Radial functions and the Fourier transform

Notes for Math 583A, Fall 2008

December 6, 2008

1 Area of a sphere

The volume in \(n \) dimensions is

\[
\text{vol} = d^n x = dx_1 \cdots dx_n = r^{n-1} dr d^{n-1} \omega.
\] (1)

Here \(r = |x| \) is the radius, and \(\omega = x/r \) is a radial unit vector. Also \(d^{n-1} \omega \) denotes the angular integral. For instance, when \(n = 2 \) it is \(d\theta \) for \(0 \leq \theta \leq 2\pi \), while for \(n = 3 \) it is \(\sin(\theta) d\theta d\phi \) for \(0 \leq \theta \leq \pi \) and \(0 \leq \phi \leq 2\pi \).

The radial component of the volume gives the area of the sphere. The radial directional derivative along the unit vector \(\omega = x/r \) may be denoted

\[
\omega \mathcal{d} = \frac{1}{r} \left(x_1 \frac{\partial}{\partial x_1} + \cdots + x_n \frac{\partial}{\partial x_n} \right) = \frac{\partial}{\partial r}.
\] (2)

The corresponding spherical area is

\[
\omega \mathcal{d} \text{vol} = r^{n-1} d^{n-1} \omega.
\] (3)

Thus when \(n = 2 \) it is \((1/r)(x \ dy - y \ dx) = r \ d\theta \), while for \(n = 3 \) it is \((1/r)(x \ dy \ dz + y \ dz \ dx + x \ dx \ dy) = r^2 \sin(\theta) \ d\theta \ d\phi \).

The divergence theorem for the ball \(B_r \) of radius \(r \) is thus

\[
\int_{B_r} \text{div} \ \mathbf{v} \ d^n x = \int_{S_r} \mathbf{v} \cdot \omega r^{n-1} d^{n-1} \omega.
\] (4)

Notice that if one takes \(\mathbf{v} = x \), then \(\text{div} \ x = n \), while \(x \cdot \omega = r \). This shows that \(n \) times the volume of the ball is \(r^n \) times the surface area of the sphere.

Recall that the Gamma function is defined by \(\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt \). It is easy to show that \(\Gamma(z+1) = z \Gamma(z) \). Since \(\Gamma(1) = 1 \), it follows that \(\Gamma(n) = (n-1)! \).

The result \(\Gamma\left(\frac{3}{2}\right) = \frac{\pi}{2} \) follows reduction to a Gaussian integral. It follows that \(\Gamma\left(\frac{3}{2}\right) = \frac{1}{2} \pi^{3/2} \).

Theorem 1 The area of the unit sphere \(S_{n-1} \subseteq \mathbb{R}^n \) is

\[
\omega_{n-1} = \frac{2\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}.
\] (5)
Thus in 3 dimensions the area of the sphere is $\omega_2 = 4\pi$, while in 2 dimensions the circumference of the circle is $\omega_1 = 2\pi$. In 1 dimension the two points get count $\omega_0 = 2$.

To prove this theorem, consider the Gaussian integral

$$\int_{\mathbb{R}^n} (2\pi)^{-\frac{n}{2}} e^{-\frac{x^2}{2}} d^n x = 1. \quad \text{(6)}$$

In polar coordinates this is

$$\omega_{n-1} (2\pi)^{-\frac{n}{2}} \int_0^\infty e^{-\frac{r^2}{2}} r^{n-1} dr = 1. \quad \text{(7)}$$

Let $u = r^2/2$. Then this is

$$\omega_{n-1} (2\pi)^{-\frac{n}{2}} 2^{-\frac{n-2}{2}} \int_0^\infty e^{-u} u^{\frac{n-2}{2}} du = 1. \quad \text{(8)}$$

That is

$$\omega_{n-1} \pi^{-\frac{n}{2}} 2^{-1} \Gamma\left(\frac{n}{2}\right) = 1. \quad \text{(9)}$$

This gives the result.

2 Fourier transform of a power

Theorem 2 Let $1 < a < n$. The Fourier transform of $1/|x|^a$ is $C_a/|k|^{n-a}$, where

$$C_a = (2\pi)^{\frac{n-a}{2}} \frac{\Gamma\left(\frac{n-a}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}. \quad \text{(10)}$$

This is not too difficult. It is clear from scaling that the Fourier transform of $1/|x|^a$ is $C/|k|^{n-a}$. It remains to evaluate the constant C.

Take the inner product with the Gaussian. This gives

$$\int_{\mathbb{R}^n} (2\pi)^{-\frac{n}{2}} e^{-\frac{x^2}{2}} \frac{1}{|x|^a} d^n x = \int_{\mathbb{R}^n} (2\pi)^{-\frac{n}{2}} e^{-\frac{x^2}{2}} C \frac{1}{|k|^{n-a}} d^n k. \quad \text{(11)}$$

Writing this in polar coordinates gives

$$(2\pi)^{-\frac{n}{2}} \int_0^\infty e^{-\frac{r^2}{2}} r^{-n-1-a} dr = C(2\pi)^{-n} \int_0^\infty e^{-\frac{r^2}{2}} r^{1-a} dr. \quad \text{(12)}$$

This in turn gives

$$(2\pi)^{-\frac{n}{2}} 2^{-\frac{n-a}{2}} \Gamma\left(\frac{n-a}{2}\right) = C(2\pi)^{-n} 2^{-\frac{n-2}{2}} \Gamma\left(\frac{a}{2}\right). \quad \text{(13)}$$
3 The Hankel transform

Define the Bessel function

\[J_\nu(t) = \frac{t^n}{(2\pi)^{\nu+1}\omega_{2\nu}} \int_0^\pi e^{-it\cos(\theta)} \sin(\theta)^{2\nu} d\theta. \]

(14)

This makes sense for all real numbers \(\nu \geq 0 \), but we shall be interested mainly in the cases when \(\nu \) is an integer or \(\nu \) is a half-integer. In the case when \(\nu \) is a half-integer the exponent \(2\nu \) is odd, and so it is possible to evaluate the integral in terms of elementary functions. Thus, for example,

\[J_{\frac{1}{2}}(t) = \frac{t^{\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}} \frac{2\pi^{\frac{1}{2}}}{2} \int_0^\pi e^{-it\sin(\theta)} \sin(\theta) d\theta = \frac{t^{\frac{1}{2}}}{(2\pi)^{\frac{1}{2}}} \frac{2\sin(t)}{t}. \]

(15)

This is not possible when \(\nu \) is an integer. Thus for \(\nu = 0 \) we have the relatively mysterious expression

\[J_0(t) = \frac{1}{\pi} \int_0^\pi e^{it\cos(\theta)} d\theta. \]

(16)

Fix a value of \(\nu \). If we consider a function \(g(r) \), its Hankel transform is the function \(\hat{g}_\nu(s) \) given by

\[\hat{g}_\nu(s) = \int_0^\infty J_\nu(sr)g(r)r \, dr. \]

(17)

We shall see that the Hankel transform is related to the Fourier transform.

4 The radial Fourier transform

The first result is that the radial Fourier transform is given by a Hankel transform. Suppose \(f \) is a function on \(\mathbb{R}^n \). Its Fourier transform is

\[\hat{f}(k) = \int e^{-ikx}f(x) \, dx. \]

(18)

Let \(r = |x| \) and \(s = |k| \). Write \(f(x) = F(r) \) and \(\hat{f}(k) = F_n(s) \).

Theorem 3 The radial Fourier transform in \(n \) dimensions is given in terms of the Hankel transform by

\[s^{\frac{n-2}{2}} \hat{F}_n(s) = (2\pi)^n \int_0^\infty J_{\frac{n-2}{2}}(sr)r^{\frac{n-2}{2}}F(r)r \, dr. \]

(19)

Here is the proof of the theorem. Introduce polar coordinates with the \(z \) axis along \(k \), so that \(k \cdot x = sr \cos(\theta) \). Suppose that the function is radial, that is, \(f(x) = F(r) \).

\[\hat{f}(k) = \hat{F}_n(s) = \int_0^\pi \int_0^\infty e^{-isr\cos(\theta)}F(r)\omega_{n-2}\sin(\theta)^{n-2} \, d\theta \, dr^{n-1} \, dr. \]

(20)
Use

\[J_{n/2}(t) = \frac{i^{n/2}}{(2\pi)^{1/2}} \omega_n^{-1} \int_0^\pi e^{-it\cos(\theta)} \sin^n(\theta)^{-1} d\theta. \]

(21)

For the case \(n = 3 \) the Bessel function has order \(1/2 \) and has the above expression in terms of elementary functions. So

\[\hat{F}_3(s) = 4\pi \int_0^\infty \frac{\sin(sr)}{sr} F(r) r^2 dr. \]

(22)

For \(n = 2 \) the Bessel function has order 0. We get

\[\hat{F}_2(s) = 2\pi \int_0^\infty J_0(sr) F(r) r dr. \]

(23)