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Chapter 1

Growth and Decay

1.1 Linear constant coefficient equations

The simplest differential equation is the equation of uniform motion:

dy

dt
= b, (1.1)

where b is constant. Its solution is

y = y0 + bt. (1.2)

The next simplest is the equation of growth or decay:

dy

dt
= ay, (1.3)

where a is constant. This is the homogeneous linear constant coefficient
equation. Its solution is

y = y0e
at. (1.4)

These may be combined in the general linear constant coefficient equa-
tion:

dy

dt
= ay + b, (1.5)

where a and b are constants. The general solution for a 6= 0 is

y = Ceat − b

a
. (1.6)

The solution with y = y0 at t = 0 is

y = y0e
at +

b

a
(eat − 1). (1.7)
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4 CHAPTER 1. GROWTH AND DECAY

1.2 Autonomous equations

The general autonomous equation is

dy

dt
= f(y). (1.8)

An equilibrium point is a solution of f(r) = 0. For each equilibrium point
we have a solution y = r.

Near an equilibrium point f(y) ≈ f ′(r)(y − r). An equilibrium point r
is attractive if f ′(r) < 0 and repulsive if f ′(r) > 0.

One can attempt to find the general solution of the equation by inte-
grating ∫

1

f(y)
dy =

∫
dt. (1.9)

Problems

1. If a population grows by dp/dt = .05p, how long does it take to double
in size?

2. The velocity of a falling body (in the downward direction) is given
by dv/dt = g − kv, where g = 32 and k = 1/4. If v = 0 when t = 0,
what is the limiting velocity as t→∞?

3. Consider dy/dt = ay+ b where y = y0 when t = 0. Fix t and find the
limit of the solution y as a→ 0.

4. A population grows by dp/dt = ap − bp2. Here a > 0, b > 0, and
0 < p < a/b. Find the solution with p = p0 at t = 0. Do this by
letting u = 1/p and solving the resulting differential equation for u.

5. Do the same problem by integrating 1/(ap− bp2) dp = dt. Use partial
fractions.

6. In the same problem, find the limiting population as t→∞.

7. Use Phaser to explore the solutions of dx/dt = x − x3. Try many
different initial conditions. What pattern emerges? Discuss the limit
of x as t→∞ as a function of the initial condition x0.



Chapter 2

Oscillations

2.1 Linear constant coefficient equations

The homogeneous linear constant coefficient system is of the form

dx

dt
= ax+ by (2.1)

dy

dt
= cx+ dy. (2.2)

Try a solution of the form

x = veλt (2.3)

y = weλt. (2.4)

We obtain the eigenvalue equation

av + bw = λv (2.5)

cv + dw = λw. (2.6)

This has a non-zero solution only when λ satisfies λ2−(a+d)λ+ad−bc = 0.
We can express the same ideas in matrix notation. The equation is

dx

dt
= Ax. (2.7)

The trial solution is
x = veλt. (2.8)

The eigenvalue equation is
Av = λv. (2.9)

This has a non-zero solution only when det(λI −A) = 0.
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6 CHAPTER 2. OSCILLATIONS

2.1.1 Growth and Decay

The first case is real and unequal eigenvalues λ1 6= λ2. This takes place
when (a − d)2 + 4bc > 0. There are two solutions corresponding to two
independent eigenvectors. The general solution is a linear combination of
these two. In matrix notation this is

x = c1v1e
λ1t + c2v2e

λ2t. (2.10)

When the two eigenvalues are both positive or both negative, the equilib-
rium is called a node. When one eigenvalue is positive and one is negative,
it is called a saddle. An attractive node corresponds to an overdamped
oscillator.

2.1.2 Oscillation

The second case is complex conjugate unequal eigenvalues λ = α + iω
and λ̄ = α − iω with α = (a + d)/2 and ω > 0. This takes place when
(a−d)2 +4bc < 0. There are two independent complex conjugate solutions.
These are expressed in terms of eλt = eαteiωt and eλ̄t = eαte−iωt. Their real
and imaginary parts are independent real solutions. These are expressed in
terms of eαt cos(ωt) and eαt sin(ωt).

In matrix notation we have complex eigenvectors u±iv and the solutions
are

x = (c1 ± ic2)eαte±iωt(u± iv). (2.11)

Taking the real part gives

x = c1e
αt(cos(ωt)u− sin(ωt)v)− c2eαt(sin(ωt)u + cos(ωt)v). (2.12)

If we write ci ± ic2 = ce±iθ, these take the alternate forms

x = ceαte±i(ωt+θ)(u± iv). (2.13)

and

x = ceαt(cos(ωt+ θ)u− sin(ωt+ θ)v). (2.14)

From this we see that the solution is characterized by an amplitude c and
a phase θ. When the two conjugate eigenvalues are pure imaginary, the
equilibrium is called a center. When the two conjugate eigenvalues have a
non-zero real part, it is called a spiral (or a focus). An center corresponds to
an undamped oscillator. An attractive spiral corresponds to an underdamped
oscillator.
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2.1.3 Shearing

The remaining case is when there is only one eigenvalue λ = (a+d)/2. This
takes place when (a− d)2 + 4bc = 0. In this case we neeed to try a solution
of the form

x = peλt + vteλt (2.15)

y = qeλt + wteλt. (2.16)

We obtain the same eigenvalue equation together with the equation

ap+ bq = λp+ v (2.17)

cp+ dq = λq + w. (2.18)

In practice we do not need to solve for the eigenvector: we merely take p, q
determined by the initial conditions and use the last equation to solve for
v, w.

Im matrix notation this becomes

x = peλt + vteλt (2.19)

with
Ap = λp + v. (2.20)

2.1.4 Inhomogeneous equations

The general linear constant coefficient equation is

dx

dt
= Ax + r. (2.21)

When A is non-singular we may rewrite this as

dx

dt
= A(x− s), (2.22)

where s = −A−1r is constant. Thus x = s is a particular solution. The gen-
eral solution is the sum of this particular solution with the general solution
of the homogeneous equation.

Problems

1. Find the general solution of the system

dx

dt
= x+ 3y

dy

dt
= 5x+ 3y.
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2. Find the solution of this equation with the initial condition x = 1 and
y = 3 when t = 0.

3. Use Phaser to sketch the direction field in the above problem. Sketch
the given solution in the x, y phase space. Experiment to find a
solution that passes very close to the origin, and sketch it.

4. Write the Taylor series of ez about z = 0. Plug in z = iθ, where
i2 = −1. Show that eiθ = cos θ + i sin θ.

5. Find the general solution of the system

dx

dt
= x+ 5y

dy

dt
= −x− 3y.

6. Find the solution of this equation with the initial condition x = 5 and
y = 4 when t = 0.

7. User Phaser to sketch the direction field in the above problem. Use
Phaser to find the given solution in phase space. Also plot x versus t
and y versus t.

8. A frictionless spring has mass m > 0 and spring constant k > 0. Its
displacement and velocity x and y satisfy

dx

dt
= y

m
dy

dt
= −kx.

Describe the motion.

9. A spring has mass m > 0 and spring constant k > 0 and friction
constant f > 0. Its displacement and velocity x and y satisfy

dx

dt
= y

m
dy

dt
= −kx− fy.

Describe the motion in the case f2 − 4k < 0 (underdamped).

10. Take m = 1 and k = 1 and f = 0.1. Use Phaser to sketch the
direction field and the solution in the phase plane. Also sketch x as
a function of t.
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11. In the preceding problem, describe the motion in the case f2 − 4k >
0 (overdamped). Is it possible for the oscillator displacement x to
overshoot the origin? If so, how many times?

12. An object has mass m > 0 and its displacement and velocity x and y
satisfy

dx

dt
= y

m
dy

dt
= 0.

Describe the motion.

13. Use Phaser to solve the above equation with many initial condition
with x = 0 and with varying value of y. Run the solution with these
initial conditions for a short time interval. Why can this be described
as “shear”?

2.2 Autonomous Systems

The general autonomous system is

dx

dt
= f(x, y) (2.23)

dy

dt
= g(x, y). (2.24)

An equilibrium point is a solution of f(r, s) = 0 and g(r, s) = 0. For
each equilibrium point we have a solution x = r and y = s.

Near an equilibrium point

f(x, y) ≈ a(x− r) + b(y − s) (2.25)

g(x, y) ≈ c(x− r) + d(y − s), (2.26)

where a = ∂f(x, y)/∂x, b = ∂f(x, y)/∂y, c = ∂g(x, y)/∂x, and d =
∂g(x, y)/∂y, all evaluated at x = r and y = s. So near the equilibrium
point the equation looks like a linear equation.

Assume that the eigenvalues of the linear equation are real. Then the
equilibrium point is attractive if they are both negative. On the other hand,
assume that the eigenvalues of the linear equation are complex conjugates.
Then the equilibrium point is attractive if the real part is negative. In
general the equilibrium point is classified by the behavior of the linearized
equation at that point.
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A first example is the non-linear pendulum equation. This is

dx

dt
= y (2.27)

ml
dy

dt
= −mg sin(x)− cy. (2.28)

Here x is the angle and y is the angular velocity. The parameters are the
mass m > 0, the length l > 0, and the gravitational acceleration g > 0.
There may also be a friction coefficient c ≥ 0. The first equation is the
definition of angular velocity. The second equation is Newton’s law of
motion: mass times acceleration equals force.

There are two interesting equilibrium situations. One is where x = 0
and y = 0. In the case we use sin(x) ≈ x to find the linear approximation
The other interesting situation is when x − π = 0 and y = 0. In this case
we use sin(x) ≈ −(x− π). The minus sign makes a crucial difference.

A second example is the predator-prey system. This is

dx

dt
= (a− by −mx)x (2.29)

dy

dt
= (cx− d− ny)y. (2.30)

Here x is the prey and y is the predator. The prey equation says that the
prey has a natural growth rate a, are eaten by the predators at rate by, and
compete with themselves with rate mx. The predator equation says that
the predators have a growth rate cx− d at food level x and compete with
themselves at rate ny. The parameters are strictly positive, except that we
allow the special case m = 0 and n = 0 with no internal competition. We
are only interested in the situation x ≥ 0 and y ≥ 0.

There are several equilibria. One corresponds to total extinction. Also
when m > 0 one can have a situation when the predator is extinct and
where x = a/m is the natural prey carrying capacity. Whem m = 0, on
the other hand, there is there is no natural limit to the size of the prey
population: we interpret a/m = +∞.

The most interesting equilibrium takes place when the natural predator
growth rate cx− d with x = a/m at the prey carrying capacity is positive.
This says that the predator can live off the land.
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Problems

1. For the pendulum problem with no friction, find the linearization at
x = 0, y = 0. Discuss the nature of the equilibrium.

2. Use Phaser for the pendulum problem. Find oscillatory solutions
that are near the zero solution, but not too near. How large can the
solutions be before the pendulum can no longer be used as a clock?
Sketch Phaser plots that illustrate this point.

3. For the pendulum problem with no friction, find the linearization at
x = π, y = 0. Discuss the nature of the equilibrium.

4. Use Phaser. Find at least two different kinds of oscillatory solutions
that pass near x = π, y = 0. Sketch Phaser plots that illustrate these
different kinds of solutions.

5. For the pendulum problem, describe the nature of the two equilibria
when there is friction.

6. Consider the predator-prey equations with internal competition. Find
the nature of the equilibrium corresponding to total extinction.

7. Find the nature of the equilibrium corresponding to extinction of the
predators. There are two situations, depending on the sign of the
predator natural growth rate.

8. Find the nature of the equilibrium corresponding to coexistence. Dis-
cuss its stability.

9. Use Phaser to sketch representative solutions.

10. Find the nature of the equilibrium corresponding to coexistence when
there is no internal competition.

11. Use Phaser to sketch representative solutions.

2.3 Limit cycles

Now we come to an essentially non-linear effect: oscillations that are sta-
bilized by the non-linearity.

The classic example is

dx

dt
= v (2.31)

dv

dt
= −kx− g(x)v. (2.32)
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This is an oscillator in which the friction coefficient g(x) is a function of
position. There is a constant r > 0 such that g(x) < 0 for |x| < r and
g(x) > 0 for |x| > r. Thus when |x| is small the oscillator gets a boost. A
standard example is g(x) = c(x2 − r2).

Change variables to y = v+G(x), where G′(x) = g(x). Then this same
oscillator becomes

dx

dt
= y −G(x) (2.33)

dy

dt
= −kx. (2.34)

The equation is often studied in this form.

Problems

1. Take the van der Pol oscillator in x, y space with G(x) = x3 − ax.
Use Phaser to investigate the Hopf bifurcation. Sketch your results.

2. Take the non-linear van der Pol oscillator in x, v space with g(x) =
a(x2 − 1). Take a > 0 increasingly large. The result is a relaxation
oscillator. Use Phaser to make plots in the x, v plane. Also make x
versus t and v versus t plots and interpret them.



Chapter 3

Conserved Quantities

3.1 Vector fields

Consider a system of the form

dx

dt
= f(x, y) (3.1)

dy

dt
= g(x, y). (3.2)

Let K = k(x, y) be a function on phase space. Then along a solution

dK

dt
= f(x, y)

∂K

∂x
+ g(x, y)

∂K

∂y
. (3.3)

We see from this that giving the differential equation is the same as giving
the derivative along a vector field. This derivative along the vector field is

f(x, y)
∂

∂x
+ g(x, y)

∂

∂y
. (3.4)

Giving this derivative is the same as giving the vector field, and this is in
turn the same as giving the system of differential equations.

A vector field can be expressed in various coordinate systems, and some-
times this simplifies things. Here are a couple of examples where polar
coordinates are useful. The first is dilation. The corresponding differential
operator is called the Euler operator.

x
∂

∂x
+ y

∂

∂y
= r

∂

∂r
. (3.5)

13
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The second is rotation:

x
∂

∂y
− y ∂

∂y
=

∂

∂θ
. (3.6)

3.2 Hamiltonian systems

Consider a system of the form

dx

dt
= f(x, y) (3.7)

dy

dt
= g(x, y). (3.8)

It is said to be Hamiltonian if there is a function H = h(x, y) such that

∂H

∂y
= f(x, y) (3.9)

∂H

∂x
= −g(x, y). (3.10)

It follows H is constant along every orbit. Note that for a Hamiltonian
system the divergence

∂f(x, y)

∂x
+
∂g(x, y)

∂y
= 0. (3.11)

The frictionless oscillator is an example. This is

dx

dt
=

p

m
(3.12)

dp

dt
= −V ′(x), (3.13)

where p is the momentum. The Hamiltonian function in this case is the
energy

H =
1

2m
p2 + V (x). (3.14)

This is the context for conservation of energy.
A more interesting example is the predator-prey system with no internal

competition. This is

du

dt
= a− bev (3.15)

dv

dt
= ceu − d. (3.16)
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Here u = lnx is the prey and v = ln y is the predator, measured on a
logarithmic scale. It is not difficult to find the Hamiltonian.

We say that an equation is dissipative in a region provided that the
divergence

∂f(x, y)

∂x
+
∂g(x, y)

∂y
< 0 (3.17)

in the region.
An example is an oscillator with friction:

dx

dt
=

p

m
(3.18)

dp

dt
= −V ′(x)− g(x)

p

m
(3.19)

when g(x) > 0. Note that if we take H = p2

2m + V (x) as in the frictionless
case, we get a time derivative −g(x)(p/m)2 < 0.

Say that an equation is dissipative in a region. There is a result of
Bendixon that says that if A is contained in the region, then the boundary
∂A of A cannot be the orbit of a solution. In particular, it cannot be be a
limit cycle.

The proof of this result is to apply Green’s theorem to A. We have

0 <

∫ ∫
A

(
∂f(x, y)

∂x
+
∂g(x, y)

∂x
) dx dy =

∫
∂A

−g(x, y) dx+f(x, y) dy. (3.20)

If ∂A were the orbit of a solution with period T , then the right hand side
would be∫ T

0

(−g(x, y)
dx

dt
+f(x, y)

dy

dt
) dt =

∫ T

0

(−g(x, y)f(x, y)+f(x, y)g(x, y)) dt = 0.

(3.21)
This would give a contradiction.

Problems

1. Show that the Hamiltonian function H is always constant along an
orbit by computing dH/dt.

2. Show that a vector field that arises from a Hamiltonian has zero
divergence.

3. Find the Hamiltonian for the predator-prey system with no internal
competition.
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4. Model this system with Phaser in the x, y plane. Compare the results
with the equation for the orbits obtained from setting the Hamiltonian
to a constant.

5. Consider a homogeneous linear system given by a matrix. What con-
dition on the trace of the matrix is needed for the system to be Hamil-
tonian? Find the Hamiltonian function H.

6. This corresponds to a condition on the sum of the eigenvalues. What
is it?

7. A neurobiologist considers a system of equations

dx

dt
= f(y)− ax (3.22)

dy

dt
= g(x)− by (3.23)

where a > 0 and b > 0 and f is an increasing function and g is a
decreasing function. The variables x and y represent conductances
associated with two neurons. Can this system describe an oscillator
in the brain?

3.3 Exact equations

Another perspective is to eliminate the time dependence. We can write the
system of differential equations as

−g(x, y) dx+ f(x, y) dy = 0. (3.24)

This suggests consideration of a differential form of the form

p(x, y) dx+ q(x, y) dy. (3.25)

Such a differential form is said to be exact if there is a function U = u(x, y)
with

∂U

∂x
= p(x, y) (3.26)

∂U

∂y
= q(x, y). (3.27)

If this is the case, then it satisfies the integrability condition

∂p(x, y)

∂y
=
∂q(x, y)

∂x
. (3.28)



3.4. INTEGRATING FACTORS 17

If the differential form is exact, then the solution of the differential equation

p(x, y) dx+ q(x, y) dy = 0 (3.29)

is given by u(x, y) = C.
A differential form can be expressed in various coordinate systems, and

sometimes this simplifies things. Here are a couple of examples where polar
coordinates are useful. The first is

x dx+ y dy = r dr =
1

2
dr2. (3.30)

which is exact. The second is:

x dy − y dx = r2 dθ (3.31)

which is not exact. However dividing by r2 produces an exact form in the
region r > 0, 0 < θ < 2π.

Problems

1. Integrate (ey + x) dx+ (xey − e2y) dy.

2. Test y dx+ (2x− yey) dy for exactness. Integrate if possible.

3. Test y2 dx+ (2xy − y2ey) dy for exactness. Integrate if possible.

4. Find a relation between the condition for a vector field to be Hamil-
tonian and the condition for the corresponding differential form to be
exact.

5. Find a relation between the condition for a vector field to have zero
divergence and for the differential form to satisfy the integrability
condition.

3.4 Integrating factors

A non-zero function M = m(x, y) is an integrating factor for a differential
form if

Mp(x, y) dx+Mq(x, y) dy (3.32)

is exact. If this is the case, then we have the integrability condition

∂Mp(x, y)

∂y
=
∂Mq(x, y)

∂x
. (3.33)
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There are several situations when this equation can be used to determine
the integrating factor.

One is when we have both

∂Mp(x, y)

∂y
= 0 (3.34)

∂Mq(x, y)

∂x
= 0. (3.35)

This situation is called separation of variables.

Another situation is when M depends only on x. Then

M
∂p(x, y)

∂y
=
∂Mq(x, y)

∂x
=
dM

dx
q(x, y) +M

∂q(x, y)

∂x
(3.36)

and so
1

M

dM

dx
=

1

q(x, y)
(
∂p(x, y)

∂y
− ∂q(x, y)

∂x
) (3.37)

depends only on x.

There is a similar situation when M depends only on y.

Problems

1. Show that (e−x+sin y) dx+cos y dy has an integrating factor that de-
pends only on x. Find it. Multiply the form by this factor. Integrate
the resulting form.

2. Find an integrating factor for x dx − e−x dy. Multiply by this factor
and integrate.

3. Find an integrating factor for ey dx− x2y dy.

4. Find the solution of x2y dy/dx = ey that satisfies y = 0 when x = 2.

5. Consider a form (r(x)y − s(x)) dx+ dy that is at most first order in
y. Assume that R′(x) = r(x). Find an integrating factor expressed
in terms of R(x).

6. Find the general solution of dy/dx+ r(x)y = s(x).

7. Find the solution of 3x dy/dx − y = lnx + 1 that satisfies y = −2
when x = 1.
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3.5 Homogeneous equations

A function f(x, y) is homogeneous of degree n if it is an eigenfunction of
the Euler operator with eigenvalue n, that is,

(x
∂

∂x
+ y

∂

∂y
)f(x, y) = nf(x, y). (3.38)

A differential form p(x, y) dx+ q(x, y) dy is homogeneous of degree n+ 1 if
each of p(x, y) and q(x, y) are homogeneous of degree n.

For a homogeneous form it is natural to look at the function given by
the expression xp(x, y) + yq(x, y) formed from the coefficients of the Euler
operator and the form. If the homogeneous form is exact, then it is the
differential of this function. On the other hand, if the homogeneous form
is not exact, then 1/(xp(x, y) + yq(x, y)) is an integrating factor.

Problems

1. Find an integrating factor for (x2 +3y2) dx−2xy dy. Multiply by this
factor and integrate.

2. A Bernoulli form is of the form (p(x)y+r(x)yn) dx+dy. If we divide it
by yn we obtain (p(x)/yn−1+r(x)) dx+(1/yn) dy. Find an integrating
factor for this form.

3. Solve dy/dx− y = e−xy2.

4. Consider the first order system

dx

dt
= a x (3.39)

dy

dt
= d y. (3.40)

Find when the corresponding form is exact. Find an integral of the
motion in this case.

5. When the form is not exact, find an integrating factor. Find an
integral of the motion. Where in phase space does it become singular?

6. Consider the first order system

dx

dt
= αx+ ωy (3.41)

dy

dt
= −ωx+ αy. (3.42)

Find when the corresponding form is exact. Find an integral of the
motion in this case.
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7. In the case when the corresponding form is not exact, find an inte-
grating factor. Use this to find integral of the motion in a sectorial
region.

8. Show that

(αx+ ωy)
∂

∂x
+ (−ωx+ αy)

∂

∂y
= αr

∂

∂r
− ω ∂

∂θ
. (3.43)

9. Consider the first order system

dr

dt
= αr (3.44)

dθ

dt
= −ω. (3.45)

Find when the form on phase space is exact. Find an integral of the
motion in this case.

10. Find an integrating factor when it is not exact. Find an integral of
the motion in a sectorial region.



Chapter 4

Forcing

4.1 ISETL

ISETL is the interactive version of SETL (set language). We describe part
of its syntax.

4.1.1 Expressions

We begin with expressions. We denote an expression by EXPR.

An identifier is a letter or word. It may be assigned a value. We denote
an identifier expression by ID.

There are various types of constants. An integer constant is denoted in
the usual way: thus 789 is an integer constant. A floating point constant
must have a decimal point: thus 2. and 2.0 are floating point constants.
(However .5 is not allowed.)

There are also function constants. One syntax for a function constant
is :ID-LIST -> EXPR:. An identifier list ID-LIST consists of identifiers
separated by commas. In the example :x,y -> sqrt(x*x + y*y): the
identifier list is x,y and the expression giving the value is sqrt(x*x +

y*y).

Expressions that denote numbers may be combined with algebraic op-
erations to form new expressions.

If an expression EXPR has a function as its value, EXPR(EXPR-LIST)
is the value of the function on the inputs given by EXPR-LIST. Here an
expression list EXPR-LIST consists of expressions separated by commas.
For example :x,y -> sqrt(x*x + y*y):(3,4) evaluates to 5.0.
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4.1.2 Statements

The commands of the language are known as statements. We denote one
or more statements by STMTS.

The workhorse statement is ID := EXPR ; and is known as the assign-
ment statement. It evaluates the expression EXPR on the right and assigns
the value to the identifier ID on the left. Thus m := (a+b)/2 ; evaluates
a and b, adds them, and divides by 2. It then assigns the result to the
identifier m. We may read this as m “becomes” (a+b)/2.

The dogma of structured programming is that control should be sys-
tematic. In fact, one can get by with only two constructions. The first is
the iteration statement while EXPR do STMTS end ; This repeats the
statements as long as the expression is true.

The other is the selection statement if EXPR then STMTS else STMTS
end ; This performs the first statements if the expression is true and the
second statements if the expression is false.

We also need a statement that produces output. The command for
writing a line is writeln EXPR-LIST ;

Notice that each statement ends with a semicolon.

4.2 Solving equations

We begin with preliminary material on solving equations numerically.

Recall the intermediate value theorem: If f is a continuous function on
the interval [a, b] and f(a) ≤ 0 and f(b) ≥ 0, then there is a solution of
f(x) = 0 in this interval.

This has an easy consequence: the fixed point theorem. This says that if
g is a continuous function from [a, b] to the same interval [a, b], then there
is a solution of g(x) = x in this interval.

Let us see how we make these theorems into practical numerical proce-
dures. We use the language ISETL. For example, we solve f(x) = x2−2 = 0
by the bisection algorithm. This algorithm implements the intermediate
value theorem.

The idea of the bisection algorithm is to start with an interval [a, b] such
that f(a) ≤ 0 and f(b) ≥ 0. Thus there must be a root in this interval. The
mid point of the interval is m = (a+ b)/2. If f(m) ≥ 0 then there must be
a root in [a,m]. Otherwise there must be a root in [m, b]. So depending on
which is the case we can replace the original [a, b] by an interval that is half
as long and is guaranteed to contain a root. This process can be continued
to find an arbitrarily small interval containing a root.

This algorithm is implemented in the following ISETL statements.
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f := :x -> x*x - 2.0 : ;

a := 1.0 ; b := 2.0 ;

while b - a > 0.0001 do

m := (a + b)/2 ;

if f(a) * f(m) <= 0.0 then

b := m ;

else

a := m ;

end ;

writeln a, b ;

end ;

Another approach to numerical root-finding is iteration. Assume that
g is a continuous function from [a, b] to the same interval [a, b]. We look
for a fixed point r with g(r) = r. Assume that |g′(x)| ≤ K < 1 for all x in
the interval. Then by the mean value theorem for each x there is a c with
g(x) − r = g(x) − g(r) = g′(c)(x − r), and so |g(x) − r| = |g′(c)||x − r| ≤
K|x− r|. In other words each iteration replacing x by g(x) brings us closer
to r.

If we want to use this to solve f(x) = 0, we can try to take g(x) =
x− kf(x) for some suitable k.

f := :x -> x*x - 2.0 : ;

g := :x -> x - 0.5 * f(x) : ;

x := 1.5 ;

while abs(g(x) - x) > 0.0001 do

x := g(x) ;

writeln x ;

end ;

Newton’s method is a clever variant where you take g(x) = x−f(x)/f ′(x).
Here is another idea. Assume that g(x) < x and g′(x) > 0 for r < x ≤ b.

Then by the mean value theorem, for each x there is a c with g(x) − r =
g(x) − g(r) = g′(c)(x − r). It follows that r < g(x) < x for r < x ≤ b. In
other words, the iterations decrease to the root.

Problems

1. Prove the fixed point theorem from the intermediate value theorem.

2. Calculate g′(x) in Newton’s method.

3. Show that in Newton’s method f(r) = 0 with f ′(r) 6= 0 implies
g′(r) = 0.

4. Implement Newton’s method in ISETL and run it numerically on an
example.
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5. Assume that x < g(x) and g′(x) > 0 for a ≤ x < r. Show that
it follows that x < g(x) < r for a ≤ x < r and that the iterations
increase to the root.

6. Show that in Newton’s method starting near the root one has either
increase to the root from the left or decrease to the root from the
right. What determines which case holds?

7. Run Newton’s method numerically in such a way that one gets de-
crease of the iterations to the root.

4.3 Linear equations

We consider the linear equation

dy

dt
+ r(t)y = s(t). (4.1)

Let R′(t) = r(t). Then the integrating factor is eR(t) and the equation
becomes

deR(t)y

dt
= eR(t)s(t). (4.2)

The solution is then

y = e−[R(t)−R(t0)]y0 +

∫ t

t0

e−[R(t)−R(t′)]s(t′) dt′. (4.3)

Problems

1. Sove the linear equation

dy

dt
+ ay = s(t) (4.4)

with y = y0 at t = t0. Express the solution as an integral.

2. Solve the preceding equation when a > 0 and s(t) is a bounded func-
tion and where y = 0 at t = −∞. This is the steady-state solution.

3. Show that every solution is the sum of the steady-state solution with
a transient exponential.

4. In the preceding equation show that if s(t) is periodic with period
T , then so is the steady state solution. Hint: Make the change of
variables t− t′ = u in the t′ integral.

5. Take s(t) = b cos(ωt) and find the solution in terms of elementary
functions.
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4.4 Non-linear equations

We consider the non-linear equation

dy

dt
= g(t, y). (4.5)

Assume that g(t, y) has period T , that is, g(t + T, y) = g(t, y). It will
not necessarily be the case that all solutions have period T . However there
may be a special steady-state solution that has period T .

Here is the outline of the argument. Assume that a < b and that
g(t, a) ≥ 0 for all t and g(t, b) ≤ 0 for all t. Then no solution can leave the
interval [a, b]. Thus if y = φ(t, y0) is the solution with y = y0 at t = 0, then
h(y0) = φ(T, y0) is a continuous function from [a, b] to itself. It follows that
h has a fixed point. But then if we take the initial condition to be this fixed
point we get a periodic solution.

We can sometimes get to this fixed point by iterations. Let y′ be ∂y/∂y0.
Then

dy′

dt
=
∂g(t, y)

∂y
y′. (4.6)

Also y′ = 1 at t = 0 and y′ = h′(y0) at t = T . It follows that h′(y0) > 0.

Assume that ∂g(t,y)
∂y < 0. Then h′(y0) < 1 and so we can hope that fixed

point iterations of h converge. This would say that every solution in the
interval converges to the periodic solution.

Problems

1. Consider the equation

dy

dt
= g(y) + s(t) (4.7)

with periodic forcing function s(t). Find conditions that guarantee
that this has a periodic solution.

2. Apply this to the equation

dy

dt
= ay − by2 + c sin(ωt). (4.8)

3. Experiment with Phaser. Which solutions converge to the periodic
solution?
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Chapter 5

Numerics

5.1 Existence

We want to explore several questions. When do solutions exist? When are
they uniquely specified by the initial condition? How does one approximate
them numerically?

We begin with existence. Consider the equation

dy

dt
= g(t, y) (5.1)

with initial condition y = y0 when t = t0. Assume that g is continuous.
Then the solution always exists, at least for a short time interval near t0.
In general, however, we have only local existence.

Problems

1. Consider the differential equation

dy

dt
= y2 (5.2)

with initial condition y = y0 when t = 0. Find the solution. For
which t does the solution blow up?

2. Sketch the vector field in phase space (with dx/dt = 1). Sketch a
solution that blows up.

3. Can this sort of blow up happen for linear equations? Discuss.
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5.2 Uniqueness

Assume in addition that g has continuous derivatives. Then the solution
with the given initial condition is unique.

Uniqueness can fail when g is continuous but when g(t, y) has infinite
slope as a function of y.

Problems

1. Plot the function g(y) = sign(y)
√
|y|. Prove that it is continuous.

2. Plot its derivative and prove that it is not continuous.

3. Solve the differential equation

dy

dt
= sign(y)

√
|y| (5.3)

with the initial condition y = 0 when t = 0. Find all solutions for
t ≥ 0.

4. Substitute the solutions back into the equation and check that they
are in fact solutions.

5. Sketch the vector field in phase space ( with dx/dt = 1).

5.3 Numerics

The simplest numerical method is Euler’s method, which is the first-order
Runge-Kutta method. Here is a program.

g := :t,y -> y + exp(t) * cos(t): ;

t := 0.0 ; y := 0.0 ;

dt := 0.01 ;

while t < 3.14 do

dy := g(t,y) * dt ;

y := y + dy ;

t := t + dt ;

writeln t, y , exp(t) * sin(t) ;

end ;

This is not very accurate, since the slopes are computed only at the
beginning of the time step. A better method would take the average of the
slopes at the beginning and at the end. But we don’t know the slope at
the end. The solution is to use the Euler method to estimate the slope at
the end. This is a second order Runge Kutta method.
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g := :t,y -> y + exp(t) * cos(t): ;

t := 0.0 ; y := 0.0 ;

dt := 0.01 ;

while t < 3.14 do

dye := g(t,y) * dt ;

dy := (1/2) * ( g(t,y) + g(t+dt,y+dye) ) * dt ;

y := y + dy ;

t := t + dt ;

writeln t, y , exp(t) * sin(t) ;

end ;

Problems

1. Find the solution of
dy

dt
= y + et cos t (5.4)

with y = 0 when t = 0. What is the value of the solution at y = π.

2. Solve this numerically with Euler’s method and compare.

3. Solve this numerically with second order Runge Kutta and compare.

4. Compare the Euler and second order Runge Kutta method with the
(left endpoint) Riemann sum and trapezoid rule methods for numer-
ical integration.

5. Another method is to use midpoints: dy = g(t + dt/2, y + dye/2)dt
where dye = g(t, y)dt. This is another second-order Runge-Kutta
method. Program this and solve the equation numerically. How does
this compare in accuracy with the other methods?
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Chapter 6

Resonance

6.1 Forced linear systems

We begin with the homogeneous equation

dx

dt
+A(t)x = 0. (6.1)

Assume that we know the general solution φ(t) of that equation. These
solutions we can think of as the natural response of the system.

Now consider the inhomogeneous equation

dx

dt
+A(t)x = si(t) (6.2)

with a forcing function on one side. The general solution of this equation
is

x = φ(t) + φi(t), (6.3)

where φi(t) is particular solution of the inhomogeneous equation. We think
of this solution as a forced response.

More generally, consider an equation

dx

dt
+A(t)x = s1(t) + · · · sk(t) (6.4)

with a number of forcing functions. The general solution is of the form

x = φ(t) + φ1(t) + · · ·+ φk(t). (6.5)

That is, every solution is a sum of forced responses together with the natural
response.
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6.2 Forced constant coefficient linear systems

The most important special case is when the homogeneous system has con-
stant coefficients and the forcing function is an exponential (or a sum of
exponentials). This is

dx

dt
+Ax = ae−λt. (6.6)

(Note that λ may be complex, so sine and cosine forcing terms are also
included.) The solutions of the homogeneous equation are given in terms
of the eigenvalues of A. To find a particular solution of the inhomogeneous
equation, try a solution of the form

x = ce−λt. (6.7)

This is a solution provided that λ is not an eigenvalue of A and

(A− λI)c = a. (6.8)

Here is the most important example. Consider the oscillator

dx

dt
= v (6.9)

m
dv

dt
= −kx− cy + f cos(at). (6.10)

Here k > 0 is the spring constant, c ≥ 0 is the friction coefficient, f is the
forcing coefficient, and a is the forcing angular frequency.

We may write

cos(at) =
1

2
(eiat + e−iat) (6.11)

and treat the two forcing functions separately.

Problems

1. For the oscillator problem with f = 0, what are the eigenvalues that
describe the problem?

2. Consider the equation for the particular solution of the oscillator prob-
lem with f 6= 0. Show that if c > 0 (non-zero friction) or a2 6= k/m
(off resonance), then the matrix in the equation is non-singular.

3. Solve the equation for the particular solution of the oscillator problem.

4. What happens to the solution as c approaches zero and a2 approaches
k/m? (This is near resonance.)
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5. Use Phaser to study this system with f 6= 0 and c > 0 and a2 near
k/m (near resonance, but with friction).

6. Use Phaser to study this system with f 6= 0 and c = 0 and a2 near
k/m (near resonance, no friction).

6.3 Resonance

Consider the equation
dx

dt
+Ax = ae−λt (6.12)

where now λ is one of the eigenvalues of A. This is the situation when
the forcing is on resonance. Now one must try a solution of the form
x = e−λtc + te−λtb.

Problems

1. Take the oscillator problem with c = 0 and a2 = k/m. Find the
response to the driving force at the resonant frequency.

2. Use Phaser to study the system on resonance.

6.4 General forcing terms

We now want to look at forced systems with more general forcing terms.
A homogeneous linear system is

dx

dt
+A(t)x = 0. (6.13)

Even though this is linear, the problem of understanding solutions of such
a system is profound.

In any case, assume that we have independent solutions of the homoge-
neous equation. Form a square matrix Φ(t) whose colums are the indepen-
dent solutions. Thus this matrix satisfies

dΦ(t)

dt
+A(t)Φ(t) = 0 (6.14)

and the Wronskian determinant

det Φ(t) 6= 0. (6.15)
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We are really interested in the inhomogeneous system

dx

dt
+A(t)x = s(t). (6.16)

It is not hard to check that

dΦ(t)−1x

dt
= Φ(t)−1s(t). (6.17)

Thus

x = Φ(t)Φ(t0)−1x0 +

∫ t

t0

Φ(t)Φ(t′)−1s(t′) dt′. (6.18)

When A is constant this has the simpler form

x = Ψ(t− t0)x0 +

∫ t

t0

Ψ(t− t′)s(t′) dt′. (6.19)

This can also be written

x = Ψ(t− t0)x0 +

∫ t−t0

0

Ψ(u)s(t− u) du. (6.20)

Take the special case s(t) = ae−λt. Then the solution is given by

x = Ψ(t− t0)x0 + e−λt
∫ t−t0

0

Ψ(u)aeλu du (6.21)

In the simplest case λ is not an eigenvalue of A and so we may solve
(A− λ)c = a for c. Then the solution is

x = Ψ(t− t0)x0 + e−λtc−Ψ(t− t0)e−λt0c. (6.22)

This solution is the sum of a solution of the homogeneous equation and
of a particular solution of the form e−λtc. This particular solution just
responds to the forcing. Notice that if the forcing λ is far from or close to
the eigenvalues of A (representing the natural motions of the free system),
then the response c will be correspondingly smaller or larger then the force
a.

The other case is resonance, when λ is an eigenvalue of A. In this case
we have non-zero solutions of (A − λ)b = 0. We can then try to choose
such a solution so that there is a solution of (A−λ)c+b = a. We then get

x = Ψ(t− t0)x0 + e−λtc−Ψ(t− t0)e−λt0c + e−λt(t− t0)b. (6.23)

The extra particular solution e−λt(t− t0)b has a linear growth factor in the
direction of the eigenvector. This says that when the forcing coincides with
the natural motion, then there is an extra response factor that represents
growth out of control.



Chapter 7

Music of the Spheres

7.1 The circle

The Laplace operator on the circle is

∆C =
d2

dθ2
. (7.1)

The eigenfunctions are of the form einθ with eigenvalues −n2, where n
is an integer. Thus

d2

dθ2
einθ = −n2einθ. (7.2)

7.2 The plane

The Laplace operator in the plane is

∆ =
∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2
. (7.3)

In other words,

∆ =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∆C , (7.4)

where ∆C is the Laplace operator on the circle defined above.

We look for eigenfunctions w of the Laplace operator with eigenvalue
−1, so that

∆w = −w. (7.5)
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If we take w = f(r)einθ, we obtain

∆f(r) = (
1

r

d

dr
r
d

dr
− n2

r2
)f(r) = −f(r). (7.6)

Define the Bessel operator by

Bn =
1

r

d

dr
r
d

dr
− n2

r2
. (7.7)

Then our eigenvalue equation is

Bnu = −u. (7.8)

This is the Bessel equation.
We can find interesting eigenfunctions as follows. For each r expand

eir sin θ in powers of eiθ and call the coefficients Jn(r). Thus

eiy = eir sin θ =
∑
n

Jn(r)einθ, (7.9)

where the sum is over all integers n. If we apply the Laplace operator to
both sides of this equation and equate coefficients, we obtain

BnJn(r) = −Jn(r). (7.10)

This Bessel function Jn(r) is one solution of the Bessel equation. The
multiples of this function form a one-dimensional space of solutions.

How about other solutions? A second order equation should have a
two-dimensional space of solutions. Can the other solutions be ruled out?

The answer to this question is related to the fact that the Bessel equation
is singular at r = 0. (This of course is just because polar coordinates are
always somewhat strange at the origin.) Thus most solutions of the Bessel
equation are singular and can thus be discarded, for some purposes at least.

The way to see this is to examine the equation Bnu = 0. This should
have more or less the same singularities as the equation Bnu = −1, but it
is much simpler to solve explicitly.

Problems

1. Find Jn(0) for each n.

2. Take n 6= 0. Solve Bnu = 0. Describe the singularity structure of
the solutions. What is the dimension of the subspace of non-singular
solutions?
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3. Solve B0u = 0. Describe the singularity structure of the solutions.
What is the dimension of the subspace of non-singular solutions?

4. For λ2 > 0 find a one-dimensional space of solutions of the equation
Bnu = −λ2u.

5. The vibrations of a drum are described by ∆u = −λ2u with the
boundary condition that u = 0 when r = R. Find what frequen-
cies λ are allowed. Hint: Write the solution u = Jn(λr)einθ. What
is the condition on λ that guarantees that u satisfies the boundary
condition?

6. We see that it is important to know the zeros of the Bessel functions
Jn(r). Use Phaser to plot Jn(r) for small values of n and describe the
zeros.

7.3 The sphere

The Laplace operator in three dimensions is

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2

∂

∂r
r2 ∂

∂r
+

1

r2
∆S , (7.11)

where

∆S =
1

sinφ

∂

∂φ
sinφ

∂

∂φ
+

1

sin2 φ

∂2

∂θ2
(7.12)

is the Laplace operator on the sphere.
We look for solutions of the eigenvalue equation

∆Sw = −`(`+ 1)w. (7.13)

If we take w = g(φ)eimθ, we obtain

∆Smg(φ) = −`(`+ 1)g(φ), (7.14)

where

∆Sm =
1

sinφ

d

dφ
sinφ

d

dφ
− m2

sin2 φ
. (7.15)

For simplicity we confine attention to the case m = 0. Then

∆S0 =
1

sinφ

d

dφ
sinφ

d

dφ
(7.16)
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and the Legendre equation is

∆S0u = −`(`+ 1)u. (7.17)

We can find interesting eigenfunctions as follows. For each φ expand
the reciprocal of the distance from the north pole in powers of the distance
r from the origin:

(x2 + y2 + (z − 1)2)−
1
2 = (1− 2r cosφ+ r2)−

1
2 =

∞∑
`=0

P`(cosφ)r`. (7.18)

The coefficients P`(cosφ) are Legendre polynomials in cosφ. If we apply the
Laplace operator ∆ to both sides of this equation and equate coefficients,
we obtain

∆S0P`(cosφ) = −`(`+ 1)P`(cosφ). (7.19)

Multiples of these polynomials form a one-dimensional space of solutions.
The Legendre equation is singular at sinφ = 0, that is at φ = 0 and at

φ = π (north pole and south pole). Other solutions are singular and can
thus be discarded, for some purposes at least.

One can study this equation by making the change of varibles t = cosφ.
Then

∆S0 =
d

dt
(1− t2)

d

dt
. (7.20)

Now the relevant interval is −1 < t < 1 and the singularities are at the end
points t = ±1.

Problems

1. Use Phaser to plot P`(t) for small values of `.


