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Analysis on a manifold






Chapter 1

Vectors

1.1 Linear algebra

The algebraic setting is an n-dimensional real vector space V' with real scalars.
However we shall usually emphasize the cases n = 2 (where it is easy to draw
pictures) and n = 3 (where it is possible to draw pictures).

If u and v are vectors in V, and if a,b are real scalars, then the linear
combination au + vv is also a vector in V. In general, linear combinations are
formed via scalar multiplication and vector addition. Each vector in this space
is represented as an arrow from the origin to some point in the plane. A scalar
multiple cu of a vector u scales it and possibly reverses its direction. The sum
u + v of two vectors u, v is defined by the parallelogram law Figure ??7. The
original two arrows determine a parallelogram, and the sum arrow runs from
the origin to the opposite corner of the parallelogram.

1.2 Manifolds

An n-dimensional manifold is a set whose points are characterized by the values
of n coordinate functions. Mostly we shall deal with examples when n is 1, 2,
or 3.

We say that an open subset U of R"™ is a nice region if it is diffeomorphic
to an open ball in R™. Each such nice region U is diffeomorphic to each other
nice region V. For the moment the only kind of manifold that we consider is
a manifold described by coordinates that put the manifold in correspondence
with a nice region. Such a manifold can be part of a larger manifold, as we shall
see later.

Thus this preliminary concept of manifold is given by a set M such that
there are coordinates x1,...,x, that map M one-to-one onto some nice region
U in R™. There are many other coordinate systems uq, ..., u, defined on M.
What is required is that they are all related by diffeomorphisms, that is, if one
goes from U to M to V by taking the coordinate values of x1, ..., x, back to the

3



4 CHAPTER 1. VECTORS

corresponding points in M and then to the corresponding values of uy, ..., un,,
then this is always a diffeomorphism.

A function z on M is said to be smooth if it can be expressed as a smooth

function z = f(z1,...,2,) of some coordinates x1,...,2,. Of course then it
can also be expressed as a smooth function z = g(uq,...,u,) of any other
coordinates u1, ..., Uy.

1.3 Local and global

There is a more general concept of a manifold. The idea is that near each point
the manifold looks like an open ball in R™, but on a large scale it may have a
different geometry. An example where n = 1 is a circle. Near every point one
can pick a smooth coordinate, the angle measured from that point. But there
is no way of picking a single smooth coordinate for the entire circle.

Two important examples when n = 2 are a sphere and a torus. The usual
spherical polar coordinates for a sphere are not smooth near the north and south
poles, and they also have the same problem as the circle does as one goes around
a circle of constant latitude. A torus is a product of two circles, so it has the
same problems as a circle.

In general, when we look at a manifold near a point, we are taking the local
point of view. Most of what we do in these notes is local. On the other hand,
when we look at the manifold as a whole, we are taking the global point of
view. Globally a sphere does not look like an open disk, since there is no way
of representing a sphere by a map that has the form of an open disk.

1.4 A gas system

The most familiar manifold is n-dimensional Euclidean space, but this example
can be highly misleading, since it has so many special properties. A more typical
example is the example of an n — 1 dimensional surface defined by an equation.
For example, we could consider the circle £2 + y? = 1. This has a coordinate
near every point, but no global coordinate.

However an more typical example is one that has no connection whatever
to Euclidean space. Consider a system consisting of a gas in a box of volume
V held at a pressure P. Then the states of this system form a two-dimensional
manifold with coordinates P, V. According to thermodynamics, the temperature
T is some (perhaps complicated) function of P and V. However P may be also
a function of V and T, or V may be a function of P and T'. So there are various
coordinate systems that may be used to describe this manifold. One could use
PV, or V,T, or V,T. The essential property of a manifold is that one can
locally describe it by coordinates, but there is no one preferred system.
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1.5 Vector fields

A wvector field v may be identified with a linear partial differential operator of

the form
- 0
v = Vi 1.1
=1
Here the zq,...,x, are coordinates on a manifold M. Each coefficient v; is a
smooth function on M. Of course it may always be expressed as a function of
the values z1,...,z,, but we do not always need to do this explicitly.

The picture of a vector field is that at each point of the manifold there is a
vector space. The origin of each vector in this vector space is the corresponding
point in the manifold. So a vector field assigns a vector, represented by an
arrow, to each point of the manifold. In practice one only draws the arrows
corresponding to a sampling of points, in such a way to give an overall picture
of how the vector field behaves Figure 77.

The notion of a vector field as a differential operator may seem unusual,
but in some ways it is very natural. If z is a smooth function on M, then the
directional derivative of z along the vector v is

"0z
vevi= Yt 1.2
dz-v=vz i:1v oz, (1.2)

The directional derivative of z along the vector field v is the differential operator
v acting on z.
In the two dimensional case a vector field might be of the form

0 0 0
Ly=a—+b—= f(xvy)i +g(xay)

oxr Oy Ox (1.3)

aiy-
Here z,y are coordinates on the manifold, and a = f(z,y) and b = g(z,y) are
smooth functions on the manifold.

If z is a smooth function, then

dz-v=a—+b—. (1.4)

If the same vector field is expressed in terms of coordinates u, v, then by the

chain rule
0z 0z0u  0z0v

dr  Oudz + v Oz (15)
Also 7] 0z 0 0z 0
P z0u 0z v
dy  Oudy o oy’ (1.6)
So

ou ou,\ 0z v v\ 0z
v=(Tat+ b)) =4 (a+ b)) =. 1.
dz-v (8xa+ 8yb) Oou + (ﬁxa+ 0yb> Ov (17)
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The original linear partial differential operator is seen to be

ou ou 0 v v 0
This calculation shows that the when the vector field is expressed in new co-
ordinates, then these new coordinates are related to the old coordinates by a
linear transformation.

One point deserves a warning. Say that u is a smooth function on a manifold.
Then the expression 6% is in general not well-defined. If, however, we know that
the manifold is 2-dimensional, and that u,v form a coordinate system, the 8%
is a well-defined object, representing differentiation along a curve with v held
constant along that curve.

This warning is particularly important when one compares coordinate sys-
tems. A particular nasty case is when u, v is one coordinate system, and u, w is
another coordinate system. Then it is correct that

0 0 ov 0
%—%-&-%%. (1.9)

This is totally confusing, unless one somehow explicitly indicates the coordinate
system as part of the notation. For instance, one could explicitly indicate which
coordinate is being held fixed. Thus the last equation would read

9
ou

0

v Ou

v
ou

0

a (1.10)

v u

In this notation, the general chain rule for converting from u,v derivatives
to x,y derivatives is

0 ou 0 ov 0
0 ou 0 ov 0
Byl, ~ Byl oul," By, Bul, (1.12)

1.6 Systems of ordinary differential equations

A vector field is closely related to a system of ordinary differential equations.
In the two dimensional case such a system might be expressed by

L= jay (1.13)
% = g(z.y). (1.14)

The intuitive meaning of such an equation is that the point on the manifold is
a function of time ¢, and its coordinates are changing according to the system
of ordinary differential equations.
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If we have a solution of such an equation, and if z is some smooth function
on the manifold, then the rate of change of z is give by the chain rule by

dz GZdj 82@

e ed 7. 1.1
dt  Oxdt Oydt (1.15)
According to the equation this is
dz 0z 0z
5 =@y talry) g =va (1.16)

This shows that the system of ordinary differential equations and the vector
field are effectively the same thing.

1.7 The straightening out theorem

Theorem 1 (Straightening out theorem) . If

n
9]
V= vi=— #0 1.17
i=1
18 a vector field that is non-zero near some point, then near that point there is
another coordinate system ui,...,u, in which it has the form
0
vV=—. 1.18
o (118)

Here is the idea of the proof of the straightening out theorem. Say that
v; # 0. Solve the system of differential equations

dx i
dt

with initial condition 0 on the surface z; = 0. This can be done locally, by the
existence theorem for systems of ordinary differential equations with smooth
coefficients. The result is that z; is a function of the coordinates x; for i # j
restricted to the surface z; = 0 and of the time parameter ¢. Furthermore,
since dx;/dt # 0, the condition ¢ = 0 corresponds to the surface z; = 0. So if
r1,...,T, corresponds to a point in M near the given point, we can define for
1 # j the coordinates u; to be the initial value of x; on the z; = 0, and we can
define u; = ¢. In these coordinates the differential equation becomes

dui

= V; (1.19)

_ ., L
7 0,1 # J, (1.20)
de

— = 1. 1.21
n (1.21)

Example. Consider the vector field

0 0
V=gt (1.22)
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away from the origin. The corresponding system is

dx

ar- 1.2
p Y (1.23)
dy

= 1.24
7 z (1.24)

Take the point to be y = 0, with > 0. Take the initial condition to be z =r
and y = 0. Then 2 = rcos(t) and y = rsin(t). So the coordinates in which
the straightening out takes place are polar coordinates r,t. Thus if we write
x = rcos(¢) and y = rsin(¢), we have

0 0 0
—y— - = 1.25
Yor T4, = 94" (1.25)
where the partial derivative with respect to ¢ is taken with r held fixed.
Example. Consider the Euler vector field

0
T

3 TV = o (1.26)

where the partial derivative with respect to r is taken with fixed ¢. We need to
stay away from the zero at the origin. If we let ¢ = In(r), then this is

0 0 0

where the t derivative is taken with ¢ fixed.

1.8 Linearization at a zero

Say that a vector field defining a system of ordinary differential equations has
an isolated zero. Thus the coefficients satisfy f(z*,y*) =0 and g(x*,y*) = 0 at
the point with coordinate values x*, y*. At a zero of the vector field the solution
of the system of ordinary differential equations has a fixed point.

Write £ = ¢ — 2* and § = y — y*. Then the differential equation takes the
form

.
L R ) (125)
dt

CTZZ = g +2,y" +7). (1.29)

Expand in a Taylor series about z*,y*. The result is

dz_ Of(z*,y*) . Of(="y") .
il 5 4+ 3y g+ (1.30)
dy 89(I7y)j+6g(x,y)g+,_._ (131)

dt or dy
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The linearization is the differential equation where one neglects the higher
order terms. It may be written

c(%} _ 8f(ﬂg;y*)j+af(9;;y*)g (1.32)
% _ ag(:g’;y*)j+6g(ﬂg;y*)g. (1.33)
It is of the form
%ﬂt? — i+ by (1.34)
% = i+, (1.35)

where the coefficients are given by the values of the partial derivatives at the
point where the vector field vanishes. It can be written in matrix form as

al(5)=(00)(5) 439
The behavior of the linearization is determined by the eigenvalues of the
matrix. Here are some common cases.
Stable node Real eigenvalues with A\; < 0, Ay < 0.
Unstable node Real eigenvalues with A; > 0, A2 > 0.
Hyperbolic fixed point (saddle) Real eigenvalues with A; < 0 < As.
Stable spiral Nonreal eigenvalues with A = p =+ iw, p < 0.
Unstable spiral Nonreal eigenvalues with A = p £ w, p > 0.
Elliptic fixed point (center) Nonreal eigenvalues A\ = +i.

There are yet other cases when one of the eigenvalues is zero.
Example. A classic example is the pendulum

@ 1

= = 1.37
= —P (1.37)
dp .1
o = Mg sm(aq). (1.38)

Here g = af represents displacement, and p represents momentum. The zeros
are at # = nm. When n is even this is the pendulum at rest in a stable position;
when n is odd this is the pendulum at rest upside down, in a very unstable
position. The linearization at a zero is

dq 1

B 1.
7 —p (1.39)
d m,

Po— My, (1.40)

dt a
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In matrix form this is

jt(zz):(—(—f)“";g 3)(2) (141)

The eigenvalues A are given by A> = —(—1)"£. When n is even we get an elliptic
fixed point, while when n is odd we get a hyperbolic fixed point.

The following question is natural. Suppose that a vector field has an iso-

lated zero. At that zero it has a linearization. When is it possible to choose
coordinates so that the vector field is given in those new coordinates by its lin-
earization? It turns out that the answer to this question is negative in general

13).

1.9 Problems

1. Straightening out. A vector field that is non-zero at a point can be trans-

formed into a constant vector field near that point by a change of coordi-
nate system. Pick a point away from the origin, and find coordinates u, v

so that
y 0 T 0 0

_ - — = 1.42
x2+y28m+x2+y28y ou (1.42)
. Linearization. Consider the vector field
0
u:x(4—x—y)%+(m‘—2)ya—y. (1.43)

Find its zeros. At each zero, find its linearization. For each linearization,
find its eigenvalues. Use this information to sketch the vector field.

. Nonlinearity. Consider the vector field

0 0
— -1+ +yH)r—. 1.44
v — Vg (1.44)
Find its linearization at zero. Show that there is no coordinate system
near 0 in which the vector field is expressed by its linearization. Hint:
Solve the associated system of ordinary differential equations, both for v
and for its linearization. Find the period of a solution is both cases.

v=01+2"+y?

. Nonlinear instability. Here is an example of a fixed point where the lin-

ear stability analysis gives an elliptic fixed point, but changing to polar
coordinates shows the unstable nature of the fixed point:

dzx

i —y + z(x? + y?) (1.45)
d
di; = z+y@®+9d). (1.46)

Change the vector field to the polar coordinate representation, and solve
the corresponding system of ordinary differential equations.



Chapter 2

Forms

2.1 The dual space

The objects that are dual to vectors are 1-forms. A I-form is a linear transfor-
mation from the n-dimensional vector space V' to the real numbers. The 1-forms
also form a vector space V* of dimension n, often called the dual space of the
original space V of vectors. If a is a 1-form, then the value of a on a vector
v could be written as «(v), but instead of this we shall mainly use « - v. The
condition of being linear says that

a-(au+bv)=ax-u+ba-v. (2.1)

The vector space of all 1-forms is called V*. Sometimes it is called the dual
space of V.

It is important to note that the use of the dot in this context is not meant
to say that this is the inner product (scalar product) of two vectors. In Part
IIT of this book we shall see how to associate a form gu to a vector u, and the
inner product of u with w will then be gu - w.

There is a useful way to picture vectors and 1-forms. A vector is pictured
as an arrow with its tail at the origin of the vector space V. A 1-form is
pictured by its contour lines (in two dimensions) or its contour planes (in three
dimensions) Figure ??. These are parallel lines or parallel planes that represent
when the values of the 1-form are multiples of some fixed small number ¢ > 0.
Sometimes it is helpful to indicate which direction is the direction of increase.
The value a - v of a 1-form « on a vector v is the value associated with the
contour that passes through the head of the arrow.

Each contour line is labelled by a numerical value. In practice one only draws
contour lines corresponding to multiples of some fixed small numerical value.
Since this numerical value is somewhat arbitrary, it is customary to just draw
the contour lines and indicate the direction of increase. The contour line passing
through the origin has value zero. A more precise specification of the 1-form
would give the numerical value associated with at least one other contour line.

11
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A scalar multiple ca of a 1-form « has contour lines with increased or decreased
spacing, and possibly with reversed direction of increase. The sum « + (3 of two
1-forms «, § is defined by adding their values. The sum of two 1-forms may
also be indicated graphically by a parallelogram law. The two forms define an
array of parallelograms. The contour lines of the sum of the two forms are lines
through two (appropriately chosen) corners of the parallelograms Figure ?7.

2.2 Differential 1-forms

A differential form is a linear transformation from the vector fields to the reals
given by

o= Zaidxi. (2.2)
i=1
The value of a on the vector field v is
a-v= Z a;v;. (2.3)
i=1
If z is a scalar function on M, then it has a differential given by
"L 0z
dz = —dz;. 2.4

This is a special kind of differential form. In general, a differential form that is
the differential of a scalar is called an exact differential form.

If z is a smooth function on M, and v is a vector field, then the directional
derivative of z along v is

- 15)
dz-v = E vi—z_. (2.5)
It is another smooth function on M.

Theorem 2 (Necessary condition for exactness) If a =) . | a;dz; is an

exact differential form, then its coefficients satisfy the integrability conditions
3ai - 8aj
6l‘j n 8;31»'

(2.6)

When the integrability condition is satisfied, then the differential form is
said to be closed. Thus the theorem says that every exact form is closed.
In two dimensions an exact differential form is of the form

Oh(x,y) Oh(z,y)
dh = ———=d ——dy. 2.
(@) = F ) o+ Py (27)
If z = h(x,y) this can be written in a shorter notation as
0z 0z

dz = —dx + — dy. (2.8)
x y
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It is easy to picture an exact differential form in this two-dimensional case.
Just picture contour curves of the function z = h(z,y). These are curves defined
by z = h(x,y) = ¢, where the values of ¢ are spaced by some small § > 0. Notice
that adding a constant to z is does not change the differential of z. It also does
not change the contour curves of z. For determination of the differential form
what is important is not the value of the function, since this has an arbitrary
constant. Rather it is the spacing between the contour curves that is essential.

In this picture the exact differential form should be thought of a closeup
view, so that on this scale the contour curves look very much like contour lines.
So the differential form at a point depends only on the contour lines very near
this point.

In two dimensions a general differential form is of the form

a= f(z,y)dzr + g(z,y) dy. (2.9)
The condition for a closed form is

9g(x,y) _ 0f(z,y)
= . 2.10
or dy ( )
If the form is not closed, then it is not exact. The typical differential form is
not closed.

We could also write this as

o =pdr+qdy. (2.11)
The condition for a closed form is
dqg Op
— = = 2.12
dr Oy ( )

It somewhat harder to picture a differential 1-form that is not exact. The
idea is to draw contour lines near each point that somehow join to form contour
curves. However the problem is that these contour curves now must have end
points, in order to keep the density of lines near each point to be consistent with
the definition of the differential form.

Example. A typical example of a differential form that is not exact is y dz.
The contour lines are all vertical. They are increasing to the right in the upper
half plane, and they are increasing to the left in the lower half plane. However
the density of these contour lines must diminish near the x axis, so that some
of the lines will have end points at their lower ends (in the upper half plane) or
at their upper ends (in the lower half plane).

A differential form may be expressed in various coordinate systems. Say, for
instance, that

a = pdr+ qdy. (2.13)
We may write
ox oz
dx = %du—&— %dv, (2.14)
Oy dy
dy = %du—&— %dv. (2.15)
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Inserting this in the expression for the 1-form «, we obtain

o= (gip + gzq) du + <gip + gi) dv. (2.16)
Contrast this with the corresponding equation 1.8 for vector fields; the coeffi-
cients do not transform the same way.

The condition that a differential form is closed or exact does not depend on
the coordinate system. Notice that the theory of differential forms is extraor-
dinarily different from the theory of vector fields. A nonzero vector field may
always be straightened out locally. For differential forms this is only possible if
the form is exact.

A final observation may help in making the comparison between forms and
vector fields. If u is a smooth function on the manifold, then du is a well-defined
1-form. There is no need to for u to be part of a coordinate system. On the
other hand, for the vector field 8% to be well-defined, it is necessary to specify
what other variables are being held constant. For instance, we could specify that
the coordinate system under consideration is u,w, or even explicitly indicate by
writing 8%’“) that the variable w is to be held fixed.

2.3 Ordinary differential equations in two di-
mensions

A classic application of these ideas is ordinary differential equations in the plane.
Such an equation is often written in the form

pdx 4+ qdy = 0. (2.17)

Here p = f(x,y) and ¢ = g(x,y) are functions of x,y. The equation is deter-
mined by the differential form p dz+ ¢ dy, but two different forms may determine
equivalent equations. For example, if u = h(z,y) is a non-zero scalar, then the
form ppdx + pgdy is a quite different form, but it determines an equivalent
differential equation.

If pdx + qdy is exact, then pdx + gdy = dz, for some scalar z depending
on x and y. The solution of the differential equation is then given implicitly by
z = ¢, where c is constant of integration.

If pdx + qdy is not exact, then one looks for an integrating factor u such
that

plpde + qdy) = dz (2.18)

is exact. Once this is done, again the solution of the differential equation is then
given implicitly by z = ¢, where c¢ is constant of integration.

Theorem 3 Suppose that o = pdx + qdy is a differential form in two dimen-
stons that is non-zero near some point. Then a has a non-zero integrating factor
w near the point, so pa = ds for some scalar.
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This theorem follows from the theory of solutions of ordinary differential
equations. Finding the integrating factor may not be an easy matter. However,
there is a strategy that may be helpful.

Recall that if a differential form is exact, then it is closed. So if p is an
integrating factor, then 5 5

“p g
9y e 0. (2.19)

This condition may be written in the form

o ()

p@y Ly Oy Oz

Say that by good fortune there is an integrating factor p that depends only
on z. Then this gives a linear ordinary differential equation for p that may be
solved by integration.

Example. Consider the standard problem of solving the linear differential
equation

1 =0. (2.20)

% = —ay+0b, (2.21)
where a, b are functions of x. Consider the differential form (ay—0b) dz+dy. Look
for an integrating factor p that depends only on . The differential equation for
p is —dp/dx = ap. This has solution p = e, where A is a function of z with

dA/dx = a. Thus
eMay —b)dx + e dy = d(e?y — 9), (2.22)

where S is a function of z with dS/dx = eb. So the solution of the equation is
y=e S +c).

Theorem 4 Consider a differential form o = pdx 4+ qdy in two dimensions.
Suppose that near some point v is not zero. Suppose also that v is not closed
near this point. Then near this point there is a new coordinate system u,v with
a =udv.

The proof is to note that if &« = pdx+ g dy is not zero, then it has a non-zero
integrating factor with ua = dv. So we can write & = udv, where u = 1/p.
Since udv = pdx + qdy, we have udv/0x = p and udv/dy = q. It follows that
0q/0x — Op/dy = Ou/Oxdv /Oy — Ou/AyOvdz. Since this is non-zero, the inverse
function theorem shows that this is a legitimate change of coordinates.

The situation is already considerably more complicated in three dimensions,
the canonical form is relatively complicated. The differential equations book by
Ince [9] treats this situation.

2.4 The Hessian matrix and the second deriva-
tive test

Say that M is a manifold and z is a smooth function on M. The first derivative
test says that if z has a local minimum or a local maximum at a point of M,
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then dz = 0 at that point. Consider, for instance, the 2-dimensional case. If
z = h(z,y), then at a local maximum or local minimum point z = g,y = Yo,
we have

0z 0z
dz = 2 dz + oy dy = 0. (2.23)

This gives two equations 9z/9x = 0 and Jz/dy = 0 to solve to find the numbers
xo and yp.

Suppose again that z = h(z,y), and look at a point z = z*,y = y* where
the differential dz = d h(z,y) is zero. At that point

2 E 2 kK

z a2h(x*7y*) "
2 0x? Oxdy 4 oy?

y >+ ..
(2.24)
This suggests that behavior near x*,y* should be compared to that of the

quadratic function

Wz, y) = h(z", y")+

62h<$*,y*) 2 agh(x*7y*) th($*7y*) 2
L,y) = P°+2 P+ g ) 2.25
qa(Z,9) ( I + 920y Ty + 02 0] (2.25)
Write this quadratic form as
q(%,9) = (aZ* + 2b35 + dg?) . (2.26)

This can be written in matrix notation as

=z i) (5 5)(5) .27)

The matrix of second partial derivatives evaluated at the point where the first
partial derivatives vanish is called the Hessian matriz.

This leads to a second derivative test. Suppose that z = h(z,y) is a smooth
function. Consider a point where the first derivative test applies, that is, the
differential dz = dh(z,y) is zero. Consider the case when the Hessian is non-
degenerate, that is, has determinant not equal to zero. Suppose first that the
determinant of the Hessian matrix is strictly positive. Then the function has
either a local minimum or a local maximum, depending on whether the trace is
positive or negative. Alternatively, suppose that the determinant of the Hessian
matrix is strictly negative. Then the function has a saddle point.

< &

Theorem 5 (Morse lemma) Let z be a function on a 2-dimensional manifold
such that dz wvanishes at a certain point. Suppose that the Hessian is non-
degenerate at this point. Then there is a coordinate system wu,v near the point
with

2 = 20 + €e1u? + 02, (2.28)

where €1 and €5 are constants that each have the value +1.

For the Morse lemma, see J.Milnor, Morse Theory, Princeton University
Press, Princeton, NJ, 1969 [11]. The theory of the symmetric Hessian matrix
and the Morse lemma have a natural generalization to manifolds of dimension
n.
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2.5 Lagrange multipliers

There is an interesting version of the first derivative test that applies to the spe-
cial situation when the manifold is defined implicitly by the solution of certain
equations. Consider as an illustration the 3-dimensional case. Then one equa-
tion would define a 2-dimensional manifold, and two equations would define a
1-dimensional manifold.

Say that we have a function v = g(z,y,z) such that v = ¢ defines a 2-
dimensional manifold. Suppose that at each point of this manifold dv # 0.
Then the tangent space to the manifold at each point consists of all vectors z
at this point such that dv -z = 0. This is a 2-dimensional vector space.

Now suppose that there is a function u = f(z,y, z) that we want to maximize
or minimize subject to the constraint v = g(z,y, z) = ¢. Consider a point where
the local maximum or local minimum exists. According to the first derivative
test, we have du - z = 0 for every z tangent to the manifold at this point. Pick
two linearly independent vectors z tangent to the manifold at this point. Then
the equation du - z for du gives two equations in three unknowns. Thus the
solution is given as a multiple of the nonzero dv. So we have

du = \dv. (2.29)

The A coefficient is known as the Lagrange multiplier.

This equation has a simple interpretation. It says that the only way to
increase the function u is to relax the constraint v = ¢. In other words, the
change du in u at the point must be completely due to the change dv that moves
off the manifold. More precisely, the contour surfaces of u must be tangent to
the contour surfaces of v at the point.

The Lagrange multiplier itself has a nice interpretation. Say that one is
interested in how the maximum or minimum value depends on the constant ¢
defining the manifold. We see that

du dv

i )\dc = A\ (2.30)
So the Lagrange multiplier describes the effect on the value of changing the
constant defining the manifold.

Example. Say that we want to maximize or minimize u = x +y -+ 2z subject
to v = 2 + y? + 22 = 1. The manifold in this case is the unit sphere. The
Lagrange multiplier condition says that

du =dx 4+ dy + 2dz = Adv = M2z dz + 2y dy + 2z dz). (2.31)

Thus 1 = 2Az, 1 = 2\y, and 2 = 2\z. Insert these in the constraint equation
2% + y? + 22 = 1. This gives (1/4) + (1/4) +1 = X2, or A = £+,/3/2. So
T = i\/ﬁﬂa y:i\/2/73/27 Z:im'

Say instead that we have two function v = g(x,y,2) and w = h(z,y, 2)
such that v = ¢ and w = b defines a 1-dimensional manifold. Suppose that at
each point of this manifold the differentials dv and dw are linearly idependent
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(neither is a multiple of the other). Then the tangent space to the manifold
at each point consists of all vectors z at this point such that dv -z = 0 and
dw -z = 0. This is a 1-dimensional vector space.
Now suppose that there is a function u = f(x,y, z) that we want to maximize
or minimize subject to the constraints v = g(x,y,2) = a and w = h(z,y, z) = b.
Consider a point where the local maximum or local minimum exists. According
to the first derivative test, we have du-z = 0 for every z tangent to the manifold
at this point. Pick a non-zero vector z tangent to the manifold at this point.
Then the equation du -z for du gives one equation in three unknowns. Thus the
solution is given as a linear combination of the basis forms dv and dw at the
point. So we have
du = Adv + pdw (2.32)

Thus we have two Lagrange multipliers when there are two constraints.

Example. Say that we want to maximize or minimize u = x — 4y + 3z + 22
subject to v =2 —y =0 and w = y — z = 0. The manifold in this case is just a
line through the origin. The Lagrange multiplier condition says that

dr — 4dy + (3 — 22)dz = ANdx — dy) + p(dy — dz). (2.33)

Thus 1 = A\, =4 = —A+ pu, and (3 — 22) = —pu. When we solve we get u = —3
and so z = 0.

Of course we could also solve this example without Lagrange multipliers.
Since the manifold is * = y = z, the function to be maximized or minimized
is u = 22, and this has its minimum at z = 0. The utility of the Lagrange
multiplier technique in more complicated problems is that it is not necessary to
do such a preliminary elimination before solving the problem.

Example. Here is a simple example to emphasize the point that the Lagrange
multiplier technique is coordinate independent. Say that one wants to maximize
or minimize z subject to 22 + y? 4+ 22 = 1. The Lagrange multiplier method
says to write dz = A(2zdx + 2y dy 4+ 2z dz). This says that = y = 0, and so
z = %1. In spherical polar coordinates this would be the problem of maximizing
7 cos(f) subject to 72 = 1. This would give dr cos(#) —rsin(#) df = A\2r dr. Thus
sin(f) = 0, and the solution is § =0 or 0 = 7.

2.6 Covariant and contravariant

There is a terminology that helps clarify the relation between vector fields and
differential forms. A scalar quantity z or a differential form p du + ¢ dv are both
quantities that are associated with functions on the manifold. Such quantities
are traditionally called covariant.

Once this terminology was established, it was natural to call the dual objects
contravariant. These objects include points of the manifold and vector fields.
Often a covariant object may be paired with a contravariant object to give a
number or a scalar quantity. Thus, for example, consider the covariant quantity
z = h(u,v) and the point u = a,v = b, where a,b are real numbers. The
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corresponding number is h(a,b). For another example, consider the vector field
v = ad/0u + bd/Jv and the differential form p du + qdv. These give the scalar
quantity ap + bv.

The covariant-contravariant distinction is a central idea in mathematics. It
tends to be lost, however, in certain special contexts. Part III of this book
is an exploration of a situation when it is permitted to confuse covariant and
contravariant quantities. However, usually it is illuminating to be alert to the
difference.
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2.7 Problems

1.

Exact differentials. Is (22 + y?) dz + 2xy dy an exact differential form? If
so, write it as the differential of a scalar.

. Exact differentials. Is (1 4 e*)dy + e*(y — z) dx an exact differential? If

so, write it as the differential of a scalar.

Exact differentials. Is e¥dx + z(e¥ + 1) dy an exact differential? If so,
write it as the differential of a scalar.

Constant differential forms. A differential form usually cannot be trans-
formed into a constant differential form, but there are special circum-
stances when that can occur. Is it possible to find coordinates u and v
near a given point (not the origin) such that

—ydz + xdy = du? (2.34)

. Constant differential forms. A differential form usually cannot be trans-

formed into a constant differential form, but there are special circum-
stances when that can occur. Is it possible to find coordinates u and v
near a given point (not the origin) such that

Y x

o dz + iy dy = du? (2.35)

. Ordinary differential equations. Solve the differential equation (zy? +

y) dx — zdy = 0 by finding an integrating factor that depends only on y.

Hessian matrix. Consider the function z = 23y?(6 —x —y). Find the point
in the z,y plane with z > 0, y > 0 where dz = 0. Find the Hessian matrix
at this point. Use this to describe what type of local extremum exists at
this point.

Lagrange multipliers. Use Lagrange multipliers to maximize x? + y? + 22
subject to the restriction that 222 + y? + 322 = 1.
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The exterior derivative

3.1 The exterior product

Let V x V be the set of ordered pairs u, v of vectors in V. A 2-form o is an
anti-symmetric bilinear transformation o : V- x V' — R. Thus for each fixed v
the function u — o(u, v) is linear, and for each fixed u the function v — (u,v)
is linear. Furthermore, o(u,v) = —o(v,u). The vector space of all 2-forms is
denoted A2V*. Tt is a vector space of dimension n(n —1)/2.

A 2-form has a geometric interpretation. First consider the situation in the
plane. Given two planar 2-forms, at least one of them is a multiple of the other.
So the space of planar 2-forms is one-dimensional. However we should not think
of such a 2-form as a number, but rather as a grid of closely spaced points.
The idea is that the value of the 2-form is proportional to the number of points
inside the parallelogram spanned by the two vectors. The actual way the points
are arranged is not important; all that counts is the (relative) density of points.
Actually, to specify the 2-form one needs to specify not only the points but also
an orientation, which is just a way of saying that the sign of the answer needs
to be determined.

In three-dimensional space one can think of parallel lines instead of points.
The space of 2-forms in three-dimensional space has dimension 3, because these
line can have various directions as well as different spacing. The value of the 2-
form on a pair of vectors is proportional to the number of lines passing through
the parallelogram spanned by the two vectors. Again, there is an orientation
associated with the line, which means that one can perhaps think of each line
as a thin coil wound in a certain sense.

The sum of two 2-forms may be given by a geometrical construction that
somewhat resembles vector addition.

The exterior product (or wedge product) a A 8 of two 1-forms is a 2-form.
This is defined by

v
-V

@R

(a A B)(u,v) = det { gjﬁ } =(a-0)(B-v)— (B-a)(a-v). (3.1)

21
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Notice that a A 3 = —3 A a.. In particular a A o = 0.

The exterior product of two 1-forms has a nice geometrical interpretation.
On two dimensions each of the two 1-forms is given by a family of parallel lines.
The corresponding 2-form consists of the points at the intersection of these lines.

In three dimensions each of the two 1-forms is given by a collection of parallel
planes. The corresponding 2-form consists of the lines that are the intersections
of these planes.

In a similar way, one can define a 3-form 7 as an alternating trilinear function
from ordered triples of vectors to the reals. In three dimensions a 3-form is
pictured by a density of dots.

One way of getting a 3-form is by taking the exterior product of three 1-
forms. The formula for this is

a-u v oaw
(aANBAY)(u,v,w)=det | B-u [B-v [-w (3.2)
yeu Y-V w

In a similar way one can define r-forms on an n dimensional vector space
V. The space of such r-forms is denoted A"V*, and it has dimension given by
the binomial coefficient (:) It is also possible to take the exterior product of
r 1-forms and get an r-form. The formula for this multiple exterior product is
again given by a determinant.

The algebra of differential forms is simple. The sum of two r-forms is an r
form. The product of an r-form and an s-form is an r 4+ s-form. This multipli-
cation satisfies the associative law. It also satisfies the law

BAha=(-1)"aAp, (3.3)

where « is an r-form and (§ is an s-form. For instance, if » = s = 1, then
a A B =—0FAa. On the other hand, if r = 1,5 = 2, then a8 = Ga.

3.2 Differential r-forms

One can also have differential r-forms on a manifold. For instance, on three
dimensions one might have a differential 2-form such as

o=adyNdz+bdz Ndx+ cdx Ndy. (3.4)

Here x,y, z are arbitrary coordinates, and a, b, ¢ are smooth functions of z, vy, z.
Similarly, in three dimensions a typical 3-form might have the form

T=sdx ANdy Adz. (3.5)

Notice that these forms are created as linear combinations of exterior products
of 1-forms.

Since these expressions are so common, it is customary in many contexts
to omit the explicit symbol for the exterior product. Thus the forms might be
written

oc=adydz+bdzdx + cdxdy (3.6)
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and
T=sdxdydz. (3.7)

The geometric interpretation of such forms is quite natural. For instance, in
the three dimensional situation of these examples, a 1-form is represented by a
family of surfaces, possibly ending in curves. Near each point of the manifold
the family of surfaces looks like a family of parallel contour planes. A 2-form
is represented by a family of curves, possibly ending in points. Near each point
of the manifold they look like a family of parallel lines. Similarly, a 3-form is
represented by a cloud of points. While the density of points near a given point
of the manifold is constant, at distant points of the manifold the densities may
differ.

3.3 Properties of the exterior derivative

The exterior derivative of an r-form « is an r + 1-form da. It is defined by
taking the differentials of the coefficients of the r-form. For instance, for the
1-form

a=pdr+qdy+rdz (3.8)
the differential is
da = dpdx + dqdy + drdz. (3.9)
This can be simplified as follows. First, note that
dp dp dp
dp=—dx+ —dy+ — dz. 1
p=5 £E+ay y+8z z (3.10)
Therefore
op Op Op dp
dpdr = —dydx + — dzdx = —— dx dy + — dz dx. 3.11
pdx anyH—azzx ayxy—&-azzx (3.11)

Therefore, the final answer is

do = d(pdz+qdy+rdz) = (87" — 8(]) dy dz+<8lz) — 8;) dz da:+(aﬂqv — Gp) dx dy.

dy 0z 0 0 0 dy
(3.12)
Similarly, suppose that we have a 2-form
o=adydz+bdzdr+ cdrdy. (3.13)

Then

do =dadydz + dbdzdx + dcdx dy = %dmdydz—i— g—zdydzdx—&— %dzda:dy.
(3.14)

This simplifies to

do =d(adydz +bdzdx + cdx dy) = (gz + g—z + gZ) dedydz.  (3.15)
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The geometrical interpretation of the exterior derivative is natural. Consider
first the case of two dimension. If « is a 1-form, then it is given by a family of
curves, possibly with end points. The derivative da corresponds to these end
points. They have an orientation depending on which end of the curve they are
at.

In three dimensions, if « is a 1-form, then it is given by contour surfaces,
possibly ending in curves. The 2-form da is given by the curves. Also, if o is
a 2-form, then it is given by curves that may terminate. Then do is a 3-form
represented by the termination points.

The exterior derivative satisfies various general properties. The exterior
derivative of an r-form is an r 4+ 1 form. There is a product rule

dlanp)=danp+(—1)"ands, (3.16)

where « is an r-form and ( is an s-form. The reason for the (—1)" is that the
d has to be moved past the r form, and this picks up r factors of —1. Another
important property is that applying the exterior derivative twice always gives
zero, that is, for an arbitrary s-form § we have

ddp = 0. (3.17)

3.4 The integrability condition

This last property has a geometrical interpretation. Take for example a scalar
s. Its differential is @ = ds, which is an exact differential. Therefore ds is rep-
resented by curves without end points (two dimensions) or by surfaces without
ending curves (three dimensions). This explains why da = dds = 0.

Similarly, consider a 1-form « in three dimensions. Its differential is a 2-form
o = da. The 1-form « is represented by surfaces, which may terminate in closed
curves. These closed curves represent the 2 form da. Since they have no end
points, we see that do = dda = 0.

In general, if d3 = 0, then we say that 3 is a closed form. If 8 = da, we
say that 8 is an exact form. The general fact is that if 3 is exact, then [ is
closed. The condition that d = 0 is called the integrability condition, since it
is necessary for the possibility that § can be integrated to get a with § = da.

Example. Consider the 2-form ydxz. This is represented by vertical lines
that terminate at points in the plane. The density of these lines is greater as
one gets farther from the x axis. The increase is to the right above the z axis,
and it is to the left below the y axis. The differential of y dx is dy dx = —dz dy.
This 2-form represents the cloud of terminating points, which has a uniform
density. The usual convention that the positive orientation is counterclockwise.
So the orientations of these source points are clockwise. This is consistent with
the direction of increase along the contours lines.
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3.5 Gradient, curl, divergence

Consider the case of three dimensions. Anyone familiar with vector analysis will
notice that if s is a scalar, then the formula for ds resembles the formula for the
gradient in cartesian coordinates. Similarly, if « is a 1-form, then the formula
for da resembles the formula for the curl in cartesian coordinates. The formula
dds = 0 then corresponds to the formula curlgrads = 0.

In a similar way, if ¢ is a 2-form, then the formula for do resembles the
formula for the divergence in cartesian coordinates. The formula dda = 0 then
corresponds to the formula divcurlv = 0.

There are, however, important distinctions. First, the differential form for-
mulas take the same form in arbitrary coordinate systems. This is not true for
the formulas for the divergence, curl, and divergence. The reason is that the
usual definitions of divergence, curl, and divergence are as operations on vector
fields, not on differential forms. This leads to a much more complicated theory,
except for the very special case of cartesian coordinates on Euclidean space. We
shall examine this issue in detail in the third part of this book.

Second, the differential form formulas have natural formulations for mani-
folds of arbitrary dimension. While the gradient and divergence may also be
formulated in arbitrary dimensions, the curl only works in three dimensions.

This does not mean that notions such as gradient of a scalar (a vector field)
or divergence of a vector field (a scalar) are not useful and important. Indeed,
in some situations they play an essential role. However one should recognize
that these are relatively complicated objects. Their nature will be explored in
the second part of this book (for the divergence) and in the third part of this
book (for the gradient and curl).

The same considerations apply to the purely algebraic operations, at least
in three dimensions. The exterior product of two 1-forms resembles in some
way the cross product of vectors, while the exterior product of a 1-form and a
2-form resembles a scalar product of vectors. Thus the wedge product of three
1-forms resembles the triple scalar product of vector analysis. Again these are
not quite the same thing, and the relation will be explored in the third part of
this book.
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3.6 Problems

1.

Say that the differential 1-form o = pdx + qdy + r dz has an integrating
factor p # 0 such that pa = ds. Prove that a Ada = 0. Also, express this
condition as a condition on p, ¢, and their partial derivatives.

Show that o« = dz — y dx — dy has no integrating factor.

Show that the differential 1-form o = yzdx + vz dy + dz passes the test
for an integrating factor.

In the previous problem it might be difficult to guess the integrating factor.
Show that g = e®¥ is an integrating factor, and find s with pa = ds.

The differential 2-form w = (2zy — 2?) dz dy is of the form w = do, where
« is a 1-form. Find such an «. Hint: This is too easy; there are many
solutions.

The differential 3-form o = (yz + 2%22% + 32y%2) dwv dy dz is of the form
0 = dw, where w is a 2-form. Find such an w. Hint: Many solutions.

Let 0 = xy?2 dy dz —y32 dz dov + (2?y +y?2?) dx dy. Show that this 2-form
o satisfies do = 0.

The previous problem gives hope that ¢ = da for some 1-form a. Find
such an a. Hint: This may require some experimentation. Try « of the
form o = pdx+q dy, where p, g are functions of z, y, z. With luck, this may
work. Remember that when integrating with respect to z the constant of
integration is allowed to depend on z,y.
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Integration and Stokes’s
theorem

4.1 One-dimensional integrals

A one-dimensional manifold C' is described by a single coordinate ¢t. Consider
an interval on the manifold bounded by ¢t = a and t = b. There are two possible
orientations of this manifold, from ¢t = a to t = b, or from t = b to t = «a.
Suppose for the sake of definiteness that the manifold has the first orientation.
Then the differential form f(¢) dt has the integral

/ £(8) dt = = £(t)dt. (4.1)
C t=a

If s is another coordinate, then ¢ is related to s by ¢t = g(s). Furthermore,
there are numbers p, ¢ such that a = g(p) and b = g(g). The differential form
is thus f(t)dt = f(g(s))g’(s) ds. The end points of the manifold are s = p and
s = q. Thus

[ wa= [ T Fg(9)d/(s) ds. (1.2)
C s=p

The value of the integral thus does not depend on which coordinate is used.

Notice that this calculation depends on the fact that dt/ds = ¢'(s) is non-
zero. However we could also consider a smooth function v on the manifold that
is not a coordinate. Several points on the manifold could give the same value of
u, and du/ds could be zero at various places. However we can express u = h(s)
and du/ds = h/(s) and define an integral

/ f(u)du = /S=q f(h(s))h (s)ds. (4.3)
C s=p

Thus the differential form f(u)du also has a well-defined integral on the mani-
fold, even though w is not a coordinate.

27
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4.2 Integration on manifolds

Next look at the two dimensional case. Say that we have a coordinate system
z,y in a two-dimensional oriented manifold. Consider a region R bounded by
curves r = a, x = b, and by y = ¢, y = d. Suppose that the orientation is such
that one goes around the region in the order a,b then c,d then b,a then d,c.
Then the differential form f(x,y) dz dy has integral

/Rf(:c,wdxdy:/cd [/abﬂx,y)dx] dyz/ab Vcdf@c,y)dy}, dv.  (4.4)

The limits are taken by going around the region in the order given by the
orientation, first a, b then ¢,d. We could also have taken first b, a then d, ¢ and
obtained the same result.

Notice, by the way, that we could also define an integral with dy dz in place
of dx dy. This would be

/Rf(x,y)dydx:/ba Mdf@,y)dy] da::/j [/baﬂx,y)dx], dy. (45)

The limits are taken by going around the region in the order given by the
orientation, first ¢,d then b,a. We could also have taken d,c¢ then a,b and
obtained the same result. This result is precisely the negative of the previous
result. This is consistent with the fact that dy dr = —dx dy.

These formula have generalizations. Say that the region is given by letting
x go from a to b and y from h(x) to k(x). Alternatively, it might be given by
letting y go from ¢ to d and x from p(y) to g(y). This is a more general region
than a rectangle, but the same kind of formula applies:

| rewdedy = [ ' [ /p (:?) f(af,y)dx] a= | b l / ]:()) f(w)dy] . dr.

(4.6)

There is yet one more generalization, to the case where the differential form

is f(u,v)dudv, but u,v do not form a coordinate system. Thus, for instance,

the 1-form du might be a multiple of dv at a certain point, so that du dv would

be zero at that point. However we can define the integral by using the customary
change of variable formula:

OJudv  0Ovou
/Rf(u,v) dudv = /Rf(u,v) (E?:vay - (9:1083/) dx dy. (4.7)

In fact, since du = du/dzx dx 4+ Ou/dy dy and dv = dv/dx dx + Ov/dy dy, this is
just saying that the same differential form has the same integral.

In fact, we could interpret this integral directly as a limit of sums involving
only the u,v increments. Partition the manifold by curves of constant x and
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constant y. This divides the manifold into small regions that look something
like parallelograms. Then we could write this sum as

/Rf(u, v) dudv =~ Z f(u,v) (Aug Avy — Avy Auy) . (4.8)

Here the sum is over the parallelograms. The quantity Au, is the increment in
u from x to = + Az, keeping y fixed, along one side of the parallelogram. The
quantity Av, is the increment in v from y to y 4+ Ay, keeping y fixed, along one
side of the parallelogram. The other quantities are defined similarly. The u,v
value is evaluated somewhere inside the parallelogram. The minus sign seems a
bit surprising, until one realizes that going around the oriented boundary of the
parallelogram the proper orientation makes a change from x to x + Ax followed
by a change from y to y+ Ay, or a change from y to y+ Ay followed by a change
from x + Ax to z. So both terms have the form Awu Av, where the changes are
now taken along two sides in the proper orientation, first the change in u, then
the change in v.

4.3 The fundamental theorem

The fundamental theorem of calculus says that for every scalar function s we
have

/ ds = s(Q) — s(P). (4.9)
c

Here C'is an oriented path from point P to point Q). Notice that the result does
not depend on the choice of path. This is because ds is an exact form.

As an example, we can take a path in space. Then ds = 9s/0xdx +
0s/0ydy + 0s/0zdz. So

Js 0s 0z dsdr Os dy 0zdz
ds= | —dex+—dy+—-—dz= —— 4+ — — + —— | dt. (4.10
/C s /Cax x+8y y+8z : /C<8xdt+8y dt+32dt> (4.10)
By the chain rule this is just

ds
/Cds = /C = dt = s(Q) — s(P). (4.11)

4.4 Green’s theorem

The next integral theorem is Green’s theorem. It says that

o ap) /
22 drdy = dz + qdy. 4.12
/R<8w 99 y=| » qdy (4.12)

Here R is an oriented region in two dimensional space, and JR is the curve that
is its oriented boundary. Notice that this theorem may be stated in the succinct

form
/da:/ a. (4.13)
R R
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The proof of Green’s theorem just amounts to applying the fundamental
theorem of calculus to each term. Thus for the second term one applies the
fundamental theorem of calculus in the x variable for fixed y.

dq d
—dmdyz/ /
r Oz c [c

This is

d
qdm] dy = / [q(C;) — q(Cy_)] dy. (4.14)

Y

/cdqw;)dw/dcq(cy)dy_ /E)quy, (415)

The other term is handled similarly, except that the fundamental theorem of
calculus is applied with respect to the x variable for fixed y. Then such regions
can be pieced together to give the general Green’s theorem.

4.5 Stokes’s theorem

The most common version of Stokes’s theorem says that for a oriented two
dimensional surface S in a three dimensional manifold with oriented boundary
curve 0S we have

or o o _or Y ey
/s<5y 8z> dyalz+<(92 81:) dzdz+<aglj By drdy = as(pdx+qdy+rdz)'

16)

Again this has the simple form

[ao=[ o (4.17)

This theorem reduces to Green’s theorem. The idea is to take coordinates
u, v on the surface S and apply Green’s theorem in the u,v coordinates. In the
theorem the left hand side is obtained by taking the form pdz + qdy + r dz and
applying d to it. The key observation is that when the result of this is expressed
in the u, v coordinates, it is the same as if the form pdx 4+ qdy + r dz were first
expressed in the u,v coordinates and then d were applied to it. In this latter
form Green’s theorem applies directly.

Here is the calculation. To make it simple, consider only the pdzr term.
Then taking d gives

Ip Ip

_ (9 _op 9p
d(pdz) = (636 dx + 3y dy + 9, dz) dzx = 5% dzdz 9y dz dy. (4.18)

In u,v coordinates this is

[ (0:00 0wox\ o (0roy oyor
dpdz) = [5‘2 <8u dv  Ou 8v> dy <8u dv  Oudv dudv.  (4.19)

There are four terms in all.
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Now we do it in the other order. In u,v coordinates we have

ox ox
pdr = p% du + p% dv. (4.20)
Taking d of this gives
Ox Ox 0 ox 0 Ox
d <p8u du +p% dv) = L?u (p%> ~ % (pau)] du dv. (4.21)
The miracle is that the second partial derivatives cancel. So in this version
Ox Ox _|Opdx  Opox

Now we can express dp/Ou and dp/dv by the chain rule. This gives at total of
six terms. But two of them cancel, so we get the same result as before.

4.6 Gauss’s theorem

Let W be an oriented three dimensional region, and let OW be the oriented
surface that forms its boundary. Then Gauss’s theorem states that

/ <8a+8b+30> dxdydz:/ adydz +bdzdzx + cdzx dy. (4.23)
w ow

or 0Oy 0z
/ daz/ o, (4.24)
w ow

where now o is a 2-form. The proof of Gauss’s theorem is similar to the proof
of Green’s theorem.

Again this has the form

4.7 The generalized Stokes’s theorem

The generalized Stoke’s theorem says that

/de:/(mw. (4.25)

Here w is a (k — 1)-form, and dw is a k-form. Furthermore, Q is a k dimensional
region, and 0f) is its (k — 1)-dimensional oriented boundary. The forms may be
expressed in arbitrary coordinate systems.

4.8 References

A classic short but rigorous account of differential forms is given in the book of
Spivak [15]. The book by Agricola and Friedrich [1] gives a more advanced
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treatment. Other books on differential forms include those by Cartan [2],
do Carmo [3], Edelen [4], Flanders [7], Screiber [14], and Weintraub [17]. There
are also advanced calculus texts by Edwards [5] and by Hubbard and Hub-
bard [8].

There are many sources for tensor analysis; a classical treatment may be
found in Lovelock and Rund [10]. There is a particularly unusual and sophis-
ticated treatment in the book of Nelson [12]. Differential forms are seen to be
special kinds of tensors: covariant alternating tensors.

The most amazing reference that this author has encountered is an elemen-
tary book by Weinreich [16]. He presents the geometric theory of differential
forms in pictures, and these pictures capture the geometrical essence of the sit-
uation. The principal results of the theory are true by inspection. However his
terminology is most unusual. He treats only the case of dimension three. Thus
he has the usual notion of covariant 1-form, 2-form, and 3-form. In his termi-
nology the corresponding names for these are stack, sheaf, and scalar capacity
(or swarm). There are also corresponding contravariant objects corresponding
to what are typically called 1-vector, 2-vector (surface element), and 3-vector
(volume element). The names in this case are arrow, thumbtack, and scalar
capacity. The correspondence between his objects and the usual tensors may
actually be slightly more complicated than this, but the intent is certainly to
explicate the usual calculus geometrically. In particular, he gives geometric ex-
planations of the usual algebraic and differential operations in all these various
cases.
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4.9 Problems

1.

Let C be the curve 22 4+ y* = 1 in the first quadrant from (1,0) to (0, 1).
Evaluate

/ ryde + (2 + %) dy. (4.26)
c

. Let C be a curve from (2,0) to (0, 3). Evaluate

/ 2zy dr + (2° + y?) dy. (4.27)
C

. Consider the problem of integrating the differential form

Y x
a=————dr+——d 4.28
$2 + y2 1’2 + y2 Y ( )
from (1,0) to (—1,0) along some curve avoiding the origin. There is are
an infinite set of possible answers, depending on the curve. Describe all
such answers.

. Let R be the region x? 4+ y2 <1 withz >0 and y > 0. Let OR be its

boundary (oriented counterclockwise). Evaluate directly

/ zyde + (22 + %) dy. (4.29)
OR

. This continues the previous problem. Verify Green’s theorem in this spe-

cial case, by explicitly calculating the appropriate integral over the region
R.

. Let

a=—ydr+xdy+ zydz. (4.30)

Fix a > 0. Consider the surface S that is the hemisphere 22 + y2 + 22 =
a’? with z > 0. Integrate o over the boundary 9S of this surface (a
counterclockwise circle in the z,y plane).

This continues the previous problem. Verify Stokes’s theorem in this spe-
cial case, by explicitly calculating the appropriate integral over the surface

S.

. Let 0 = xy?zdydz — y?zdz dx + (2%y + y?2?) dv dy. Integrate o over the

sphere 22 + 32 + 22 = 2. Hint: This should be effortless.
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Analysis with a volume
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Chapter 5

The divergence theorem

5.1 Contraction

There is another operation called interior product (or contraction). In the case
of interest to us, it is a way of defining the product of a vector with a k-form
to get a k — 1 form. We shall mainly be interested in the case when k = 1,2, 3.
When k = 1 this is already familiar. For a 1-form « the interior product u|« is
defined to be the scalar « - v.

The interior product of a vector u with a 2-form o is a 1-form ujo. It is
defined by

(u]o) - v=0(u,v). (5.1)

This has a nice picture in two dimensions. The vector u is an arrow. In two
dimensions the 2-form o is given by a density of points. The contour lines of
the interior product 1-form are parallel to the arrow. The get them, arrange the
points defining the 2-form to be spaced according to the separation determined
by the arrow (which may require some modification in the other direction to
preserve the density). Then take the contour lines to be spaced according to
the new arrangement of the points. These contour lines are the contour lines
corresponding to the interior product 1-form.

In three dimensions the 2-form o is given by lines. The arrow u and the lines
determining o determine a family of parallel planes. To get these contour planes,
do the following. Arrange the lines that determine o to be spaced according to
the separation determined by the arrow (which may require some modification
in the other direction to preserve the density). Then take the contour planes
to be spaced according to the new separation between the lines. The resulting
planes are the contour planes of the interior product 1-form.

The interior product ujw of a vector u with a 3-form w is a 2-form u|w. It
is defined by

(ujw)(v,w) = w(u, v, w). (5.2)

(The case of a general r-form is similar.)
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The picture is similar. Consider three dimensions. The vector u is an arrow,
and the associated 2-form u]w is given by lines that are parallel to the arrow.
To get these contour lines, do the following. Arrange the points that determine
w to be spaced according to the separation determined by the arrow. Then
take the contour lines to be spaced according to the new separation between the
points.

One interesting property of the interior product is that if « is an r-form and
(B is an s-form, then

uf(aAB) = (uja) AB+(=1)"a A (u]B). (5.3)

This is a kind of triple product identity.
In particular, we may apply this when r = 1 and s = n. Since 3 is an n-form,
it follows that o A 8 = 0. Hence we have in this special case

(- w)8 = a A (u)f). (5.4)
Another application is with two 1-forms 5 and ~. In this case it gives
al(BAy)=(B-a)y—(v-a)p. (5.5)

So the interior product of a vector with 8 A  is a linear combination of 5 and
5.

Later we shall see the connection with classical vector algebra in three di-
mensions. The exterior product 8 A« is an analog of the cross product, while
a A B A~ is an analog of the triple scalar product. The combination —a|(8 A7)
will turn out to be an analog of the triple vector product.

5.2 Duality

Consider an n-dimensional manifold. The new feature is a given n-form, taken
to be never zero. We denote this form by vol. In coordinates it is of the form

vol = \/gduy - - - duy,. (5.6)

This coefficient /g depends on the coordinate system. The choice of the no-
tation /g for the coefficient will be explained in the following chapter. (Then
/9 will be the square root of the determinant of the matrix associated with the
Riemannian metric for this coordinate system.)

The most common examples of volume forms are the volume in vol =
dr dy dz in cartesian coordinates and the same volume vol = r?sin(f) dr df d¢
in spherical polar coordinates. The convention we are using for spherical polar
coordinates is that 6 is the co-latitude measured from the north pole, while ¢ is
the longitude. We see from these coordinates that the ,/g factor for cartesian
coordinates is 1, while the /g factor for spherical polar coordinates is r? sin(6).

In two dimensions it is perhaps more natural to call this area. So in cartesian
coordinates area = dx dy, while in polar coordinates area = r dr d¢.
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For each scalar field s there is an associated n-form svol. The scalar field
and the n-form determine each other in an obvious way. They are said to be
dual to each other, in a certain special sense.

For each vector field v there is an associated n — 1 form given by v|vol.
The vector field and the n — 1 form are again considered to be dual to each
other, in this same sense. If v is a vector field, then v]vol might be called the
corresponding fluz. It is an n—1 form that describes how much v is penetrating
a given n — 1 dimensional surface.

In two dimensions a vector field is of the form

0 0
The area form is
area = /g du dv. (5.8)
The corresponding flux is
uarea = \/g(adv — bdu). (5.9)
In three dimensions a vector field is of the form
0 0 0
=a— — —_—. 1
u a8u+b8v+caw (5.10)
The volume form is
vol = /g du dv dw. (5.11)
The corresponding flux is
Va(advdw +bdwdu + cdudv). (5.12)

5.3 The divergence theorem

The divergence of a vector field v is defined to be the scalar divv such that
d(u]vol) = divuvol. (5.13)

In other words, it is the dual of the differential of the dual.
The general divergence theorem then takes the form

/divuvol:/ u|vol. (5.14)
w ow

In two dimensions the divergence theorem says that

i Ovoe | Ovab area = adv —bdu
/Rﬁ< du | ov > |, VIladv—=bdu). (5.15)

Notice that the coefficients in the vector field are expressed with respect to a
coordinate basis. We shall see in the next part of this book that this is not the
only possible choice.
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A marvellous application of the divergence theorem in two dimensions is the

formula 1
/ dxdy:f/ xdy —ydx. (5.16)
R 2 Jor

This says that one can determine the area by walking around the boundary. It
is perhaps less mysterious when one realizes that « dy — y dz = r2 d¢.
In three dimensions the divergence theorem says that

1 (dga  9ygb dJge\ .
/W % ( P + D + Em vol = - V(ladvdw + bdwdu + cdudv).
(5.17)

Again the coefficients a,b,c of the vector field are expressed in terms of the
coordinate basis vectors 9/0u, d/0v,d/0w. This is the the only possible kind of
basis for a vector field, so in some treatments the formulas will appear differently.
They will be ultimately equivalent in terms of their geometrical meaning.

The divergence theorem says that the integral of the divergence of a vector
field over W with respect to the volume is the integral of the flux of the vector
field across the bounding surface OW. A famous application in physics is when
the vector field represents the electric field, and the divergence represents the
density of charge. So the amount of charge in the region determines the flux of
the electric field through the boundary.

5.4 Integration by parts
An important identity for differential forms is
d(sw) =ds Aw + sdw. (5.18)

This gives an integration by parts formula

/ds/\w—!—/ sdw:/ Sw. (5.19)
w w ow

Apply this to w = u|vol and use ds A u]vol = ds - uvol. This gives the
divergence identity
div(su) = ds - u + sdivu. (5.20)

From this we get another important integration by parts identity

/ds-uv01+/ sdivuvolz/ su]vol. (5.21)
w w ow

5.5 A variant on curl

In this section we describe a non-standard variant of curl. The usual curl sends
vector fields to vector fields. The variant considered here is almost the same,
except that it sends differential forms to vector fields.
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The context is 3 dimensional only. Define curl’ (which is not the usual curl)
by the condition that
curla = v (5.22)

provided that
da = v |vol. (5.23)

In other words, curl’a is the vector field whose flux is do. So it is the dual of
the differential. It is illuminating to work this out in coordinates. If

a=pdu+qgdv+rdw, (5.24)
then
curl/oz:i or_ % g_y or 9p g-ﬁ- 9q¢ _9p\ 9
VI [\ov  ow) du ow Ou) Ov ou Ov/) ow|’
(5.25)

Notice again that the result is expressed in terms of the coordinate basis 9/9u, 9/dv, d/ow.
This is not the only possible choice of basis, as we shall see later on.

Notice that curl’ds = 0 for every scalar s. Furthermore, diveurl’a = 0 for
every 1-form «. This is because by the definition of divergence (divcurl’ ) vol =
d((curl’@)]vol) = dda = 0. An alternative explanation is that the /g in the
divergence and the 1/,/g in the curl cancel.

There is a Stokes’s theorem for curl’. It has the form

/curl’ajvolz/ a. (5.26)
S as

It says that the surface integral of the flux of the vector field curl’a across the
surface S is the line integral of o around its oriented boundary 9.

There is no particular good reason to worry about curl’, since nobody uses it.
However, it is a useful transition to an understanding of the true curl described
in the next part.
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5.6 Problems

1.

Let 2 = 22 + 42 + 22, and let
1 0 0 0
== |z=— — — . 5.27
M= (x8$+y8y+zaz> (5:27)
Let vol = dz dy dz. Show that

1
zdydz +ydzdz + zdz dy). (5.28)

o =v]|vol = T—S(

In the preceding problem, show directly that do = 0 away from r = 0.

. Find o in spherical polar coordinates. Hint: This can be done by blind

computation, but there is a better way. Express v in spherical polar
coordinates, using Euler’s theorem

0 0 0 0
— =r— 4 y— +2—. 2
"5 maz+yay+zaz (5.29)

Then use vol = r2 sin(#) dr df d¢ to calculate o = v |vol.

In the preceding problem, show that do = 0 away from r = 0 by a spherical
polar coordinate calculation.

Let S be the sphere of radius a > 0 centered at the origin. Calculate the
integral of o over S.

Let @ be the six-sided cube with side lengths 2L centered at the origin.
Calculate the integral of o over (). Hint: Given the result of the preceding
problem, this should be effortless.

Consider a two-dimensional system with coordinates ¢,p. Here ¢ repre-
sents position and p represents momentum. The volume (or area) in this
case is not ordinary area; in fact vol = dq dp has the dimensions of angular
momentum. Let H be a scalar function (the Hamiltonian function). Find
the corresponding Hamiltonian vector v such that

v]vol = dH. (5.30)
This is a special case of the preceding problem. Suppose that
1
H=_—p*+V(q). 5.31
51+ V(a) (531)
The two terms represent kinetic energy and potential energy. Find the cor-

responding Hamiltonian vector field and the corresponding Hamiltonian
equations of motion.



Part 111

Analysis with a Riemannian
metric

43






Chapter 6

The metric

6.1 Inner product

An inner product on a vector space V is a real function g that takes a pair of
input vectors u, v and produces a number gu-v. It is required to be a bilinear,
symmetric, positive, non-degenerate form. That is, it satisfies the following
axioms:

1. The form is bilinear: The function gu - v is linear in u and also linear in
V.

2. The form is symmetric: gu-v =gv - u.
3. The form is non-degenerate: gu-u = 0 implies u = 0.
4. The form is positive: gu-u > 0,

An inner product g defines a linear transformation g : V' — V*. That is,
the value of g on u in V is the linear function from V to the real numbers that
sends v to gu - v. Thus gu is such a function, that is, an element of the dual
space V*.

Since the form g is non-degenerate, the linear transformation g from V to V*
is an isomorphism of vector spaces. Therefore it has an inverse g~ : V* — V.
Thus if w is a linear form in V*, the corresponding vector u = g~ 'w is the
unique vector u such that gu-v=w-v.

In short, once one has a given inner product, one has a tool that tends to
erase the distinction between a vector space and its dual space. It is worth
noting that in relativity theory there is a generalization of the notion of inner
product in which the form is not required to be positive. However it still gives
such an isomorphism between vector space and dual space.
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6.2 Riemannian metric

A smooth assignment of an inner product for the tangent vectors at each point
of a manifold is called a Riemannian metric. It is very convenient to choose
coordinates so that the Riemannian metric is diagonal with respect to this
coordinate system. In this case it has the form

g=hidui+h3dus+ -+ h2dul. (6.1)

Here each coefficient h; is a function of the coordinates u, ..., u,. The differ-
entials is not interpreted in the sense of differential forms. Rather, what this
means is that g takes vector fields to differential forms by

g <a1831 +~~an63n> = h2ay duy + - - h2a, du, (6.2)
It is not always possible to find such a coordinate system for which the Rieman-
nian metric is diagonal. However this can always be done when the dimension
n < 3, and it is very convenient to do so. Such a coordinate system is called a
system of orthogonal coordinates. See the book by Eisenhart [6] for a discussion
of this point.

When we have orthogonal coordinates, it is tempting to make the basis
vectors have length one. Thus instead of using the usual coordinate basis vectors
8%” one uses the normalized basis vectors h%aim. Similarly, instead of using
the usual coordinate differential forms du; one uses the normalized differentials
hi dul Then

1 0

g(alhlaul+anhnaun) = hiai duy + - - - hpay duy, (63)

When you use the normalized basis vectors, the coefficients do not change.
In orthogonal coordinates the volume is given by

vol = \/gduy - du, = hy - hpdug A -+ A duy,. (6.4)

A simple example of orthogonal coordinates is that of polar coordinates r, ¢
in the plane. These are related to cartesian coordinates x,y by

x = rcos(¢) (6.5)
y = rsin(¢)
The Riemannian metric is expressed as

g =dr* +r? de*. (6.7)

The normalized basis vectors are % and

dr and r d¢. The area form is r dr A d¢.
Warning: Even though coordinate forms like d¢ are closed forms, a normal-

ized form like 7 d¢ need not be a closed form. In fact, in this particular case
d(r¢) =dr Adeo # 0.

10

95" The normalized basis forms are
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Another example of orthogonal coordinates is that of spherical polar coor-
dinates r, 0, ¢. These are related to cartesian coordinates z,y, z by

x = rcos(¢)sin(f) (6.8)
= rsin(¢)sin(d) .
z = rcos(f) (6.10)

The Riemannian metric is expressed as

g = dr® + 12 do* + r? sin®(0) do>. (6.11)
The normalized basis vectors are 5 and 7{% and rsnll(a) %. The normalized

basis forms are dr and rdf and rsin(f) d¢. The volume form is 72 sin(#) dr A
do N do.

In these examples one could always use cartesian coordinates. However there
are manifolds that cannot be naturally described by cartesian coordinates, but
for which orthogonal coordinates are available. A simple example is the sphere
of constant radius a. The Riemannian metric is expressed by

g = a®db? + a®sin?(0) dp>. (6.12)
The normalized basis vectors are l@ and aSlIll(e) 88¢ The normalized basis
forms are a df and asin(f) d¢. The area form is a? sin(0) d A d¢.

6.3 Gradient and divergence

If f is a scalar field, then its gradient is

Vf =gradf = g df. (6.13)

1 maps 1-forms to vector

Since du is a 1-form, and the inverse of the metric g~
fields, the gradient V f is a vector field.

In orthogonal coordinates V f has the form

"1 0f 0
vi= ZhZ Ou; Ou; (6.14)

In terms of normalized basis vectors this has the equivalent form
n
1of 1 0
il 6.15
z:: h; 0 h ou; ( )

If u is a vector field, then its divergence V - u is a scalar field given by
requiring that

(divu)vol = (V - u)vol = d(u|vol). (6.16)
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Here vol = hy -+ - hy, dug A - - - du,, is the volume form. Say that u has an expres-
sion in terms of normalized basis vectors of the form

uzzail_i_. (6.17)

Then

. 1 O (hy-hy
dlvu=V~u:Zh1“.hnam< 1hi ai)- (6.18)

6.4 Gradient dynamics

A scalar function f has both a differential df and a gradient g~'df. What can
the gradient do that the differential cannot do? Well, the gradient is a vector
field, so it has an associated system of differential equations

= — . .].
Along a solution of this equation the function f satisfies
df = 0f du; =1 (Of)°
= = = — (=] >0. 6.20
dt Pl Ou; Ot zz:; h? <8ui - ( )
In more geometrical language this says that
d
di; =df -g~ldf > 0. (6.21)

Along every solution f is increasing in time. If instead you want decrease, you
can follow the negative of the gradient.

6.5 The Laplace operator

The Laplace operator V2 is defined as

Vif=V.-V/. (6.22)
This can also be written
V2 f = divgradf. (6.23)
In coordinates the Laplacian has the form
1 "9 [hi---hy Of
2 1 n
_ - " .24
Vi h1~--hn;8uz'( hiz 8ui> (6.24)

For example, in three dimensions with cartesian coordinates it is

92f 92.](' 92f
2 _ —
V f= 1’2 + y2 + 2’2 . (6.25)
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In spherical polar coordinates it is

o af o of o 1 of

1 2 . .
~ r2sin(f) L‘?rr SIH(G)E * 0 sm(@)% + ¢ sin() 0

] . (6.26)

This is often written

19 ,0f 1{10 af 182f}

2,_ 1 0 20 9 in(e s
VI =55 o T s 00" V%0 T n9) 902

(6.27)

6.6 Curl

The remaining objects are in three dimensions.
The cross product of two vectors v and w is defined as the unique vector
v X w such that
(v x w)|vol = gv A gw. (6.28)

In other words, it is the operation on vectors that corresponds to the exterior
product on forms.
The curl of a vector field v is defined by

(curlv) |vol = d(gv). (6.29)

The curl has a rather complicated coordinate representation. Say that in a
system of orthogonal coordinates

109 ,10, .19 (6.30)

Ve ou  Thy oo " Chy 0w

Thus the vector field is expressed in terms of normalized basis vectors. Then

gv = ah, du + bh, dv + ch,, dw. (6.31)
So
Ohyc  Ohyb Ohya  Ohyc Ohy,b  Ohya
d(gv)—( 5 dw ) dv/\dw—i—( 0 ou )dw/\du—l—( i )du/\dv.
(6.32)

It follows that

1 <8hwc 8hvb> 10 1 (8hua 8hw0> 1 0 1 (Ohvb 8hua) 1 0
curlv = - - — )

Tt \ 00 0w ) Ty 0u hhy \ 0w Ou ) by 0hy ks \ 0u O T

(6.33)

The reason for writing it this way is to express it again in terms of normal-

ized basis vectors. Notice also that if we express the derivatives as normalized

derivatives, then the expression is reasonably natural. For instance, the first

term is 1/h,, times the derivative (1/h,)3/0v) of h,, times the coefficient. The

only odd thing is that the h,, is inside the derivative, while the 1/h,, is outside

the derivative.
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It is easy to see that curlgradf = 0 and that divcurlv = 0. This first of
these is simple; it only involves the observation that curlgradf = curl’'gg='df =
curl’df = 0. The second of these is equally transparent: divcurlv = divcurl'gv =
0.

Stokes’s theorem says that

/Curlevolz/ gv. (6.34)
S as

Of course, this is just saying that

/Sd(gv) = /as gv, (6.35)

which is much simpler, since most of the effect of the metric has now cancelled
out.

6.7 Problems

1. This problem is three dimensional. Compute the Laplacian of 1/r via a
cartesian coordinate calculation.

2. This problem is three dimensional. Compute the Laplacian of 1/r via
spherical polar coordinates.



Chapter 7

Applications

7.1 Conservation laws

A conservation law is an equation of the form

OR
S = (7.1)

Here R is an n-form, the mass in kilograms, and J is an n — 1 form, the mass
flux in kilograms per second). The coefficients of these two forms have units
kilograms per cubic meter and kilograms per second per square meter.) The
integral form of such a conservation law is

- /
— R=— J. 7.2
dt Jw ow (7:2)

It says that rate of change of the amount of substance inside the region W is
equal to the negative of the flow out through the boundary. In fluid dynamics
the flux J of mass is J = v|R, where v is the fluid velocity vector field. Since
the coeflicients of v are in meters per second, and the basis vectors are in inverse
meters, the units of v itself is in inverse seconds.
Often one writes
R = pvol (7.3)

Here the coefficient p is a scalar density (in kilograms per cubic meter). In this
case the conservation law reads

% = —div(pv). (7.4)
The corresponding integral form is
d
— [ pvol = — pv|vol. (7.5)
dt Jw ow

The units for this equation are kilograms per second. For a fluid it is the law
of conservation of mass.
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7.2 Maxwell’s equations

Maxwell’s equations are the equations for electric and magnetic fields. It is
convenient to formulate them in such a way that there are two electric fields, F
and D. Correspondingly, there are two magnetic fields H and B. Both E and
H are 1-forms, while both D and B are 2-forms. The fields are related in the
simplest case by

D =¢F (7.6)

and
B = uH. (7.7)

The € and p here represent operations that change a 1-form to a 2-form. This
might just be be taking the dual with respect to the volume form and then
multiplying by a scalar function of position. These scalar functions are called
the electric permittivity and the magnetic permeability. Sometimes E and H
are called the electric and magnetic fields, while D and B are called the electric
flux and magnetic flux.

Each of these forms is regarded as a linear combination with certain coeffi-
cients of 1-forms with units of meters or of 2-forms with units of square meters.
The units of the 1-forms E and H are volt and ampere. (Thus the units of the
coefficients are volt per meter and ampere per meter.) The units of the 2-forms
D and B are coulomb and weber. (The units of the coefficients are coulomb per
square meter and weber per square meter.)

There is also a 3-form R that represents charge, and a 2-form J that repre-
sents current. The units of R and J are coulomb and ampere. (The units of the
coefficients are coulomb per cubic meter and ampere per square meter.) These
satisfy a conservation law

OR

dJ+ — =0. 7.8
+ 5 (7.8)
In integral form this says that
/ g+ [ roy (7.9)
ow  dt Jw . '

The amount of current that flows into the region is balanced by the increase in
the amount of charge in the region.
The first two Maxwell equations are

OB

dE+—=0 7.10
7 (7.10)
and
dB = 0. (7.11)
The second two Maxwell equations are
oD
dH = J + — (7.12)

ot
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and
dD = R. (7.13)

Here are the same equations in integral form. The first two Maxwell equa-
tions are

d
E+—/B=0 (7.14)
os  dtJs
(in volts) and
B=0 (7.15)
ow

(in webers).
The second two Maxwell equations are

/é)SH:/SJJr%/SD (7.16)

/ D= / R (7.17)
ow w
(in coulombs).

Each of these equations has a physical meaning. Here are the first two. One
is that the voltage given by the circulation of an electric field around a boundary
of a surface is given by the negative of the rate of change of the magnetic flux
through the surface. This is Faraday’s law of induction. The other is that
there is no magnetic flux through a closed surface (since there are no magnetic
monopoles).

Here are the second two. One is that the circulation of a magnetic field
around the boundary of a surface is given by the current flux through the surface
in amperes plus the rate of change of the electric flux through the surface. The
other equation is that the electric flux through a boundary is the total amount
of electric charge in coulombs inside.

Ampere’s law was the equation for dH with only the current J on the right
hand side. Maxwell observed that this equation would imply dJ = 0, which
contradicts the conservation law for J and R. He solved this problem by adding
the displacement current term 9D /9dt, which makes the equation consistent with
the conservation law. With this modification one sees that a changing magnetic
field produces an electric field, and also a changing electric field produces a
magnetic field. This gives the explanation for electromagnetic waves, such as
radio waves and light waves.

Sometimes the equation dB = 0 is written in the form B = dA, where A
is a 1-form called the magnetic potential. This reflects the fact that an exact
2-form B is always a closed 2-form.

Also, the equation dE + 0B/0t = 0 is often written E + 0A/0t = —d¢,
where ¢ is a scalar, called the electric potential, measured in volts.

(in amperes)
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In most elementary treatments of Maxwell’s equations the electric and mag-
netic fields are regarded as vector fields. Thus the 1-forms F and H are written
in terms of vector fields £ and H by

E=gE (7.18)

and
H=gH. (7.19)

Similarly, the 2-forms B and E are written in terms of vector fields B and H
by
B = B]vol (7.20)

and
D = D|vol. (7.21)

Finally, the charge R and current J are given in terms of a a scalar charge
density p and a vector current density J by

R = pvol (7.22)

and

J = J]vol. (7.23)
There is also a 3-form R that represents charge, and a 2-form J that represents
current. The units of R and J are coulomb and ampere. (The units of the
coefficients are coulomb per cubic meter and ampere per square meter.) These

satisfy a conservation law
dp

% —divJ. (7.24)
In integral form this says that
d
— [ pvol = — J |vol. (7.25)
dt Jw ow

The units of the coefficients of E and of H are volt per meter and ampere
per meter. The units of the coefficients of D and B are coulomb per square
meter and weber per square meter. The units of p and of the coefficients of J
are coulomb per cubic meter and ampere per square meter. We are regarding
each of these vectors as linear combinations with certain coefficients of basis
vectors that have units of inverse meters.

The first two Maxwell equations are

. 9B
1E+— =0 7.26
curll + ot ( )

and
divB = 0. (7.27)
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The second two Maxwell equations are

- - 0D
1H=J+ — 7.28
cur + ot ( )
and .
divD = p. (7.29)
Here are the same equations in integral form. The first two Maxwell equa-
tions are d
/ gE + —/ Blvol =0 (7.30)
as dt Js
and
Blvol = 0. (7.31)
oW

The second two Maxwell equations are

. . d [
/ gH:/JJvol—i——/DJvol. (7.32)
a8 s dt Js

ﬁjvolz/ pvol. (7.33)
ow w

and

Sometimes the equation divB = 0 is written in the form B = curlff, where
A is a vector field called the magnetic potential. Also, the equation curlE +
OB /0t = 0 is often written E+0A /0t = —grad¢, where ¢ is a scalar, called the
electric potential, measured in volts.
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7.3 Problems

1. Show that the electric field satisfies
d(eE) =R (7.34)

and o2 p
E i, 1 0J
— +e€ dp ' dE = —¢ " ——. 7.35
o2 K ot (7.35)
This is the most important physical conclusion: a static charge produces
an electric field; an electric current changing in time produces an electric

field that propagates in space and time.
2. Show that the magnetic field satisfies
dB =0 (7.36)

and 2B
=z + de tdp™'B = de ' J. (7.37)

The electric field changing in space and time is accompanied by a magnetic
field changing in space and time.

3. The remaining problems deal with the magnetic and electric potentials A
and p. Show that the equations B = dA and F 4+ dA/0t = —d¢ imply the
first two Maxwell equations.

4. There is some freedom in how to choose A and ¢. Suppose that the choice
is such that deA = 0. (This is called the transverse gauge condition or
Coulomb gauge condition.) Recall that ¢ may depend on space but not
on time, and that it sends 1-forms to 2-forms. Use the fourth Maxwell
equation to prove that

ded¢p = —R. (7.38)

This equation shows how the charge 3-form R determines the electric
potential scalar ¢.

5. Show that the third Maxwell equation gives

A —14, -1 -17
where 96
J=J—ed—. 4
J=J—¢ ot (7.40)

Notice that p~! may depend on space but not on time, and that it sends
2-forms to 1-forms. The equation shows how the 2-form J determines the
magnetic potential 1-form A.

6. Suppose again that the transverse gauge condition deA = 0 is satisfied.
Show that the transverse current J satisfies dJ = 0.



Chapter 8

Length and area

8.1 Length

Sometimes it is useful to consider coordinates on a manifold that are not or-
thogonal coordinates. The simplest case is that of a two-dimensional manifold.
Write the metric as

g = Edu® + 2F dudv + G dv>. (8.1)

Here E,F,G are functions of u,v. They of course depend on the choice of
coordinates. What is required is that £ > 0,G > 0 and the determinant
EF —G? > 0. When F = 0 we are in the case of orthogonal coordinates.

One way that such a metric arises is from a surface in three-dimensional
space. Suppose the metric is the usual cartesian dz? + dy? + dz2. The length
of a curve is

5= / Vidz? + dy? + dz2. (8.2)
c
The meaning of this equation is that
b 2 2 2
dx dy dz
= — — — dt 8.3
§ /a\/dt+dt+dt ’ (8:3)
where t is a coordinate on the curve, and the end points are where ¢t = a and

t=b.
Suppose that the curve is in the surface. Then the length is

b 2 2
du du dv dv
S = L \/E <dt> + QFEE + G (dt) dt (84)

Here the coefficients are

7= @)+ (o) - )

o7
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and
Jdrdx Oydy 0z0z

du Ov * o Ou Ov +%%’

o\ 2 oy 2 02\ >
o= (5) +(3) +(5) - (5.7)
So this gives the explicit formula for the metric on the surface in terms of the

equations giving x,y, z in terms of u, v that define the surface. Often one writes
the result for the length of a curve in the surface in the form

F= (8.6)

and

s:/ VE du? + 2F dudv + G dv?. (8.8)
C

This just means that one can use any convenient parameter.

8.2 Area

The formula for the area of a surface is
A:/area:/\/§du/\dv:/\/EG—F2du/\dv. (8.9)
s S s

Here g = EG — F? is the determinant of the metric tensor. This is particularly
simple in the case of orthogonal coordinates, in which case F' = 0.

There is an alternative expression for the surface area of a surface inside
Euclidean space that is sometimes convenient. This is

dy/\dz dz Adw\? dx N\ dy 2
= _— . (8.1
area / \/ du N\ dv (du Adv ) * (du A dv dundv. (8.10)
Here a fraction such as dy A dz divided by du A dv is a ratio of 2-forms on the

surface S. As we know, such a ration is just a Jacobian determinant of y, z with
respect to u, v.
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