−1 previous arrivals. For each trial we have P[s < Wk < s+ds] = exp(−λs) ds
and consequently P[t < Wk] = exp(−λt). Furthermore, the probabilities for distinct trials multiply.

Let Tk = W1 + . . .+Wk be the total waiting time for the kth arrival. Show that

P[t < Tk] =
k−1∑
m=0

(λt)m

m!
e−λt. (4.8)

Hint: Show that
P[t < Tk] = P[t < Tk−1] + P[t− Tk−1 < Wk, Tk−1 ≤ t]

= P[t < Tk−1] +
∫ t

0

P[t− s < Wk, s < Tk−1 ≤ s+ ds].
(4.9)

and use P[t− s < Wk, s < Tk−1 ≤ s+ ds] = P[t− s < Wk]P[s < Tk−1 ≤ s+ ds].

Exercise 4.13. Let N(t) = max{r | Tr ≤ t} be the number of arrivals up to t. Find P[N(t) = k].

Lecture 5. Random variables

Summary: A random variable assigns a number to each outcome of the experiment. Every positive
random variable has a well-defined expectation. Random variables that are not positive may have well-
defined expectations if there is no ambiguity involving infinity minus infinity.

Terminology note: I use the term positive to mean greater than or equal to zero. I use strictly positive to
mean greater than zero. Similarly, increasing means that increments are positive; strictly increasing means
that increments are strictly positive.

Consider a probability space with set of outcomes Ω, σ-field of events F , and probability measure P. A
function X from Ω to the real numbers assigns an experimental number X(ω) to each outcome ω. We want
to make probability predictions about the values of such functions X.

Consider an interval I of real numbers. We would like to specify the probability P[X ∈ I] of the event
that X has values in X. In other words, we would like the set of all outcomes ω such that X(ω) is in I to
be an event in the σ-field F . If this occurs for every interval I, then X is said to be a random variable, and
P[X ∈ I] is well-defined.

When an experiment is performed, it has an outcome ω, and the value of the random variable for that
outcome is an experimental number X(ω). Unfortunately probability theory does not tell us what this
number will be.

Example 5.1. Consider the Bernoulli trials example. Let Nn be the function from Ω to the natural numbers
that counts the number of successes in the first n trial. Then Nn = k is a condition that specifies an event in
F . To see that this is an event in F , one notices that it is a union of

(
n
k

)
disjoint events in F , each of which

is obtained as an intersection of events associated with individual trials. Thus we can legitimately compute
P[Nn = k] =

(
n
k

)
pkqn−k. For instance, when p = 1/2, P[S7 = 6] = 7/27 and P[S7 ≥ 6] = 7/27+1/27 = 1/16.

On January 1, 1996 I conducted 7 Bernoulli trials and for the outcome ω of that particular experiment
N7(ω) = 6. The event that N7 ≥ 6 happened for that ω, but nothing in probability theory could have
predicted that.

If X is a random variable defined on a space Ω with probability measure P, then X defines a probability
measure P1 defined for subsets of the real line by the formula by

P1[I] = P[X ∈ I]. (5.1)

This new probability measure is called the distribution of X. Much of classical probability theory consists of
calculating the distributions of various random variables. The distribution of a random variable is nothing
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more than a summary of the probabilities defined by that random variable in isolation from other random
variables.

In some cases one can use a density to describe the distribution. This is when the associated probability
measure can be represented by integrals of the form P1[I] =

∫
I
ρ(x) dx.

Exercise 5.1. Let X1 and X2 represent the results of the first two trials of the continuous independent
trials experiment. Show that the distribution of X1 +X2 is given by

P1[I] =
∫

I

ρ2(y) dy, (5.2)

where the density ρ2 is given by the convolution integral

ρ2(y) =
∫ ∞
−∞

ρ(x)ρ(y − x) dx. (5.3)

If X is a random variable and f belongs to a very general class of functions (Borel measurable), then
f(X) is also a random variable. If X has density ρ, then it may be that f(X) also has a density, but this
density must be computed with an awkward change of variable. It is thus often convenient to continue to
use the density of X for computations, as in the formula P[f(X) ∈ J ] =

∫
{x|f(x)∈J} ρ(x) dx.

Each positive random variable X ≥ 0 has an expectation E[X] satisfying 0 ≤ E[X] ≤ ∞. If X is discrete,
that is, if X has only a countable set S of values, then

E[X] =
∑

x∈S
x ·P[X = x]. (5.4)

In the general case, for each ε > 0 let Xn be the random variable that has the value k/2n on the set where
X is in the interval [k/2n, (k + 1)/2n), for k = 0, 1, 2, 3, . . .. Then for each n the random variable Xn has
only a countable sequence of values. Furthermore for each outcome the Xn values are increasing to the
corresponding X value, so the expectations E[Xn] are also increasing. We define

E[X] = lim
n

E[Xn]. (5.5)

Exercise 5.2. Let Nn be the number of successes in n Bernoulli trials where the probability of success on
each trial is p. Find E[Nn] from the definition.

Exercise 5.3. Let W be a discrete waiting time random variable with P[W > k] = qk. Find the expectation
of W directly from the definition.

Exercise 5.4. Let W ≥ 0 be a continuous waiting time random variable such that P[W > t] = exp(−λt)
with λ > 0. Find E[W ] from the definition.

Exercise 5.5. Let X be a positive random variable with density ρ. Prove from the definition that E[X] =∫∞
0
xρ(x) dx.

Exercise 5.6. Let W ≥ 0 be the continuous waiting time random variable with P[W > t] = exp(−λt).
Find E[W ] by computing the integral involving the density.

Exercise 5.7. Let f(X) be a positive random variable such that X has density ρ. Prove that E[X] =∫∞
−∞ f(x)ρ(x) dx.

Exercise 5.8. Compute E[W 2] for the continuous waiting time random variable.

Note: There are positive random variables that are neither discrete nor have a density. However they
always have an expectation (possibly infinite) given by the general definition.
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It is easy to extend the definition of expectation to positive random variables that are allowed to assume
values in [0,∞]. The expectation then has an additional term ∞ · P[X = ∞]. This is interpreted with the
convention that ∞ · 0 = 0 while ∞ · c =∞ for c > 0.

With this convention we have the identity E[aX] = aE[X] for all real numbers a ≥ 0 and random
variables X ≥ 0. Another useful and fundamental property of the expectation is that it preserves order: If
0 ≤ X ≤ Y , then 0 ≤ E[X] ≤ E[Y ].

It is shown in measure theory that for a sequence of positive random variables Xi ≥ 0 we always have
countable additivity

E[
∑

i

Xi] =
∑

i

E[Xi]. (5.6)

The sum on the left is defined pointwise: For each outcome ω, the value of the random variable
∑
iXi on ω

is the number
∑
iXi(ω).

The notions of event and probability may be thought of as special cases of the notions of random variable
and expectation. For each event A there is a corresponding random variable 1A that has the value 1 on the
outcomes in A and the value 0 on the outcomes not in A. The expectation of this indicator random variable
is the probability:

E[1A] = P[A]. (5.7)

Exercise 5.9. Prove the most basic form of Chebyshev’s inequality: If Y ≥ 0, then for each ε > 0 we have
εP[Y ≥ ε] ≤ E[Y ].

Exercise 5.10. Let X ≥ 0 and let φ be an increasing function on the positive reals, for instance φ(x) = x2.
Prove Chebyshev’s inequality in the general form that says that for ε > 0 we have φ(ε)P[X ≥ ε] ≤ E[φ(X)].

Exercise 5.11. Let 0 ≤ X ≤ M for some constant M and let φ be an increasing function. Prove that
E[φ(X)] ≤ φ(ε) + φ(M)P[X > ε].

Exercise 5.12. Show that countable additivity for probabilities is a special case of countable additivity for
positive random variables.

If we have a sequence of random variables, then we say Xn → X as n → ∞ if for every ω we have
Xn(ω)→ X(ω) as n→∞.

Exercise 5.13. Prove that if Xn is an increasing sequence of positive random variables, and Xn → X, then
E[Xn]→ E[X].

Exercise 5.14. Consider this assertion: If Xn is a decreasing sequence of positive random variables, and
Xn → X, then E[Xn]→ E[X]. Is it true in general? Are there special circumstances when it is true?

If we have a random variable X that is not positive, then we can write it as the difference of two positive
random variables X+ and X−. We can define

E[X] = E[X+]−E[X−] (5.8)

provided that at least one of the expectations on the right is finite. Otherwise we have an ambiguous∞−∞
and the expectation is not defined. This is a not just a technical point; often much depends on whether an
expectation is unambiguously defined.

The absolute value of a random variable is |X| = X+ + X−. The absolute value |X| is also a random
variable, and since it is positive, its expectation is defined. The expectation of X is defined and finite if and
only if the expectation of |X| is finite. In that case

|E[X]| ≤ E[|X|]. (5.9)

The expectation defined on the space of random variables with finite expectation is linear and order-
preserving.

16



Example 5.2. Let X1, . . . , Xn represent the results of the first n trials of the discrete independent trials
experiment. Let Y = f(X1, . . . , Xn). Then

E[Y ] =
∑

x1,...,xn

f(x1, . . . , xn)p(x1) · · · p(xn). (5.10)

Example 5.3. Let X1, . . . , Xn represent the results of the first n trials of the continuous independent trials
experiment. Let Y = f(X1, . . . , Xn). Then

E[Y ] =
∫

Rn

f(x1, . . . , xn)ρ(x1) · · · ρ(xn) dx1 · · · dxn. (5.11)

If X is a random variable and P1 is its distribution, then there is an expectation E1 associated with
the distribution. It may be shown that E[f(X)] = E1[f ].

Exercise 5.15. If X1 and X2 are the results of the first 2 trials of the continuous independent trials
experiment, show that

E[f(X1 +X2)] =
∫ ∞
−∞

f(y)ρ2(y) dy, (5.12)

where ρ2 is the convolution defined above.

Lecture 6. Variance

Summary: A random variable may be centered by subtracting its expectation. The variance of a
random variable is the expectation of the square of its centered version. This is a simple but powerful
concept; it gives rise to a form of the law of averages called the weak law of large numbers.

A random variable is said to have finite variance if E[X2] < ∞. In this case its length is defined to be
‖X‖ =

√
E[X2].

Theorem 6.1 Schwarz inequality. If X and Y have finite variance, then their product XY has finite
expectation, and

|E[XY ]| ≤ ‖X‖‖Y ‖. (6.1)

Proof: Let a > 0 and b > 0. Then for each outcome we have the inequality

±XY
ab

≤ 1
2

(
X2

a2
+
Y 2

b2

)
. (6.2)

Since taking expectations preserves inequalities, we have

±E[XY ]
ab

≤ 1
2

(‖X‖2
a2

+
‖Y ‖2
b2

)
. (6.3)

Thus the left hand side is finite. Take a = ‖X‖ and b = ‖Y ‖.
In the situation described by the theory we also write 〈XY 〉 = E[XY ] and call it the inner product of

X and Y .

If a random variable has finite variance then it also has finite expectation E[X] = 〈X〉 obtained by
taking the inner product with 1.

The mean of a random variable with finite expectation is defined to be

µX = E[X]. (6.4)
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The variance of a random variable with finite variance is defined to be

Var(X) = σ2
X = E[(X − µX)2]. (6.5)

Thus σ2
X is the mean square deviation from the mean. The standard deviation σX is the square root of the

variance.

The following identity is not intuitive but very useful.

σ2
X = E[X2]−E[X]2. (6.6)

The reason it is not intuitive is that it writes the manifestly positive variance as the difference of two positive
numbers.

Exercise 6.1. Prove it.

If X is a random variable with finite mean, then the centered version of X is defined to be X − µX . It
has mean zero. Obviously the variance of X is just the square of the length of the centered version of X.

If X is a random variable with finite non-zero variance, then its standardized version is defined to be
(X − µX)/σX . It has mean zero and variance one.

We define the covariance of X and Y to be

Cov(X,Y ) = E[(X − µX)(Y − µY )]. (6.7)

This is just the inner product of the centered versions of X and Y .

The correlation is the standardized form of the covariance:

ρXY =
Cov(X,Y )
σXσY

. (6.8)

This has the geometrical interpretation of the cosine of the angle between the centered random variables.

Again there is a non intuitive formula:

Cov(X,Y ) = E[XY ]−E[X]E[Y ]. (6.9)

Exercise 6.2. Prove it.

Two random variables are said to be uncorrelated if their covariance (or correlation) is zero. This says
that the centered random variables are orthogonal.

Theorem 6.2 Let Sn = Y1 + · · ·Yn be the sum of uncorrelated random variables with finite variances
σ2

1 , . . . , σ
2
n. Then the variance of the sum is the sum σ2

1 + · · ·+ σ2
n of the variances.

Exercise 6.3. Prove this (theorem of Pythagoras)!

Example 6.1. Say the means are all zero and the variances are all the same number σ2. Then Sn
is a generalization of the random walk we considered before. The theorem says that E[S2

n] = nσ2, or√
E[S2

n] = σ
√
n. The random fluctuations of the walk are so irregular that it travels a typical distance of

only σ
√
n in time n.

Let Y1, . . . , Yn be uncorrelated random variables as above, all with the same mean µ. Define

Ȳn =
Y1 + · · ·+ Yn

n
(6.10)

to be the sample mean. Since this is a random variable, its value depends on the outcome of the experiment.
For each n its expectation is the mean:

E[Ȳn] = µ. (6.11)
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Theorem 6.3 The variance of the sample mean is

σ2
Ȳn

=
σ2

1 + · · ·+ σ2
n

n2
. (6.12)

In many circumstances the right hand side goes to zero. This says that the sample mean has small deviation
from the mean. This is a form of the “law of averages”, known technically as the weak law of large numbers.

Assume that the variances of the Yi are all the same σ2. Then the variance of the sample mean is
nσ2/n2 = σ2/n. The standard deviation of the sample mean is σ/

√
n. It is exceedingly important to note

that while 1/
√
n goes to zero as n tends to infinity, it does so relatively slowly. Thus one needs a quite large

sample size n to get a small standard deviation of the sample mean. This 1/
√
n factor is thus both the

blessing and the curse of statistics.

Example 6.2. Consider discrete waiting times W1, . . . ,Wn, . . . with P[Wi = k] = pqk−1 for k = 1, 2, 3, . . .
and with P[W1 = k1, . . . ,Wn = kn] = P[W1 = k1] · · ·P[Wn = kn]. The mean of Wi is µ = 1/p.

Exercise 6.4. Compute the mean from

µ =
∞∑

k=1

kP[Wi = k]. (6.13)

For the discrete waiting time the variance is σ2 = q/p2.

Exercise 6.5. Compute the variance from

σ2 =
∞∑

k=1

(k − µ)2P[Wi = k]. (6.14)

Notice that if p is small, then the standard deviation of the waiting time Wi is almost as large as the
mean. So in this sense waiting times are quite variable. However let W̄n be the sample mean with sample
size n. Then the mean is still µ, but the standard deviation is σ/

√
n. Thus for instance if p = 1/2, then the

mean is 2 and the standard deviation of the sample mean is
√

2/n. A sample size of n = 200 should give
a result that deviates from 2 by only something like 1/10. It is a good idea to perform such an experiment
and get a value of W̄n(ω) for the particular experimental outcome ω. You will either convince yourself that
probability works or astonish yourself that it does not work.

Example 6.3. Consider the Bernoulli process. Let Yi = 1 if the ith trial is a success, Yi = 0 if the ith trial
is a failure. The mean of Yi is p and its variance is p− p2 = pq.

Exercise 6.6. Compute this variance.

If i 6= j, then the covariance of Yi and Yj is p2 − p2 = 0.

Exercise 6.7. Compute this covariance.

Let Nn = Y1 + · · ·+ Yn be the number of successes in the first n trials. Then the mean of Nn is np and
the variance of Nn is npq.

Exercise 6.8. Compute the mean of Nn directly from the formula

E[Nn] =
∑

k

kP[Nn = k] =
∑

k

k

(
n

k

)
pkqn−k. (6.15)

Let Fn = Nn/n be the fraction of successes in the first n trials. This is the sample frequency. Then
the mean of Fn is p and the variance of Fn is pq/n. We see from this that if n is large, then the sample
frequency Fn is likely to be rather close to the probability p.
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It is more realistic to express the result in terms of the standard deviation. The standard deviation of
the sample frequency is

√
pq/
√
n.

This is the fundamental fact that makes statistics work. In statistics the probability p is unknown. It
is estimated experimentally by looking at the value of the sample frequency Fn (for some large n) on the
actual outcome ω. This often gives good results.

Exercise 6.9. Say that you are a statistician and do not know the value of p and q = 1− p. Show that the
standard deviation of the sample frequency satisfies the bound

√
pq√
n
≤ 1

2
√
n
. (6.16)

Results in statistics are often quoted in units of two standard deviations. We have seen that an upper
bound for two standard deviations of the sample frequency is 1/

√
n.

Exercise 6.10. How many people should one sample in a poll of public opinion? Justify your answer. (How
large does n have to be so that 1/

√
n is 3 per cent?)

The Bernoulli example is unusual in that the variance p(1 − p) is a function of the mean p. For more
general distributions this is not the case. Consider again a sequence of random variables Yi all with the same
mean µ and variance σ2. Statisticians estimate the variance using the sample variance

Vn =
(Y1 − Ȳn)2 + (Y2 − Ȳn)2 + · · ·+ (Yn − Ȳn)2

n− 1
. (6.17)

It has the property that it requires no knowledge of the mean µ and is unbiased:

E[Vn] = σ2 (6.18)

Exercise 6.11. Prove this property. What is the intuitive reason for the n− 1 in the denominator? Would
a statistician who used n encounter disaster?

Exercise 6.12. The weak law of large numbers is also true if the covariances are not zero but merely
small. Let Y1, . . . , Yn, . . . be a sequence of random variables with mean µ such that for j ≤ i we have
Cov(Yi, Yj) ≤ r(i − j). Require that the bound r(k) → 0 as k → ∞. Show that the variance of the sample
mean Ȳn goes to zero as n→∞.

Exercise 6.13. In the case of bounded variances and zero covariances the variance of the sample mean goes
to zero like 1/n. Consider the more general weak law with a bound on the covariances. What kind of bound
will guarantee that the variance of the sample mean continues to go to zero at this rate?

Exercise 6.14. In this more general weak law there is no requirement that the negative of the covariance
satisfy such a bound. Are there examples where it does not?

Lecture 7. Independence

Summary: Some probability calculations only require that random variables be uncorrelated. Others
require a stronger martingale property. The strongest property of this sort is independence.

Recall that the condition that two random variables X and Y be uncorrelated is the condition that

E[XY ] = E[X]E[Y ]. (7.1)

Let Yc = Y −E[Y ] be the centered random variable. The condition that the random variables are uncorrelated
may also be written in the form

E[XYc] = 0. (7.2)
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There are stronger conditions that are very useful. One is the condition that for all functions f for
which the relevant expectations are finite we have

E[f(X)Y ] = E[f(X)]E[Y ]. (7.3)

It says that Y is uncorrelated with every function of X. The condition is linear in Y but non-linear in X.
In terms of the centered random variable Yc = Y −E[Y ] it says that

E[f(X)Yc] = 0. (7.4)

If we think of a game with two stages, and we think of weighting the bet Yc at the second stage with the
result of a gambling strategy f(X) based on the first stage result X, then this is the condition that the
modified game remains fair, that is, that Yc be a martingale difference. For the purposes of this discussion
we shall call this the martingale property.

Exercise 7.1. Let Z have values 1 and 0 with equal probabilities, and let W have values 1 and −1 with
equal probabilities, and let Z and W be independent. Show that X = ZW and Y = (1−Z) are uncorrelated
but do not have the martingale property.

There is an even stronger condition. Two random variables are independent if for all functions f and g
for which the relevant expectations are finite,

E[f(X)g(Y )] = E[f(X)]E[g(Y )]. (7.5)

It says simply that arbitrary non-linear functions of X and Y are uncorrelated.

Exercise 7.2. Show that if X and Y are independent, and if I and J are intervals, then P[X ∈ I, Y ∈ J ] =
P[X ∈ I]P[Y ∈ J ].

Exercise 7.3. Events A and B are said to be independent if their indicator functions 1A and 1B are
independent. Find a single equation that characterizes independence of two events.

Exercise 7.4. Let Z have values 1 and 0 with equal probabilities, and let W have values 1 and −1 with
equal probabilities, and let Z and W be independent. Show that X = ZW and Y = (1 − Z)W have the
martingale property but are not independent.

We can generalize all these definitions to a sequence Y1, . . . , Yn of random variables. The condition that
Yn be uncorrelated with Y1, . . . , Yn−1 is that

E[(a1Y1 + · · ·+ an−1Yn−1 + b)Yn] = E[a1Y1 + · · ·+ an−1Yn−1 + b]E[Yn] (7.6)

for all choices of coefficients.

The condition that Yn −E[Yn] is a martingale difference is that

E[f(Y1, . . . , Yn−1)Yn] = E[f(Y1, . . . , Yn−1)]E[Yn] (7.7)

for all functions f . This says that even if the bet Yn−E[Yn] is weighted by a gambling scheme based on the
previous trials the expected gain remains zero.

The condition that Yn be independent of Y1, . . . , Yn−1 is that

E[f(Y1, . . . , Yn−1)g(Yn)] = E[f(Y1, . . . , Yn−1)]E[g(Yn)] (7.8)

for all functions f and g.

Exercise 7.5. Show that if we have a sequence Y1, . . . , Yn of random variables such that each Yj is inde-
pendent of the Yi for i < j, then

E[f1(Y1) · · · fn(Yn)] = E[f1(Y1)] · · ·E[fn(Yn)] (7.9)
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for all functions f1, . . . , fn.

Exercise 7.6. Say that we have three random variables Y1, Y2, and Y3 such that Y2 is independent of Y1

and such that Y3 is independent of Y1 and Y3 is independent of Y2. Must Y3 be independent of Y1, Y2?

How do we get random variables satisfying such conditions? The independence condition is the strongest
of these conditions, so let us see if we can find independent random variables. Consider a probability space
constructed from an sequence of independent trials. If Yi depends on the ith trial, then Yn is independent
from Y1, . . . , Yn−1.

It is easiest to see this in the discrete case. Then

E[f(Y1, . . . , Yn−1)g(Yn)] =
∑

y1,...,yn

f(y1, . . . , yn−1)g(yn)P[Y1 = y1, . . . Yn = yn]. (7.10)

However this is the same as

E[f(Y1, . . . , Yn−1)]E[g(Yn)]

=
∑

y1,...,yn−1

∑
yn

f(y1, . . . , yn−1)g(yn)P[Y1 = Y1, . . . , Yn−1 = yn−1]P[Yn = yn]. (7.11)

The fact that the probability of the intersection event is the product of the probabilities is the defining
property of the independent trials probability space.

In the continuous case one needs to use a limiting argument. We will leave this for another occasion.

It is certainly possible to have independent random variables that do not arise directly from the inde-
pendent trials construction.

Example 7.1. Geometric waiting times. It is possible to construct a probability model in which discrete
waiting times are directly constructed so that they will be independent. However it is also possible to
construct instead the model for Bernoulli trials and see that the discrete waiting times arise as independent
random variables, but not directly from the construction.

Let Y1, Y2, . . . , Yn, . . . be 1 or 0 depending whether the corresponding Bernoulli trial is a success or a
failure. These random variables are independent, by their construction.

Let T0 = 0 and let Tr for r ≥ 1 be the trial on which the rth success takes place. Let Wr = Tr − Tr−1

be the waiting time until the rth success.

Exercise 7.7. Show that P[W1 = k] = qk−1p. This is the probability distribution of a geometric waiting
time. (Actually this is a geometric distribution shifted to the right by one, since the values start with 1
rather than with 0.)

Exercise 7.8. Show that W1, . . . ,Wn are independent. Hint: Show that the probability of the intersection
event P[W1 = k1, . . . ,Wr = kn] = P[W1 = k1] · · · [Wr = kn].

Exercise 7.9. Find P[Tr = n]. Hint: Tr = n if and only if Nn−1 = r − 1 and Yn = 1.

Exercise 7.10. Find the mean and variance of Tr.

Exercise 7.11. Consider uncorrelated random variables Y1, . . . , Yn each with mean µ and variances σ2. We
have seen that the weak law of large numbers says that

E[(Ȳn − µ)2] =
σ2

n
. (7.12)

Show that

P[|Ȳn − µ| ≥ ε] ≤ σ2

nε2
. (7.13)
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Exercise 7.12. Consider independent random variables Y1, . . . , Yn, . . . each with the same distribution, in
particular each with mean µ and variance σ2. Assume that the fourth moment E[(Y1 − µ)4] is finite. Show
that

E[(Ȳn − µ)4] =
1
n4

{
nE[(Y1 − µ)4] +

(
4
2

)(
n

2

)
σ4

}
. (7.14)

Be explicit about where you use independence.

Exercise 7.13. Show that in the preceding exercise we have

E[(Ȳn − µ)4] ≤ C

n2
. (7.15)

Exercise 7.14. Continuing, show that

E[
∞∑

n=k

(Ȳn − µ)4] ≤ C

k − 1
. (7.16)

Exercise 7.15. Show that
P[∃nn ≥ k, |Ȳn − µ| ≥ ε] ≤ C

(k − 1)ε4
. (7.17)

This remarkable result says that the probability that the sample mean ever deviates from the mean at any
point in the entire future history is small. This is a form of the strong law of large numbers.

Exercise 7.16. Consider Bernoulli trials. Show that

P[∃nn ≥ k, |Fn − p| ≥ ε] ≤ 1
4(k − 1)ε4

(7.18)

for k ≥ 4. This says that no matter what the value of p is, for n large enough the sample frequencies Fn are
likely to get close to the probability p and stay there forever.

Lecture 8. Supermartingales

Summary: A martingale is a fair game. A supermartingale is a game that can be either fair or
unfavorable. One can try to get a positive return with a supermartingale by a strategy of “quit when you
are ahead” or of “buy low and sell high.” This strategy can work, but only in a situation where there is also
a possibility of a large loss at the end of play.

A martingale is a fair game. It is useful to have a more general concept; a supermartingale is a game
that is unfavorable, in that on the average you are always either staying even or losing.

Let S0 and Y1, Y2, Y3, . . . be a sequence of random variables with finite expectations. Let Sn = S0 +
Y1 + · · ·+ Yn. We think of the Yi as the outcomes of the stages of a game, and Sn is the cumulated gain.

We want to specify when Sn is a supermartingale, that is, when the Yi for i ≥ 1 are supermartingale
differences.

Let W1,W2,W3, . . . be an arbitrary gambling scheme, that is, a sequence of bounded random variables
such that Wi ≥ 0 is a positive function of S0 and of Y1, . . . , Yi−1:

Wi = fi(S0, Y1, . . . , Yi−1). (8.1)

The requirement that the Yi for i ≥ 1 are supermartingale differences is that

E[WiYi] ≤ 0 (8.2)
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for all i ≥ 1 and for all such gambling schemes. We take this as a definition of supermartingale; it turns out
to be equivalent to other more commonly encountered definitions.

Notice that we can take as a special case all Wi = 1. We conclude that for a supermartingale difference
we always have

E[Yi] ≤ 0 (8.3)

for i ≥ 1. By additivity we have
E[Sn] ≤ E[S0]. (8.4)

On the average, the game is a losing game.

Example 8.1. Let S0, Y0, Y1, . . . , Yn, . . . be a sequence of independent random variables with finite expec-
tations and with E[Yi] ≤ 0 for i ≥ 1. Then the partial sums Sn = S0 +Y1 + . . .+Yn form a supermartingale.
In fact, if we have Wi = fi(S0, Y1, . . . , Yi−1) ≥ 0, then E[WiYi] = E[Wi]E[Yi] ≤ 0.

Theorem 8.1 Consider a supermartingale Sn = S0 + Y1 + · · · + Yn. Let X0 = f(S0) be a function of S0.
Consider a gambling scheme Wi = fi(S0, Y1, . . . , Yi−1) ≥ 0. Form the sequence

Xn = X0 +W1Y1 +W2Y2 + · · ·WnYn. (8.5)

Then Xn is also a supermartingale.

The proof of the theorem is immediate. One consequence is that

E[Xn] ≤ E[X0]. (8.6)

All that a gambling scheme can do to a supermartingale is to convert it into another supermartingale, that
is, into another losing game.

There is a related concept of submartingale, which is intended to model a winning game, in which all ≤
relations are replaced by ≥ relations. However this reduces to the concept of supermartingale by applying
the theory to the negatives of the random variables.

The terminology “super” and “sub” may seem to be backward, since the supermartingale is losing and
the submartingale is winning. However the terminology is standard. It may help to remember that “super”
and “sub” refer to the initial value.

The concept of martingale is also subsumed, since a martingale is just a process which is both a
supermartingale and a submartingale. In that case the inequalities are replaced by equalities.

Example 8.2. Let Xn = S0 +W1Y1 +W2Y2 + · · ·WnYn using some gambling scheme on the supermartingale
generated by independent random variables of the previous example. Then this remains a supermartingale,
even though it is no longer a sum of independent random variables.

The Bernoulli process with p ≤ 1/2 is a supermartingale. In particular, the examples generated from
the Bernoulli process with p = 1/2 are all martingales.

Now we are going to prove two fundamental theorems about unfavorable games using the principle: no
large risk—little chance of gain. In the first theorem the gain comes from the strategy: quit when you win
a fixed amount.

Theorem 8.2 Let Sn be a supermartingale with E[S0] = a. Let b > a and let T be the first time n ≥ 1
with Sn ≥ b. Then

(b− a)P[T ≤ n]−E[(Sn − a)−] ≤ 0. (8.7)

Here (Sn − a)− is the negative part of Sn − a.

This theorem says that the possible winnings from gaining a fixed amount sometime during the play are
balanced by the possible losses at the end of the game. Thus if there is little risk of loss, then the probability
of a large gain is correspondingly small.
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We now let Sn = S0 + Y1 + . . . + Yn. Let Wi = 1 if i belongs to one of the upcrossing intervals,
otherwise let Wi = 0. Then the Wi form a gambling scheme. Let Xn = W1Y1 + · · ·+WnYn be the resulting
accumulated winnings.

Theorem 8.3 (Upcrossing inequality) Let Sn be a supermartingale. Let a < b and let Un be the number of
upcrossings of (a, b) in the first n trials. Then

(b− a)E[Un]−E[(Sn − a)−] ≤ 0. (8.11)

This theorem says that the expected winnings from a buy-low and sell-high strategy are balanced by
the expected losses at the conclusion.

Proof: Consider the winnings Xn with the above gambling scheme. This continues to be a supermartingale,
so E[Xn] ≤ 0. However

(b− a)Un − (Sn − a)− ≤ Xn. (8.12)

This is because the scheme gives winnings of b − a for each completed upcrossing. However it may give a
loss if n is part of an incompleted upcrossing, and this is the origin of the second term.

If we take expectations we obtain

(b− a)E[Un]−E[(Sn − a)−] ≤ E[Xn] ≤ 0. (8.13)

The expected winnings by this scheme must be balanced by the possibility of ending with a catastrophic
loss.

Lecture 9. The supermartingale convergence theorem

Summary: A supermartingale that is bounded below is almost sure to converge to a limit. If it did
not converge it would fluctuate forever. Then one could use a “buy low and sell high” strategy to make a
gain with no compensating risk.

In the following discussion we shall need two basic convergence theorems. The first is the monotone
convergence theorem for positive random variables. This says that if 0 ≤ Xn ↑ X, then E[Xn]→ E[X].

This is proved by writing X = X0 +
∑∞
k=1(Xk − Xk−1). Since X0 ≥ 0 and Xk − Xk−1 ≥ 0, we can

apply countable additivity for positive random variables. This says that

E[X] = E[X0] +
∞∑

k=1

E[Xk+1 −Xk]. (9.1)

This in turn is

E[X] = E[X0] + lim
n→∞

n∑

k=1

E[Xk −Xk−1] = lim
n→∞

E[Xn]. (9.2)

The second convergence theorem is Fatou’s lemma for positive random variables. This says that if
Xn ≥ 0 for each n and Xn → X and E[Xn] ≤ M , then E[X] ≤ M . That is, when the convergence is not
monotone, one can lose expectation in the limit, but never gain it.

This is proved by noting that for each n we have 0 ≤ infk≥nXk ≤ Xn. Thus E[infk≥nXk] ≤ E[Xn] ≤M .
Furthermore, as n→∞ we have infk≥nXk ↑ X. Hence by the monotone convergence theorem E[X] ≤M .

Theorem 9.1 Supermartingale convergence theorem. Consider a supermartingale Sn for n = 0, 1, 2, 3, . . .
whose negative part has bounded expectation: there is a constant C such that for all n the expectation of
the negative part E[S−n ] ≤ C. Then there is a random variable S such that Sn → S as n→∞ almost surely.

26



In words: a losing game that keeps fluctuating must be a game with no floor on the average losses.

Note that the theorem has an equivalent statement in terms of submartingales: A submartingale whose
positive part has bounded expectation must converge.

Proof: Consider lim supn Sn = limn supk≥n Sk and lim infn Sn = limn infk≥n Sk. Clearly lim infn Sn ≤
lim supn Sn. We show that they are equal with probability one.

Fix rational numbers a < b. Let Un be the number of upcrossings of (a, b) up to time n. By the
upcrossing inequality, the expectation E[Un] ≤ E[(Sn − a)−]/(b − a) ≤ (C + a+)/(b − a) which is bounded
independently of n, by assumption. As n→∞ the random variables Un increase to the random variable U
that counts the number of upcrossings of the interval. By the monotone convergence theorem, E[Un]→ E[U ]
as n→∞. Hence

E[U ] ≤ (C + a+)/(b− a). (9.3)

There are certainly outcomes of the experiment for which there are infinitely many upcrossings of (a, b).
However the set of all such outcomes must have probability zero; otherwise P[U = ∞] > 0 and this would
imply E[U ] =∞, contrary to the estimate.

Since there are countably many pairs of rational numbers a, b, it follows from countable subadditivity
that the probability that there exists an interval (a, b) with a < b both rational and with infinitely many
upcrossings is zero. This is enough to show that the probability that lim infn Sn < lim supn Sn is zero. Let
S be their common value. We have shown that Sn → S almost surely as n→∞.

We conclude by showing that S is finite almost everywhere. Since E[S−n ] ≤ C, it follows from Fatou’s
lemma that E[S−] ≤ C. Hence S > −∞ almost surely. Furthermore, E[S+

n ] = E[Sn] + E[S−n ] ≤ E[S0] + C,
since Sn is a supermartingale. Again by Fatou’s lemma, E[S+] <∞. Hence S <∞ almost everywhere.

Exercise 9.1. Let Sn be the symmetric random walk starting at zero. Use the martingale convergence
theorem to show that Sn is recurrent, that is, from every integer one reaches every other integer with
probability one.

Exercise 9.2. Let Sn be the random walk with p ≤ 1/2. Use the supermartingale convergence theorem to
show that from every integer one reaches every strictly smaller integer with probability one.

Exercise 9.3. Let Sn be the random walk with p < 1/2. Show that (q/p)Sn is a martingale. What is its
limit as n→∞? What does this say about the limit of Sn as n→∞?

Exercise 9.4. Let 0 < a < 1. Let Xn = Y1 · · ·Yn, where the Yi are independent with values 1 + a and 1− a
with equal probability. Show that Xn converges with probability one. What is the limit?

Exercise 9.5. Let Xn =
∑n
k=1

1
kYk, where the Yk = ±1 are the steps in a symmetric random walk. Show

that Xn → X as n→∞ with probability one.

Lecture 10. Dominated convergence theorems

Summary: If a sequence of random variables converges, then it does not follow in general that the
expectations converge. There are conditions that ensure that this happens. The most important ones involve
the concept of domination by a fixed random variable with finite expectation.

Perhaps the fundamental convergence theorem is the monotone convergence theorem, which is just
another formulation of countable additivity. Let Xn be a sequence of random variables. We say that Xn ↑ X
if for each outcome ω the Xn(ω) are increasing to the limit X(ω) as n→∞.

The monotone convergence theorem says that if the Xn are positive random variables, then Xn ↑ X
implies that E[Xn]→ E[X].

There are two very useful generalizations of the monotone convergence theorem. They are obvious
corollaries of the usual monotone convergence theorem, but note carefully the domination hypothesis!
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The dominated below monotone convergence theorem says that if the Xn are random variables with
E[X0] > −∞, then Xn ↑ X implies E[Xn]→ E[X].

The dominated above monotone convergence theorem says that if the Xn are random variables with
E[X0] <∞, then Xn ↓ X implies E[Xn]→ E[X].

Both the theorems would be false in general without the domination hypothesis. In general we will
say that a sequence of random variables Xn is dominated below if there exists a random variable Y with
E[Y ] > −∞ and with Xn ≥ Y for all n. Similarly, we say that Xn is dominated above if there exists a Z
with E[Z] <∞ and Xn ≤ Z for all n. It is important to notice that in probability theory it is often possible
to take the dominating function to be a constant!

Example 10.1. Let X be a positive random variable with E[X] = ∞. Let Xn = X/n. Then Xn ↓ 0, but
E[Xn] =∞ for each n.

We often encounter convergence that is not monotone. We say that Xn → X if for each outcome ω
we have Xn(ω) → X(ω) as n → ∞. There is a fundamental trick for reducing this more general kind of
convergence to monotone convergence.

Suppose that Xn → X. Note that
Xn ≥ inf

k≥n
Xk (10.1)

and that the random variables on the right are increasing with n to X. Similarly note that

Xn ≤ sup
k≥n

Xk (10.2)

and the random variables on the right are decreasing with n to X. It follows from the first inequality that
if the Xk are dominated below, then

E[Xn] ≥ E[ inf
k≥n

Xk]→ E[X]. (10.3)

This says that domination below implies that one can only lose expectation in the limit. Similarly, if the Xk

are dominated above, then
E[Xn] ≤ E[sup

k≥n
Xk]→ E[X]. (10.4)

This says that domination above implies that one can only gain expectation in the limit. These results are
both forms of Fatou’s lemma.

Example 10.2. Let W be a discrete waiting time random variable with P[W = k] = (1/2)k and conse-
quently P[n < W ] = (1/2)n. Let Xn = 2n if n < W <∞ and Xn = 0 otherwise. Thus we get a large reward
2n if we have to wait more than time n. On the other hand, we get no reward if we wait forever. This gives
an example where Xn(ω)→ 0 as n→∞ for each outcome ω, but E[Xn] = 1 for all n.

Exercise 10.1. Show in the previous example that supk≥nXk = 2W−1 for n < W < ∞ and otherwise is
zero. Thus we get a huge reward 2W−1 if we have to wait more than time n. However this becomes less and
less advantageous as n increases. Again we get no reward if we wait forever. Find the expectation of this
random variable. What does this say about domination from above?

In the martingale examples, we saw that a fair game could be favorable in the limit. This is only
because the game was not dominated below, so it had a sort of infinite reserve to draw on, and so could gain
expectation in the limit.

If we have domination both above and below, then the limit of E[Xn] is E[X]. This is the famous and
fundamental dominated convergence theorem.

We say that Xn → X almost surely if there is an event A with P[A] = 1 such that for all ω in A we
have Xn(ω) → X(ω) as n → ∞. All the above theorems on convergence are true when convergence at
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every outcome is replaced by almost sure convergence. This is because the values of expectations are not
influenced by what happens on the set Ac with probability zero.

We should record our results from martingale theory in the form of theorems. First recall the almost
sure convergence theorems.

Theorem 10.1 A supermartingale whose negative part has bounded expectation must converge almost
surely.

Theorem 10.2 A submartingale whose positive part has bounded expectation must converge almost surely.

Notice that the above results do not require domination. Domination is a stronger condition than a
bound on expectation. The following are the basic variants of Fatou’s lemma.

Theorem 10.3 If E[Xn] ≤ M and Xn → X almost surely and the Xn ≥ −Y with E[Y ] < ∞, then
E[X] ≤M . In particular, a supermartingale that is dominated below can only lose in the limit.

Theorem 10.4 If E[Xn] ≥ N and Xn → X almost surely and the Xn ≤ Y with E[Y ] <∞ , then E[X] ≥ N .
In particular, a submartingale that is dominated above can only gain in the limit.

Theorem 10.5 If Xn → X almost surely and the |Xn| ≤ Y with E[Y ] <∞, then E[Xn]→ E[X] as n→∞.
In particular, a martingale that is dominated below and above remains fair in the limit.

Exercise 10.2. Let Yk be a sequence of random variables such that
∑
k E[|Yk|] <∞. Show that E[

∑
k Yk] =∑

k E[Yk]. Hint: Find a dominating function for
∑n
k=1 Yk.

Exercise 10.3. Let An be a sequence of events such that An → A as n tends to infinity. This means that
for each outcome ω, we have ω ∈ A if and only if ω ∈ An for all sufficiently large n. Show that P[An]→ P[A]
as n tends to infinity.

Sometimes it is impossible to find a dominating function. Another device to control the expectation of
the limit is to get control on the variance or second moment. In this situation one can show that one has
approximate dominance by a large constant.

Theorem 10.6 If E[X2
n] ≤ C2 and Xn → X almost surely, then E[Xn]→ E[X] as n→∞. In particular, a

martingale with a bound on its second moment remains fair in the limit.

Proof: It is easy to see that E[(Xn −Xm)2] ≤ 4C2. Let m→∞. By Fatou’s lemma E[(Xn −X)2] ≤ 4C2.
Now consider a large constant K. Then

|E[Xn]−E[X]| ≤ E[|Xn −X|] = E[|Xn −X|1|Xn−X|≤K ] + E[|Xn −X]1|Xn−X|>K ] (10.5)

The second term on the right is bounded by

E[|Xn −X]1|Xn−X|>K ] ≤ 1
K

E[(Xn −X)2] ≤ 4C2

K
. (10.6)

Take K so large that this is very small. The first term then goes to zero by the dominated convergence
theorem (with dominating function K).

In the following examples we want to use martingales to do calculations. The technique is summarized
in the following two theorems.

Theorem 10.7 Let Sn be a martingale. Let T be the first time that the martingale reaches some set. Write
T ∧ n for the minimum of T and n. Then ST∧n is a martingale. In particular E[ST∧n] = E[S0].

Proof: The martingale ST∧n is equal to Sn for n < T and to ST for n ≥ T . If Sn = S0 +Y1 + · · ·+Yn, then
ST∧n = S0 +W1Y1 + · · ·+WnYn, where Wi is 1 or 0 depending on whether i ≤ T or i > T . Since one can

29



ascertain whether i > T by the history up to time i− 1, this is a gambling scheme. The strategy is to play
as long as you have not arrived at the set.

Theorem 10.8 Let Sn be a martingale. Let T be the first time that the martingale reaches some set.
Assume that T < ∞ with probability one. Assume that ST∧n is dominated above and below by random
variables that do not depend on n and that have finite expectation. Then E[ST ] = E[S0].

Proof: Since ST∧n → ST as n → ∞, this follows from the previous result and the dominated convergence
theorem.

Example 10.3. Symmetric random walk martingale stopped at r > 0. Recall the symmetric random walk
Sn = Y1 + · · · + Yn, where the Yi are independent random variables with Yi = ±1 and have mean zero.
Then Sn is a martingale. Let T be the first time that the process hits r > 0. Write T ∧ n for the minimum
of T and n. If we look at the process ST∧n where we stop Sn at the point r > 0, then ST∧n is also a
martingale. Since ST∧n is a submartingale that is bounded above, it must converge almost surely, and in
fact ST∧n → r as n→∞. This is compatible with Fatou’s lemma: ST∧n is dominated above by r, and the
limiting expectation is r ≥ 0. Since it is not dominated below, the fair game can be favorable in the limit.
With infinite reserves, opportunism is a winning strategy.

We can also consider the same process ST∧n as a supermartingale. Note that ST∧n − r ≤ 0, so
E[(ST∧n − r)−] = E[r − ST∧r] = r. This shows that the negative part has bounded expectation, so it must
converge almost surely (as we already know). However it is not dominated below, and in fact it gains in the
limit! This important counterexample show that there is really a need for an extra hypothesis to prevent a
supermartingale from gaining in the limit.

Example 10.4. Symmetric random walk martingale stopped at −s < 0 or r > 0. Instead let T be the
first time that Sn hits either −s < 0 or r > 0. The stopped process ST∧n is a bounded martingale and
hence must converge almost surely. It converges to ST as n → ∞. By the dominated convergence theorem
E[ST ] = 0, and from this one can work out the probability of the event of hitting either point.

Exercise 10.4. Work out these probabilities.

Also S2
n − n is a martingale. Let T be the hitting time of Sn for −s or r. The process S2

T∧n − T ∧ n
is a martingale. There is a slight problem in that it is not bounded below. However E[T ∧ n] = E[S2

T∧n] ≤
max(r2, s2). It follows from the monotone convergence theorem that E[T ] ≤ max(r2, s2). Hence T is a
dominating function for T ∧n. It follows from the dominated convergence theorem that E[T ] = E[S2

T ]. From
this one can calculate E[T ].

Exercise 10.5. Do this calculation.

Example 10.5. Random walk supermartingale stopped at r > 0. Now consider random walk Sn =
Y1 + · · ·+ Yn, but now the probability that Yi = 1 is p and the probability that Yi = −1 is q = 1− p. This
is not a martingale when p 6= 1/2. We must look for other martingales. (This is done systematically in the
theory of Markov chains, but here we only present the results for this example.)

The first martingale that we may associate with this problem is (q/p)Sn .

Exercise 10.6. Check that this martingale is obtained from a sum of independent random variables by a
gambling scheme.

Let T be the hitting time of Sn for a point r > 0. Consider the process ST∧n that is equal to Sn for
n ≤ T and to ST = r for n > T . This is the non-symmetric random walk stopped at r. Another useful
martingale is (q/p)ST∧n .

Exercise 10.7. Show that this is obtained from the previous martingale by a gambling scheme.

Assume that p < 1/2. Then (q/p)ST∧n is a bounded martingale. Hence it converges almost surely,
and the limit is (q/p)r with probability P[T < ∞]. Furthermore, the game is fair in the limit. Hence
1 = (q/p)rP[T <∞]. Thus we have computed the hitting probability of r > 0 to be (p/q)r.
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Lecture 11. The strong law of large numbers

Summary: The strong law of large numbers is a form of the law of averages that says that sample
means approach a limiting value and stay close to it throughout all future history. This can be proved
by applying the martingale convergence theorem to the sum of the martingale parts of the differences of
successive sample means.

Let Y1, . . . , Yn, . . . be a sequence of martingale differences with mean zero and variances σ2
1 , . . . , σ

2
n, . . ..

Let
Ȳn =

Y1 + · · ·+ Yn
n

(11.1)

be the sample mean. The change in the sample mean as the sample size is increased by one has a simple
and useful decomposition. This is

Ȳn − Ȳn−1 =
1
n
Yn − 1

n
Ȳn−1. (11.2)

It says that the change in the sample mean consists of a new contribution and a contribution from the
previous sample mean. The new contribution is a martingale difference. The other term is predictable from
the previous result.

This formula is useful as a stable way to update the mean. We can write it as

Ȳn =
1
n
Yn +

n− 1
n

Ȳn−1. (11.3)

Let
Zn = Y1 +

1
2
Y2 + · · ·+ 1

n
Yn (11.4)

with Z0 = 0. The update equation can be written as

nȲn = n(Zn − Zn−1) + (n− 1)Ȳn−1. (11.5)

This can be solved by iteration to give

nȲn = nZn − (Zn−1 + · · ·+ Z0), (11.6)

or
Ȳn = Zn − 1

n
(Z0 + · · ·Zn−1). (11.7)

This expresses the sample mean as the difference between the present value of the martingale and the average
of the past values of the martingale.

Theorem 11.1 (Kolmogorov’s strong law) Let Y1, . . . , Yn, . . . be a sequence of mean zero martingale differ-
ence random variables with finite variances σ2

1 , . . . , σ
2
n, . . .. Assume that the variances are uniformly bounded,

or more generally that the variances satisfy

∞∑
n=1

σ2
n

n2
= M2 <∞. (11.8)

Then with probability one the sample means Ȳn converge to zero as n→∞.

Proof: Let Zn be the sum as above. It is obtained from a martingale by a gambling scheme, therefore it is
a martingale. Its variance E[Z2

n] ≤ M2. As a consequence E[|Zn|] ≤ M . Therefore it converges to a limit
Z. For each outcome for which the martingale Zn → Z, it follows that the sample mean Ȳn → Z − Z = 0.

Of course if the random variables of interest do not have mean zero, then this theorem is applied to
their centered versions.
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One can ask in what way this strong law improves on the weak law of large numbers. The weak law
implies that if n is large, then the sample mean Ȳn is likely to be close to the mean. The strong law says
that if n is large, then all the sample means Ȳk for k ≥ n are likely to be close to the mean. This is a much
stronger assertion.

Here is a precise way of making the comparison. Take ε > 0. The weak law implies that

ε2P[|Ȳn| ≥ ε] ≤ E[Ȳ 2
n ]→ 0 (11.9)

as n→∞. In other words, for each ε > 0 P[|Ȳn| < ε]→ 1 as n→∞.

The strong law implies that
P[∃n∀k ≥ n |Ȳk| < ε] = 1. (11.10)

Since the events ∀k ≥ n |Ȳk| < ε are increasing with n to an event with probability one, by the monotone
convergence theorem their probability approaches one. Thus P[∀k ≥ n |Ȳk| < ε]→ 1 as n→∞.

Exercise 11.1. Show that the condition of almost sure convergence

P[∀ε > 0∃n∀k ≥ n |Xk −X| < ε] = 1 (11.11)

is equivalent to the condition ∀ε > 0 P[∃n∀k ≥ n |Xk−X| < ε] = 1 and that this is in turn equivalent to the
convergence in probability of the entire future history:

∀ε > 0 lim
n→∞

P[∀k ≥ n |Xk −X| < ε] = 1. (11.12)

Show that any of these conditions implies the usual condition of convergence in probability for the individual
random variables: ∀ε > 0 limn→∞P[|Xn −X| < ε] = 1.

Exercise 11.2. There is a slight technical difference between the hypotheses in the two theorems. Show that
the hypothesis on the variances in the strong law of large numbers implies the hypothesis on the variances
in the weak law of large numbers.

Example 11.1. Consider a sum of independent and identically distributed random variables with mean
zero and finite variance. The path Sn = Y1 + . . . + Yn is a generalization of the random walk that we have
been considering. Let ε > 0 and consider the cone |s| ≤ εn. The weak law says that for n sufficiently large
the point (n, Sn) is very likely to satisfy |Sn| ≤ εn and so be inside this cone. The strong law says that with
probability one there is an n such that for all k ≥ n the points (k, Sk) all lie in this cone. It is a prediction
about the entire future history of the process.

Let p+ q = 1 with p 6= q. Consider the number of successes Nn in n trials. Write

Xn = 2npNnqn−Nn . (11.13)

Then Xn is the ratio of the probability of a path computed with parameter p to the probability of the same
path computed with parameter 1/2.

Exercise 11.3. We have seen that when the probability model is independent trials with probability of
success on one trial equal to 1/2, then the ratios Xn form a martingale, and Xn converges to zero almost
surely as n → ∞. Give an independent proof of this by applying the strong law of large numbers to the
sample frequencies Nn/n.

Exercise 11.4. Show that if the probability model is independent trials with probability of success on one
trial equal to p, then Xn is a submartingale and Xn converges to infinity almost surely as n→∞.

Exercise 11.5. Kolmogorov’s strong law of large numbers implies that if Y1, . . . , Yn, . . . is a sequence of
martingale differences with E[Y 2

n ] ≤ C2, then Ȳn → 0 as n → ∞ with probability one. This version has a
particularly simple proof. Write the difference

Ȳn − Ȳn−1 =
Yn
n
− 1
n
Ȳn−1 (11.14)
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as the sum of a martingale difference and a predictable part. Show that

E[|Ȳn−1|] ≤ C√
n− 1

. (11.15)

Show that the sum of the predictable parts converges absolutely with probability one.

Exercise 11.6. The conclusion of Kolmogorov’s strong law of large numbers makes no mention of variances,
so it is tempting to imagine a theorem of the following form: If Y1, . . . , Yn, . . . is a sequence of martingale
differences with E[|Yn|] ≤ C, then Ȳn → 0 with probability one. This is false. Find a counterexample.

Exercise 11.7. The counterexample must not satisfy the hypotheses of Kolmogorov’s theorem. Check this.

Exercise 11.8. Let Sn = Y1 + . . .+ Yn. Prove the update formula

Sn
an

=
Yn
an

+
an−1

an

Sn−1

an−1
. (11.16)

Exercise 11.9. In the previous exercise let Z0 = 0 and Zn =
∑n
j=1(Yj/aj). Show that

Sn
an

= Zn −
n∑

k=1

ak − ak−1

an
Zk−1 (11.17)

where a0 = 0.

Exercise 11.10. In the previous exercise, show that if the an are increasing to infinity and Zn → Z, then
Sn/an → 0.

Exercise 11.11. Consider martingale differences Yi with mean zero and variance σ2. Show that E[S2
n] = nσ2

and E[|Sn|] ≤ n1/2σ. Thus the sum Sn of n random terms grows on the average like n1/2.

Exercise 11.12. Take an = n1/2(log n)1/2+ε with ε > 0. Consider martingale differences Yi with mean zero
and variance σ2. Show that Sn/an → 0 with probability one. Thus even the largest fluctuations of a sum
Sn of n random terms grow at most only slightly faster than n1/2.

Lecture 12. Convergence of distributions

Summary: The distribution of a random variable describes the various probabilities that can be
calculated using the values of the random variable. Given a sequence of random variables, it is possible
that the corresponding sequence of distributions converges in some appropriate sense. In order to prove that
the distributions converge, it is sufficient to prove the convergence of expectations involving certain smooth
functions of the random variables.

We say that the distribution of Xn converges weakly to the distribution of X as n → ∞ if for each
bounded continuous function f we have E[f(Xn)]→ E[f(X)] as n→∞.

Exercise 12.1. Say that the distribution of Xn converges weakly to the distribution of X. Let g be a
continuous function. Show that the distribution of g(Xn) converges weakly to the distribution of g(X).

Exercise 12.2. For each p = 1/n let Wn be a discrete waiting time random variable, so that P[Wn = k] =
(1 − p)k−1p. Fix λ > 0. Show that the distribution of Wn/(nλ) converges weakly to the distribution of a
continuous exponential waiting time with parameter λ.

Example 12.1. Say that Xn = an and X = a are constant random variables. The distribution of each
of these random variables is a probability measures that assigns probability one to a single point. Suppose
an → a as n → ∞. Then the distribution of Xn converges weakly to the distribution of a. This just says
that f(an)→ f(a). Note that the continuity of f is essential.
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Example 12.2. It would be a mistake to think that if the distribution of Xn converges weakly to the
distribution of X, then Xn must converge to X. Take for instance a situation where Y has the values 1 and −1
each with probability 1/2. Let Xn = Y and X = −Y . The E[f(Xn)] = E[f(X)] = f(1)(1/2) + f(−1)(1/2).
However the random variable Xn is very far from the random variable X.

Exercise 12.3. Show that it is possible that the distribution of Xn approaches the distribution of X, the
distribution of Yn approaches the distribution of Y , but the distribution of Xn + Yn does not approach the
distribution of X + Y .

Exercise 12.4. Show that the distribution of Yn approaches the distribution of a if and only if for every
ε > 0 we have P[|Yn − a| < ε] → 1 as n → ∞. Hint: Approximate the indicator function of the interval
(a− ε, a+ ε) above and below by continuous functions that have the value 1 at a.

Exercise 12.5. Show that in the weak law of large numbers the distribution of the sample means Ȳn
approaches the distribution of the constant µ.

Exercise 12.6. Show that if the distribution of Xn approaches the distribution of X, and the distribution
of Yn approaches the distribution of a, then the distribution of Xn+Yn approaches the distribution of X+a.

Exercise 12.7. Show that if the distribution of Xn approaches the distribution of X, and the distribution
of Yn approaches the distribution of a, then the distribution of YnXn approaches the distribution of aX.

Exercise 12.8. Let g be a smooth function, say bounded with bounded derivatives. Show that if the
distribution of Xn approaches the distribution of a and the distribution of (Xn − a)/bn approaches the
distribution of Z, then the distribution of (g(Xn)− g(a))/bn approaches the distribution of g′(a)Z.

Ideally we would like to have P[Xn ≤ a] converge to P[X ≤ a] as n → ∞ for each a. However this is
too much to expect in general.

Example 12.3. Let Xn be the constant random variable whose value is always 1/n. Let X be the constant
random variable whose value is always 0. The distribution of Xn, which is a probability measure concentrated
on the point 1/n, converges weakly to the distribution of X, a probability measure concentrated on the point
0. However P[Xn ≤ 0] = 0 for all n, while P[X ≤ 0] = 1.

Theorem 12.1 If the distribution of Xn converges weakly to the distribution of X, and if P[X = a] = 0,
then P[Xn ≤ a]→ P[X ≤ a] as n→∞.

Proof: Let f be the indicator function of (−∞, a]. Even though this is not a continuous function, we want
to show that E[f(Xn)] converges to E[f(X)].

Let ε > 0. Since P[X = a] = 0, it follows that P[a− 1/k ≤ X ≤ a+ 1/k] < ε/2 for k sufficiently large.

Let g be the continuous function that is 1 below a− 1/k, 0 above a and linear in between. Let h be the
continuous function that is 1 below a, 0 above a+1/k, and linear in between. Then g ≤ f ≤ h and f −g ≤ 1
and h − f ≤ 1. Thus E[g(X)] ≤ E[f(X)] ≤ E[h(X)], and the two extreme numbers are both within ε/2 of
the number in the middle.

Now E[g(Xn)] ≤ E[f(Xn)] ≤ E[h(Xn)], and for n sufficiently large E[g(Xn)] and E[h(Xn)] are each
within ε/2 of E[g(X)] and E[h(X)]. It follows that E[f(Xn)] is within ε of E[f(X)]. This completes the
proof.

The rest of the material in this section is technical. It is useful to be able to prove weak convergence
by checking convergence only for smooth functions. Let C∞c be the space of all smooth functions that each
vanish outside of some interval (depending on the function). Let Xn be a sequence of random variables
and let X be another random variable. The distribution of Xn converges in the sense of Schwartz to the
distribution of X if for all f in C∞c

E[f(Xn)]→ E[f(X)]. (12.1)

The space of continuous functions that vanish at infinity is often a natural space in measure theory,
so we also introduce it here. Let C0 be the space of all continuous functions that vanish at infinity. The
distribution of Xn converges in the sense of Radon to the distribution of X if for all f in C0

E[f(Xn)]→ E[f(X)]. (12.2)
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Recall also the definition of weak convergence. Let BC be the space of all bounded continuous functions.
The distribution of Xn converges weakly to the distribution of X if for all f in BC

E[f(Xn)]→ E[f(X)]. (12.3)

Theorem 12.2 If the distribution of Xn converges to the distribution of X in the sense of Schwartz, then
it converges in the sense of Radon.

Proof: This follows form the fact that every f in C0 may be approximated uniformly with arbitrary precision
by a function g in C∞c . (This fact is proved in courses of analysis.)

Theorem 12.3 If the distribution of Xn converges to the distribution of X in the sense of Radon, then it
converges weakly.

Proof: It is not true that every function f in the space BC of bounded continuous functions can be
approximated uniformly by a function in C0 that also vanishes at infinity. So we must use an approximation
argument. Let f be bounded above and below by some constant C.

Let ε > 0. Let h be a function that is 1 on some large interval [−M,M ], 0 on (−∞,−M − 1] and on
[M + 1,∞) and linear in between. By the monotone convergence theorem we can choose M so large that
E[h(X)] ≥ 1 − ε/(6C). Then since h is continuous and vanishes at infinity, we can take n so large that
E[h(Xn)] ≥ 1− ε/(3C).

Now consider the function hf obtained by multiplying the values of the two functions; it is continuous
and vanishes at infinity. The function (1 − h)f need not vanish at infinity, but we have chosen h so that
E[(1− h)(Xn)] and E[(1− h)(X)] are both bounded above by ε/(3C). Furthermore, we have

E[f(Xn)]−E[f(X)] = E[(1− h)(Xn)f(Xn)] + E[hf(Xn)]−E[hf(X)] + E[(1− h)(Xn)f(X)]. (12.4)

For n large enough we can make the absolute value of the difference of the two middle terms on the right
hand side smaller than ε/3. It follows that the absolute value of the difference on the left hand side is smaller
than ε.

Lecture 13. The central limit theorem

Summary: The central limit theorem says that under rather general circumstances the distribution
of a standardized sum of independent random variables approaches the standard normal distribution. This
gives a detailed description of the deviations from average behavior.

The central limit theorem says that the normal distribution (or Gaussian distribution) is in some sense
universal. Before beginning, we should ask the question: why the normal distribution? The answer is
that this is the distribution with finite variance that reproduces itself under addition of independent ran-
dom variables and appropriate normalization. Recall that the standard normal distribution has density
(1/
√

2π) exp(−z2/2).

Theorem 13.1 Let Z1, . . . , Zn be independent standard normal random variables with mean zero. Let
σ2

1 + · · ·+ σ2
n = 1. Then W = σ1Z1 · · ·+ σnZn is also standard normal.

Proof: We give the proof for the case n = 2. The proof of the general case can be done using the same idea
or derived from the case n = 2. This is left as an exercise.

The idea is to look at the joint density of the standard normal random variables Z1 and Z2. Since the
random variables are independent, this is just the product

ρ(z1)ρ(z2) =
1

2π
exp(−1

2
z2

1) exp(−1
2
z2

2) =
1

2π
exp(−1

2
(z2

1 + z2
2)). (13.1)
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This uses the special fact that the product of exponentials is the exponential of a sum. The probability that
the point (Z1, Z2) is in some subset of the plane is given by the integral of the joint density over this subset.
This is obvious for rectangles, and it extends to more general sets by an approximation argument.

The other special fact that we use is that the quadratic form z2
1 + z2

2 is invariant under rotation. Let
w1 = σ1z1 + σ2z2 and w2 = −σ2z1 + σ1z2. The wi arise from the zj by a rotation in the plane. Define
corresponding random variables Wi in terms of the Zj by the same rotation formula.

We compute the joint density of W1 and W2. To find the probability that (W1,W2) are in some set
in the plane, we integrate the joint density of (W1,W2) over this set. This joint density is given by taking
the joint density of Z1 and Z2, dividing by the Jacobian determinant of the transformation, and expressing
the zj in terms of the wi. The Jacobian determinant of a rotation is one, so there is no problem with that.
Furthermore z2

1 + z2
2 = w2

1 + w2
2 is invariant under rotation. The joint density is thus

1
2π

exp(−1
2

(w2
1 + w2

2)) =
1

2π
exp(−1

2
w2

1) exp(−1
2
w2

2) = ρ(w1)ρ(w2). (13.2)

So W1 and W2 are also independent standard normal variables. This completes the proof.

Exercise 13.1. Show that the case n = 2 of the theorem implies the general case.

Exercise 13.2. Show that
∫∞
−∞ ρ(z) dz = 1. The trick is to first show that

∫ ∞
−∞

∫ ∞
−∞

ρ(z1)ρ(z2) dz1 dz2 =
∫ ∞
−∞

∫ ∞
−∞

1
2π
e−

1
2 (z2

1+z2
2) dz1 dz1 = 1. (13.3)

Since the standard normal distribution is universal, it is useful to remember some numerical facts about
it. The probability that |Z| < 1 is about 68 percent, somewhat over two thirds. The probability that |Z| < 2
is about 95 percent. These are rough figures, but they are simple enough to memorize.

Exercise 13.3. Find P[0 < Z < 1]. Find P[1 < Z < 2]. Find P[2 < Z].

Exercise 13.4. Show that for x > 0 we have P[Z > x] < (1/x)(1/
√

2π) exp(−x2/2).

Exercise 13.5. Estimate P[Z > 3].

Now we turn to the central limit theorem. Recall that in the weak law of large number we took a
sum of independent random variables and divided by the number of terms. The result was convergence
to a constant. However this does not give a very precise idea of how the sum diverges. The central limit
theorem considers the situation when one divides by the square root of the number of terms. Then there is
a remarkable universal behavior given by the normal (Gaussian) distribution.

For convenience in the following we shall deal with centered random variables, so that we do not have
to mention the means explicitly. One should keep in mind that we are thinking about fluctuations about
the mean.

Consider a sequence of independent random variables Y1, . . . , Yn with mean zero and with finite variances
σ2

1 , . . . , σ
2
n. Let

s2
n = σ2

1 + · · ·+ σ2
n (13.4)

be the variance of the sum of the first n random variables. Consider the ratio Yi/sn of an individual
observation to the standard deviation of the sum. Fix ε > 0 independent of n. The observation Yi is large if
the ratio |Yi/sn| > ε. Let (

Yi
sn

)

>ε

=
(
Yi
sn

)
1|Yi/sn|>ε

be the large observation contribution to the ratio.

The Lindeberg condition is that for each ε > 0 the contribution of the large observations is small in the
sense that

E[
n∑

i=1

(
Yi
sn

)2

>ε

]→ 0 (13.5)
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as n→∞.

Example 13.1. Let the Yi all have the same distribution, so each σ2
i = σ2 and s2

n = nσ2. This is the most
classical case of the central limit theorem. Then

E[
n∑

i=1

(
Yi
sn

)2

>ε

] =
1
σ2

E[Y 2
1 1|Y1|>

√
nσε]→ 0 (13.6)

by the monotone convergence theorem. The Lindeberg condition is automatic in this case, since the contri-
bution from each of the observations is comparable.

Example 13.2. . Let there be a fixed constant C such that each |Yi| ≤ C. Assume also that the total
variance s2

n →∞ as n→∞. Then for n large enough there are no large observations. Clearly the Lindeberg
condition is satisfied in this case.

Example 13.3. Of course there are examples where the Lindeberg condition is violated. The simplest such
example is where Y1 is a random variable and all Yi = 0 for i ≥ 2. Then Y1/sn = Y1/σ1, and so the first
observation is large.

Remark: The Lindeberg condition implies that the ratio of an individual variance to the total variance
is arbitrarily small. This is because σ2

i /s
2
n = E[(Yi/sn)2] is bounded by ε2 + E[(Yi/sn)2

>ε]. For each ε > 0
we can make this less than 2ε2 for n sufficiently large.

Theorem 13.2 (Central Limit Theorem) Let Y1, . . . , Yn, . . . be a sequence of independent random vari-
ables with mean zero and with finite variances σ2

1 , . . . , σ
2
n, . . .. Assume the Lindeberg condition. Then the

distribution of
Y1 + · · ·+ Yn√
σ2

1 + · · ·+ σ2
n

(13.7)

converges weakly to the standard normal distribution as n→∞.

Proof: It is sufficient to show that the distributions converge in the Schwartz sense. The key will be the
observation that Yn and Y 2

n − σ2
n are martingale differences, and hence weighting them with a gambling

system does not change the mean from zero.

The proof uses the device of comparing the independent random variables Y1, . . . , Yn with independent
normal random variables σ1Z1, . . . , σnZn. We take the Zi to be standard normal random variables, and
we take σ2

i = E[Y 2
i ]. Write s2

n = σ2
1 + · · · + σ2

n as before. Our explicit calculation shows that Z =
(σ1Z1 + · · ·σnZn)/sn is standard normal.

Let f be a function in C∞c . We want to estimate the expectation of the difference

f(
Y1 + · · ·+ Yn

sn
)− f(Z). (13.8)

We replace the Yk by the σkZk one by one. Let

Uk =
Y1 + · · ·+ Yk−1 + σk+1Zk+1 + · · ·σnZn

sn
. (13.9)

Notice that this depends only on the first k−1 observations. Then the difference is the sum of the differences

f(Uk +
Yk
sn

)− f(Uk +
σkZk
sn

) (13.10)

from k = 1 to n. So we have n terms to estimate.
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the hypothesis that the Y 2
k − σ2

k are approximate martingale differences in an average sense. This means
that for every uniformly bounded sequence of gambling schemes Wk we have

n∑

k=1

E[Wk

(
Y 2
k − σ2

k

s2
n

)
]→ 0 (13.15)

What can we conclude from this theorem? It says that if we take n independent random variables and
consider their sum, and if there are no significant contributions to the variance from relatively large values,
then the standardized version of the sum is approximately normal. Notice that there is no requirement that
the distributions have the same distribution or even the same variance. This may help explain why the
normal distribution sometimes arises in nature.

A most important special case is that of independent and identically distributed random variables with
finite variance. An experimenter may create this situation by repeating an experiment under identical
conditions. We state this as a corollary.

Theorem 13.3 (Central Limit Theorem) Let Y1, . . . , Yn, . . . be a sequence of independent and identically
distributed random variables with mean µ and with finite variances σ2. Then the distribution of

Y1 + · · ·+ Yn − nµ
σ
√
n

(13.16)

converges weakly to the standard normal distribution as n→∞.

The conclusion may also be stated in the form: the distribution of

Ȳn − µ
σ/
√
n

(13.17)

approaches a standard normal distribution as n→∞.

One fact about the normal distribution that is easy to remember is that P[|Z| ≤ 2] is approximately
.95. So the probability that the sample mean is within 2σ/

√
n of the mean is about ninety five percent.

Recall that for the fraction of successes in binomial trials the σ is bounded above by 1/2. So the
probability that the sample proportion is within 1/

√
n of the probability of success exceeds ninety five

percent. If one forgets everything else in these lectures, that fact is worth retaining.

Exercise 13.7. How large a sample needs to be taken in a poll so that the probability that the sample
proportion is within 2.5 percent of the population proportion is at least 95 percent?

Exercise 13.8. A population of athletic men has an average weight of 93 kilograms with a standard
deviation of 14 kilograms. A statistician does not know these figures, but is able to take a sample of 49 men
and compute the sample mean. What is the probability that such a sample mean is with 2 pounds of 93?

Exercise 13.9. Consider the previous problem. The statistician can still only afford samples of size 49.
How good are these samples? There is a value of a so that the probability that the sample mean is within a
of 93 is ninety-five percent. Find this value.

Exercise 13.10. Consider the previous problems. The statistician is now willing to pay for a larger sample.
How large should the sample size be so that the probability that the sample mean is within 2 pounds of 93
is ninety-five percent?

Exercise 13.11. Assume that angles are distributed uniformly over the interval from 0 to 2π. A statistician
takes an independent sample of n angles Θi and computes the sample mean Θ̄n. What does the central
limit theorem say about the distribution of such sample means? Find constants cn so that (Θ̄n − π)/cn has
a non-trivial limiting distribution.
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Exercise 13.12. Another statistician computes the tangents Yi = tan(Θi) of the angles. Find the density of
the random variables Yi. Say that the statistician takes an independent sample of n tangents and computes
the sample mean Ȳn. What does the central limit theorem say about the distribution of such sample means?

Exercise 13.13. The central limit theorem says that the sample mean Ȳn when standardized is approxi-
mately normally distributed. How about g(Ȳn) suitably standardized? Will it be approximately normally
distributed? Assume that g is smooth and that g′(µ) 6= 0.

Exercise 13.14. In the previous problem what happens if g′(µ) = 0?

Lecture 14. Statistical estimation

Summary: One kind of statistical problem is when one has independent random variables with a
fixed but unknown expectation. One wants to use some quantity such as the sample mean to estimate this
unknown quantity. The central limit theorem gives a description of how well such procedures work.

This lecture is a very brief introduction to statistics. The most classical situation is an observation of a
sequence of independent and identically distributed random variables Y1, . . . , Yn. However the distribution
is unknown.

The statistician is allowed to perform the experiment and obtain a finite number of experimental num-
bers Y1(ω), . . . , Yn(ω) depending on the outcome ω. ¿From these numbers the statistician is to guess the
distribution, or at least to guess certain information about the distribution. In the usual language of statis-
tics, knowledge of the distribution is knowledge of the population. The values of the random variable are the
sample. One wants to infer knowledge of the population from observations of the sample.

For instance, assume that the Yi all have mean E[Yi] = µ. The statistician may decide to use the value
of the sample mean

Ȳn =
∑n
i=1 Yi
n

(14.1)

to guess the population mean µ. What are the consequences of this choice of method?

In the long run, the statistics community in adopting this method is measuring random variables of
the form Ȳn. We know that these random variables have mean µ and standard deviation σ/

√
n, where σ is

the standard deviation of an individual observation Yi. Assume for the moment that σ is finite. Then for
n large enough, depending on the (unknown) population standard deviation σ, the standard deviation of
the sample mean σ/

√
n is small. Furthermore, by the central limit theorem, the distribution of the sample

mean is approximately Gaussian. So statisticians who use large enough samples should most of the time get
rather accurate estimates.

The next problem is to guess the population standard deviation σ. It is natural to use the sample
variance

Vn =
∑n
i=1(Yi − Ȳn)2

n− 1
(14.2)

to estimate the population variance σ2. The factor n − 1 in the denominator is put there to ensure that
E[Vn] = σ2. This is a convenient convention, but it obviously has little importance for large n.

Exercise 14.1. Show that E[
√
Vn] 6= σ. Is it bigger or smaller?

Of course the mean and variance do not give in general all the information about the population.
Furthermore, if the variance is large, then the sample mean may not be at all the best way of estimating
the population mean! All these difficulties disappear if the population is known to be normal or Gaussian.
In this case the distribution of each Yi is determined by the two parameters µ and σ2, and it is exceedingly
natural to estimate these by the sample mean and sample variance.

In the general case one might want to think of other methods. There are many devices. The simplest
one is the use of order statistics. We consider the case when the distribution of the Yi is determined by
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the (unknown) function F (y) = P[Yi ≤ y]. Let Y[1] ≤ . . . ≤ Y[i] ≤ . . . ≤ Y[n] be the Y1, . . . , Yn arranged in
increasing order. Then Y[i] is called the ith order statistic. The order statistics divide the real axis into n+1
random sample intervals.

Exercise 14.2. Find the distribution function of the ith order statistic.

Exercise 14.3. Show that the order statistics are not independent.

Fix a value of t between 0 and 1, and assume that there is a value of y with F (y) = t. Thus the
proportion of the population with values less than or equal to y is t. Then one might want pick i so that
i/(n + 1) is close to t and use Y[i] to estimate y. This is reasonable because the proportion of the sample
intervals containing values less than Y[i] is i/(n+ 1).

The case when the population is divided into two equal halves is of special importance. If t = 1/2, then
the corresponding y is called the population median. If n is odd the middle order statistic Y[(n+1)/2] is called
the sample median. One can take the sample median as an estimate of the population median.

How well do the procedures based on order statistics work? The following theorem provides the answer.

Theorem 14.1 Let F (y) = t and assume that the density F ′(y) = f(y) > 0. Then as n → ∞ with√
n(i/n − t) → 0, the order statistic Y[i] is approximately normally distributed with mean y and standard

deviation
√
t(1− t)/(f(y)

√
n).

Proof: Let N(x) be the number of i such that Yi ≤ x. This is a binomial random variable with mean nF (x)
and variance nF (x)(1− F (x)). Furthermore Y[i] ≤ x is equivalent to N(x) ≥ i. If we let

Z =
N(x)/n− F (x)√
F (x)(1− F (x))/n

(14.3)

be the standardized random variable corresponding to N(x), then Y[i] ≤ x is equivalent to

−Z ≤ F (x)− i/n√
F (x)(1− F (x))/n

(14.4)

Take x = y + ε/
√
n. Then the right hand side converges to εf(y)/

√
t(1− t). So the probability that

Y[i] − y ≤ ε/
√
n is the same as the probability that a standard normal random variable −Z does not exceed

εf(y)/
√
t(1− t).

Notice that it is possible that the statistician knows that the population mean is the same as the
population median. In this case one can use either the sample mean or the sample median to estimate this
number. Which is better to use? For the sample mean to be appropriate, the variance must be small—
extremely large observations must be unlikely. For the sample median to be appropriate, the density at the
population mean must not be too close to zero—however large observations are irrelevant. Knowing which
to use seems to require some knowledge of the population, which is exactly what the statistician does not
have.

Exercise 14.4. Compare the variances of the sample mean and the sample median for the case of a normal
population. Of course this is a case when the advantage will go to the sample mean; it will have the smaller
variance. By enough to make a difference?

Exercise 14.5. Find an example where the sample median has a much smaller variance than the sample
mean.
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Appendix: Final Examination

Martingale Ideas in Elementary Probability
Spring 1996

Final Examination

0. Basic definitions

A supermartingale is a sum of random variables Sn = S0 + Y1 + . . .+ Yn, where each Yi is a supermartingale
difference. This means that for every sequence of gambling scheme random variables Wi ≥ 0 that depend
only on S0, Y1, . . . Yi−1 we have E[WiYi] ≤ 0. Intuition: a supermartingale is an unfavorable game that
cannot be made favorable by a gambling scheme.

A gambling scheme converts a supermartingale into a supermartingale. Thus if Sn = S0 + Y1 + · · ·Yn is
a supermartingale and if X0 is a function of S0 and Zi = WiYi, then Xn = X0 + Z1 + · · · + Zn is also a
supermartingale.

The supermartingale convergence theorem says that a supermartingale that is bounded below must converge
with probability one.

A submartingale is defined in the same way, except that E[WiYi] ≥ 0. A martingale is both a supermartingale
and a submartingale. For a martingale E[WiYi] = 0 without the restriction on the sign of Wi.

1. Waiting times

A random variable W is an exponential waiting time with mean 1/λ if

P[W > t] = e−λt

for t ≥ 0. Thus it has density λe−λt for t ≥ 0. Let W0,W1, . . . ,Wn, . . . be independent exponential waiting
times with mean 1/λ. Think of W0 as the time you have to wait for the tram. Let N be the least n ≥ 1 so
that Wn > W0. Thus N is the number of trams until a longer wait. Find the probability P[N ≥ k]. Find
the probability P[N = k]. Find the expectation E[N ].

2. Matched pairs

In a medical experiment people with similar characteristics are paired. There are 100 such pairs. In each
pair a drug is given to one individual and a placebo is given to the other. An independent evaluator is told
to guess which individual has been given the drug. The drug has no effect. What is the chance that the
evaluator guesses the correct individual in more than 60 of the pairs?

3. Random growth

A random variable Y is uniform on [0, a] if P[Y ≤ y] = y/a for 0 ≤ y ≤ a. Thus it has density 1/a for
0 ≤ y ≤ a. Here is a model for random growth of a population. The first generation is some number X0 > 0.
Each succeeding generation Xn+1 = YnXn, where Yn is distributed uniformly on the interval from 0 to a.
One might think that there would be an eventual exponential growth rate λ of the Xn. In that case, the rate
λ could be computed as a limit of log(Xn)/n. What is λ? In what sense does the convergence take place?
How large must a be so that the growth rate is positive?

4. Statistics

A random variable Z is standard normal if it has density

ρ(z) =
1√
2π
e−

1
2 z

2
.

A statistician is measuring independent standard normal random variables Z1, . . . , Zn. However he is worried
that he might be instead dealing with normal random variables that have mean ε > 0 and variance one. He
therefore decides to compute the “likelihood ratio”

Xn =
ρ(Z1 − ε) · · · ρ(Zn − ε)

ρ(Z1) · · · ρ(Zn)
.
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He will be reassured if this ratio is small.

a. Lemma: A product Xn = R1 · · ·Rn of independent positive random variables Ri > 0 with means
E[Ri] = 1 is a martingale. Prove this lemma.

b. Show that the likelihood ratio is not small on the average; in fact that Xn is a martingale whose
expectation is always one.

c. What is the limit as n→∞ of the likelihood ratios Xn?

5. Insurance

An government insurance company has an equal chance of collecting a premium or paying a claim each day
on which there is activity. However there are days when there is no activity at all. It starts with an initial
reserve of X0 = x ≥ 1, where x is an integer. If it has a reserve Xn ≥ 1 at day n, then at the next day it will
gain or lose Yn+1, where Yn+1 = 1, 0,−1 with probabilities pn/2, (1−pn) and pn/2. Thus Xn+1 = Xn+Yn+1

for Xn ≥ 1. If Xn = 0, then the company is declared bankrupt and Xn+1 = 0.

a. Show that the reserve Xn is a martingale. Show that for each n the expected value of Xn is x.

b. Show that with probability one Xn has a limit X∞ as n→∞.

c. Show that if there is rapidly decreasing activity, that is,
∑
n pn <∞, then the expected value of X∞ is x.

d. Show that otherwise, if
∑
n pn =∞, then the expected value of X∞ is not x. What is it? Hint: If activity

eventually ceases, then there is some n such that Yk = 0 for all k ≥ n. Calculate the probability that Yk = 0
for all k ≥ n.

6. A queue

A random variable ξ has a Poisson distribution with mean µ > 0 if

P[ξ = k] =
µk

k!
e−µ.

Here is a model for emptying a queue. Let ξ1, ξ2, ξ3, . . . be independent random variables, each with a Poisson
distribution with mean µ. There are Xn people in the queue. If Xn ≥ 1, then one person is served and then
ξn+1 new people enter the queue. Thus

Xn+1 = Xn − 1 + ξn+1

when Xn ≥ 1. If Xn = 0, then the queue is empty. Work stops, and Xn+1 = 0. We start with X0 = x ≥ 1.

a. When is the queue Xn a supermartingale, a submartingale, a martingale? What does the supermartingale
convergence theorem say about the long term behavior of the queue when µ ≤ 1?

b. Show that if µ > 1 there is a solution ρ < 1 of the equation E[ρξ] = ρ.

c. Show that ρXn is a martingale.

d. Use this martingale to find the probability in the case µ > 1 that the queue ever empties, that is, that
Xn is eventually zero.

e. Let X̃n = Xn + (1−µ)n when Xn ≥ 1 and X̃n = (1−µ)T when Xn = 0, where T is the least n such that
Xn = 0. Show that X̃n is a martingale. Use this martingale to show that when µ < 1 the expected time
E[T ] to empty the queue is finite.
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Answers

1. The joint distribution of W0, . . . ,Wk−1 is symmetric under permutations of the random variables. Thus
P[N ≥ k] = P[W0 ≥ W1, . . . ,W0 ≥ Wk−1] = 1/k. Hence P[N = k] = 1/k − 1/(k + 1) = 1/(k(k + 1)).
Finally E[N ] =

∑∞
k=1 kP[N = k] =

∑∞
k=1 1/(k + 1) =∞.

2. Here N100 = Y1 + . . .+ Y100, where Yi = 1 or 0 with probability 1/2. Thus µ = 1/2 and σ = 1/2. Hence
the standardized random variable is

Z =
N100 − 100 1

2√
100 1

2

=
N100 − 50

5
.

According to the central limit theorem

P[N100 ≥ 60] = P[Z ≥ 2] = .025.

3. We have
logXn

n
=

logX0

n
+

log Y1 + · · ·+ log Yn
n

→ λ

as n→∞, where

λ = E[Y1] =
∫ a

0

log y dy/a = log a− 1.

According to the strong law of large numbers, the convergence takes place with probability one. If a > e
then λ > 0.

4. a. A productXn = Rn · · ·R1 of independent positive random variables each with mean one is a martingale.
This is because the difference Xn+1 − Xn = (Rn+1 − 1)Xn is the product of a martingale difference by a
weight from a gambling scheme.

b. This is the situation in this model, since

E[
ρ(Zn − ε)
ρ(Zn)

] =
∫
ρ(z − ε) dz = 1.

c. This is a positive martingale; hence it must converge with probability one. The only possibility is for it
to converge to zero, since otherwise each time multiplying by a factor of

ρ(Zn − ε)
ρ(Zn)

= eεZn−
1
2 ε

2

would produce a large random change in the value. [One can also check convergence to zero by direct
application of the strong law of large numbers.]

5. a. The random walk Sn = x+ Y1 + · · ·Yn is a martingale. The differences Zn+1 = Xn+1 −Xn are equal
to Yn+1 times a factor that is 1 when Sn ≥ 1 and to 0 when Sn = 0. This is an application of a gambling
scheme, so Xn is also a martingale.

b. This martingale is bounded below, so it converges with probability one.

c. Let us compute

E[X2
n] = x2 +

n∑

k=1

E[Z2
k ] ≤ x2 +

n∑

k=1

E[Y 2
k ] = x2 +

n∑

k=1

pk ≤ x2 +
∞∑

k=1

pk.

Since this is bounded independently of n, the limit

E[X∞] = lim
n

E[Xn] = x.

45



d. By independence the probability that Yk = 0 for all k ≥ n is the infinite product
∏
k≥n(1 − pk). The

logarithm of the infinite product is

log


∏

k≥n
(1− pk)


 =

∑

k≥n
log(1− pk) ≤ −

∑

k≥n
pk = −∞

since log(1− p) = −p− p2/2− p3/3− · · · ≤ −p. The probability must thus be zero.

It follows by countable additivity that the probability that there exists n with Yk = 0 for k ≥ n is zero.
Hence the random walk keeps fluctuating. The only way for the martingale to converge is for it to reach
zero. The company will be bankrupt with probability one.

6. a. Consider the random walk Sn = x+ 1− ξ1 + · · ·+ 1− ξn. This is a supermartingale, submartingale, or
martingale according to whether µ ≤ 1, µ ≥ 1, or µ = 1. The process Xn is obtained by a gambling scheme
in which one stops playing when Sn first reaches zero. Thus it shares the same properties. Suppose µ ≤ 1.
Then the supermartingale is bounded below, so it must converge. It can only converge to zero. Conclusion:
if the queue is not overloaded on the average, then it eventually empties.

b. The equation E[ρξ] = ρ says that
eµ(ρ−1) = ρ.

At ρ = 0 the left hand side is larger than the right hand side. There is a fixed point at ρ = 1. At the fixed
point the derivative of the left hand side is µ and the derivative of the right hand is 1. So if µ > 1, then the
left hand side must be smaller than the right hand side for ρ < 1 but near enough to 1. By the intermediate
value theorem there must be a solution strictly between 0 and 1.

c. The difference
ρXn+1 − ρXn = (ρξn+1 − 1)ρXn

when Xn ≥ 1 and is zero when Xn = 0. This is an application of a gambling scheme. Furthermore, when ρ
is a solution of the equation this is an application of a gambling scheme to a martingale, so it is a martingale.

d. The expectation of this martingale ρXn is constant, so it is always ρx. Since the martingale is bounded
below, it converges with probability one. In fact, since 0 < ρ < 1, it converges to 0 when Xn → ∞ and it
converges to 1 when Xn → 0. Since the martingale is also bounded above, the expectations converge. Thus
the probability that Xn → 0 is ρx.

e. Consider the random walk x + (ξ1 − µ) + · · · (ξn − µ). This is a martingale equal to Sn + (1 − µ)n. If
we stop this martingale when Sn reaches 0, this remains a martingale. This new martingale is X̃n. The
expectation of X̃n is the initial x, and so when µ ≤ 1

x = E[(Xn + (1− µ)n)1T>n] + E[(1− µ)T1T≤n] ≥ (1− µ)E[T1T≤n].

Hence when µ < 1

E[T1T≤n] ≤ 1
1− µ.

By the monotone convergence theorem E[T ] ≤ 1/(1− µ).
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