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Chapter 1

Combinatorics

1.1 Factorials and binomial coefficients

The factorial number n! is the number of ways of listing n objects in order. It
is also called the number of permutations of the n objects. The number

(n)k =
n!

(n− k)!
(1.1)

is the number of ways of making a list of k out of the n objects in order.
Sometimes this is called the number of permutations of size k of the n objects.

The binomial coefficient (
n

k

)
=

(n)k
k!

(1.2)

is the number of ways of choosing k of the n objects without regard to order.
This is also the number of combinations of size k from the n objects. It is just
the number of subsets of size k of a set of size n.

The basic formula for computing binomial coefficients is
(
n

k

)
=

n!
k!(n− k)!

. (1.3)

Note the important identity
(
n

k

)
=
(

n

n− k
)
. (1.4)

1.2 Sampling with replacement

Let I be a set with n elements and let M be a set with m elements. A function
from I to M is a rule that associates to each element of I a corresponding
element of M . The are various other descriptions of this concept. If I is a set
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6 CHAPTER 1. COMBINATORICS

of trials and M is a population, then a function from I to M is called a ordered
sample with replacement of size n from M . If I is a set of balls and M is a set
of urns, then a function from I to M is a way of placing the balls in the urns.
If I is a set and M is an set with m elements, then a function from I to M is
a way of partitioning the set I into m disjoint subsets (some of which may be
empty) labeled by the elements of M .

Theorem 1.1 Suppose I has n elements and M has m elements. The number
of functions from I to M is mn.

Given a function f from I to M , there is another function χ from M to the
natural numbers {0, 1, 2, 3, . . .}. This function χ is called the occupation number
function. It is defined so that for each y in M the value χ(y) is the number of
x in I such that f(x) = y. Note that

∑
y∈M χ(y) = n.

Such a function χ from M to the natural numbers could be called an un-
ordered sample with replacement, since it ignores the order in which the elements
of N are chosen. However note that the relation between the unordered sample
with replacement and the ordered sample with replacement is rather compli-
cated, given by the multinomial coefficients. A multinomial coefficient counts
the number of ways of partitioning an n element set I into m subsets labeled by
the elements of M such that the number of elements labeled by y in M is χ(y).

Theorem 1.2 Suppose I has n elements and M has m elements. Given a
function χ from M to the natural numbers with

∑
y∈M χ(y) = n (that is, given

the occupation numbers), the number of functions f from I to M with these
occupation numbers is the multinomial coefficient

(
n

χ

)
=

n!∏
y∈N χ(y)!

. (1.5)

If M = {1, . . . ,m} and if we write ni = χ(i) for the occupation numbers, then
this is (

n

n1 . . . nm

)
=

n!
n1! · · ·nm!

. (1.6)

Proof: Divide the set I into m categories by first picking the subset that
comprises the first category, then the subset of the remaining elements that
comprise the second category, and so on. This gives the multinomial coefficient
as a product of binomial coefficients:
(

n

n1 . . . nm

)
=
(
n

n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(
n− n1 − n2 − · · · − nm−1

nm

)
.

(1.7)
This may now be expressed in terms of factorials.

It is interesting to note that the total number of functions from I to M may
be written in the form ∑

χ

(
n

χ

)
= mn. (1.8)



1.3. SAMPLING WITHOUT REPLACEMENT 7

Theorem 1.3 The total number of occupation number functions χ on a set M
with m elements such that

∑
y∈M χ(y) = n is given by the binomial coefficient

(
m+ n− 1

n

)
=
(
m+ n− 1
m− 1

)
. (1.9)

Proof: Consider a set of m + n − 1 elements arranged in a row. For each
way of choosing a subset of m − 1 elements as barriers there is a partition of
the remaining n elements into m subsets with sizes given by a set of occupation
numbers.

Binomial coefficients are a special case of multinomial coefficients. Let I
have n elements. A subset of I is the same as a specification of a function
from I to {0, 1} that is 1 on the subset and 0 on its complement. Say that one
specifies occupation numbers n − k = χ(0) and k = χ(1). Then the number
of functions with these occupation numbers is the multinomial coefficient

(
n
χ

)
which is also the number of subsets of size k given by the binomial coefficient(
n
k

)
.

1.3 Sampling without replacement

Let I be a set with n elements and let M be a set with m elements. An
injective function f from I to M is a rule that associates to each element of I a
corresponding element of M , and such that distinct elements of I are associated
to distinct elements of M . Such a function is also called an injection or a one-
to-one function. The are various other descriptions of this concept. If I is a
set of trials and M is a population, then an injective function from I to M is
called an ordered sample without replacement of size n from M . If I is a set of
balls and M is a set of urns, then an injective function from I to M is a way of
placing the balls in the urns so that no two balls go in the same urn.

Theorem 1.4 Suppose I has n elements and M has m elements. The number
of injective functions f from I to M is (m)n.

Given an injective function f from I to M , there is another function χ from
M to the numbers {0, 1}. This function χ is just the same occupation number
function as before, only restricted to have values 0 and 1. It is defined so that
for each y in M the value χ(y) is the number of x in I such that f(x) = y. Note
that

∑
y∈M χ(y) = n.

Such a function χ from M to {0, 1} is called an indicator function. (In
some contexts it is also called a characteristic function.) This is because it
indicates or characterizes a subset of A of M , namely the subset on which the
function χ has the value 1. Such a subset is also called an unordered sample
without replacement from M . The number of such indicator functions, that is,
the number of such subsets, is 2m.

Suppose I has n elements and M has m elements. Given an indicator func-
tion χ from M to the natural numbers with

∑
y∈M χ(y) = n, the number of
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injective functions f from I to M with this indicator function is n!. In other
words, given a subset A of M with n elements, the number of injective functions
from I to M with range A is n!.

This theorem says that there is a simple relation between unordered samples
without replacement and ordered samples without replacement. For every one
of the former there are exactly n! of the latter.

Theorem 1.5 Let M be a set with m elements. The total number of indicator
functions χ on M with sum n (that is, the total number of subsets A of M
having n elements) is given by the binomial coefficient

(
m

n

)
=

(m)n
n!

(1.10)

Proof: The total number of injective functions from I to M is the product
of the number of subsets that may be taken as the range times the number of
injections with that given range. This is

(
m

n

)
n! = (m)n. (1.11)

Note that the total number of subsets is the sum over n of the number of
subsets of size n. This gives the identity

m∑
n=0

(
m

n

)
= 2m. (1.12)



Chapter 2

Probability Axioms

2.1 Logic and sets

In probability there is a set called the sample space S. An element of the sample
space is called an outcome of the experiment.

An event is identified with a subset E of the sample space S. If the experi-
mental outcome belongs to the subset, then the event is said to happen.

We can combine events by set theory operations. Each such operation cor-
responds to a logical operation.

Union corresponds to or: s is in E ∪ F if and only if s is in E or s is in F.
Intersection corresponds to and: s is in E ∩ F if and only if s is in E and s

is in F.
Complement corresponds to not: s is in Ec if and only if s is in S but is not

in E.
The whole sample space S is the sure event. It corresponds to true: s is in

S is always true.
The empty set is the impossible event. It corresponds to false: s is in ∅ is

always false.
Two events E, F are exclusive if E ∩ F = ∅. This means that s in E and s

in F is always false.

2.2 Probability

The probability rules correspond to the logical operations. A probability as-
signment P assigns to each event E a number P [E] with 0 ≤ P [E] ≤ 1.

The or rule: If E, F are exclusive, then

P [E ∪ F ] = P [E] + P [F ]. (2.1)

The and rule: If E, F are independent, then

P [E ∩ F ] = P [E]P [F ]. (2.2)

9



10 CHAPTER 2. PROBABILITY AXIOMS

The not rule:
P [Ec] = 1− P [E]. (2.3)

The sure rule:
P [S] = 1. (2.4)

The impossible rule:
P [∅] = 0. (2.5)

Note: All of these rules may be taken as axioms of probability except for
the and rule. This is exceptional, since the concept of independent events is not
defined in terms of set operations. In fact, the and rule is to be thought of as
the definition of independence in terms of probability.

2.3 Countable additivity

In probability the or rule is extended to an infinite sequence of exclusive events.
This is the some rule. Let E1, E2, E3, . . . be an infinite sequence of events. The
event

⋃∞
i=1Ei is the probability that some Ei occurs.

The some rule is that if E1, E2, E3, . . . is a sequence of events such that
Ei ∩ Ej = ∅ for all i 6= j, then

P [
∞⋃

i=1

Ei] =
∞∑

i=1

P [Ei]. (2.6)

What is the reason for this rule? Take the example of flipping a fair coin
infinitely many times. This is an example when the sample space has infinitely
many points. Each point is an entire infinite sequence of heads and tails. There
are a huge number of such sequences.

Let Ei be the event that the first head occurs on the ith trial. Then P [Ei] =
1/2i. It follows from the some rule that the probability that a head occurs
on some trial is

∑∞
i=1 1/2i = 1. This seems reasonable. The probability of

getting a head on some trial is the negation of the event of never getting a head.
Therefore the probability of never getting a head is zero. The event of getting
a head on some trial has probability one, yet it is only probabilistically certain,
not logically certain. Therefore such an event with probability one is said to be
almost sure.

2.4 Discrete uniform probabilities

One elementary situation is when the number of points in the sample space S is
finite. It may be a large number, but it is not infinite. In this case, the uniform
probabilities are defined as follows:

P [E] =
#E
#S

. (2.7)
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Here #E is the number of elements in the set E, while #S is the number of
points in the set S. The uniform probabilities satisfy all the probability axioms.

We shall see in the next sections that this notion has a number of important
and useful special cases.

• The sample space consists of all functions from a finite set to another finite
set.

• The sample space consists of all injective functions from a finite set to
another finite set.

• The sample space consists of all subsets of a finite set, such that each
subset has a certain specified number of elements. (This is the same as
all functions from the set to a two-point set, such that each function has
certain specified occupation numbers.)

• The sample space consists of all functions from a finite set to another finite
set, such that each function has certain specified occupation numbers.

2.5 Binomial probabilities

In this section we consider an n element set I of trials and an m element set M
representing a population. The fundamental assumption is that every ordered
sample with replacement has the same probability. In other words, this is the
assumption of uniform probability on the set of all functions from I to M .

The number of ordered samples with replacement is mn. Therefore each
ordered sample with replacement has probability

P [f ] =
1
mn

. (2.8)

Let A be a subset of M representing the successes. Suppose that A has a
elements.

Theorem 2.1 The probability that an ordered sample with replacement has ex-
actly k successes is

P (k) =
(
n

k

)
ak(m− a)n−k

mn
=
(
n

k

)
pk(1− p)n−k. (2.9)

where p = a/m.

Proof: Let K be a subset of the set of trials I with k elements. The proba-
bility P (K) that an ordered sample with replacement has successes that exactly
belong to the set K is the number of such samples time the probability of each
sample. The number of such samples is the number of functions from K to A
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times the number of functions from the complement of K to the complement of
A, that is, ak times (m− a)n−k. Therefore the probability is

P (K) = ak(m− a)n−k
1
mn

. (2.10)

There are
(
n
k

)
such subsets K of I with k elements. The probability P (k) is

thus
(
n
k

)
times P (K).

The probabilities for ordered samples with replacement are examples of what
are known as binomial probabilities. The number n is the number of trials, and
the number p = a/m is the probability of success on each trial.

It is also possible to consider unordered samples with replacement (occu-
pation numbers). However these do not all have the same probability. The
probability of a particular occupation number function χ that sums to n is

P (χ) =
(
n

χ

)
1
mn

. (2.11)

This is called the multinomial probability for n trials in the case when the
probability of each of the m elements being chosen on one trial is the same
1/m.

The following result shows that if we use this probability formula we get
another derivation of the result given above. This is nothing new, but it is of
some interest to see that one gets consistent results.

Theorem 2.2 Consider that each ordered sample with replacement has the
same probability. The probability that an unordered sample with replacement
has exactly k successes is

P (k) =
(
n

k

)
ak(m− a)n−k

1
mn

. (2.12)

This is of course just a repetition of the formula for the case of ordered samples
with replacement.

Proof: The probability P (k) that a randomly chosen subset of M of size n
has exactly k successes is the sum of the probabilities of all occupation numbers
χ for the m element set such that the restriction σ of χ to the subset of a
successes has sum k and the restriction τ of χ to the subset of n−k failures has
sum n− k. Thus this is

P (k) =
∑
σ

∑
τ

(
n

σ τ

)
1
mn

. (2.13)

The multinomial coefficient for occupation number χ = σ, τ is a binomial co-
efficient times the product of multinomial coefficients associated with σ and τ .
Thus

P (k) =
(
n

k

)∑
σ

(
k

σ

)∑
τ

(
n− k
τ

)
1

(m)n
=
(
n

k

)
ak(m− a)n−k

1
mn

. (2.14)
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Note: There are actually two possible choices of probability assignment. In
physics this comes up when we think of I as a set of particles and M as a set of
states. The one we use, in which the ordered samples with replacement each have
the same probability, is called the Maxwell-Boltzmann probability distribution.
The other possibility, in which the unordered samples with replacement each
have the same probability, is called in physics the Bose-Einstein probability
distribution. This possibility is appropriate in some cases when the particles
are regarded as fundamentally indistinguishable. Particles for which the Bose-
Einstein distribution is appropriate are called bosons.

2.6 Hypergeometric probabilities

In this section we consider an n element set I of trials and an m element set M
representing a population. The fundamental assumption is that every ordered
sample without replacement has the same probability. In other words, this is
the assumption of uniform probability on the set of all injective functions from
I to M .

The number of ordered samples without replacement is (m)n. Therefore
each ordered sample with replacement has probability

P [f ] =
1

(m)n
. (2.15)

Let A be a subset of M representing the successes. Suppose that A has a
elements.

Theorem 2.3 The probability that an ordered sample without replacement has
exactly k successes is

P (k) =
(
n

k

)
(a)k(m− a)n−k

(m)n
. (2.16)

Proof: Let K be a subset of the set of trials I with k elements. The proba-
bility P (K) that an ordered sample with replacement has successes that exactly
belong to the set K is the number of such samples time the probability of each
sample. The number of such samples is the number of injective functions from
K to A times the number of injective functions from the complement of K to
the complement of A, that is, (a)k times (m− a)n−k. Therefore the probability
is

P (K) = (a)k(m− a)n−k
1

(m)n
. (2.17)

There are
(
n
k

)
such subsets K of I with k elements. The probability P (k) is

thus
(
n
k

)
times P (K).

Since for each unordered sample without replacement (subset) there are ex-
actly n! ordered samples without replacement, the probability of each unordered
sample without replacement is the same. That is, if J is an n element subset of
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M representing the unordered sample without replacement, then the probability
of J is

P (J) = n!
1

(m)n
=

1(
m
n

) . (2.18)

Each subset has the same probability. So we can perform the reasoning with
unordered samples without replacement and get the same result. Thus it is
justified to use the uniform probability on the set of all subsets of M that have
n elements.

Theorem 2.4 The probability that an unordered sample without replacement
has exactly k successes is

P (k) =

(
a
k

)(
m−a
n−k

)
(
m
n

) . (2.19)

This is exactly the same answer as for the case of ordered samples without
replacement.

Proof: The probability P (k) that a randomly chosen subset of M of size n
has exactly k successes is the number of such subsets times the probability of
each subset. The number of such subsets is the number of subsets of A with
k elements times the number of subsets of the complement of A with n − k
elements, that is,

(
a
k

)
times

(
m−a
n−k

)
. Therefore the probability is

P (K) =
(
a

k

)(
m− a
n− k

)
1(
m
n

) . (2.20)

The probabilities given in the two theorems about samples without replace-
ment are known as the hypergeometric probabilities. It is confusing that there
are two different formulas for the hypergeometric probabilities, but that is be-
cause there are two points of view (ordered and unordered) that give the same
results for sampling without replacement.

Note: In physics one considers situations when I is a set of particles and M
is a set of states. The probability assignment in which the unordered samples
without replacement are used is called the Fermi-Dirac probability distribution.
This is appropriate in cases when the particles are regarded as fundamentally
indistinguishable and when they also obey the exclusion principle: no two par-
ticles can occupy the same state. Such particles are called fermions.

2.7 Divisions into subsets

Another problem is when that sample space consists of all divisions of a set I
with n elements into m disjoint subsets. The subsets are labeled by another set
M . The number of elements in the subset corresponding to each element of M
is given by the value of a fixed occupation number function. Thus we are just
counting the number of functions from I to M with fixed occupation numbers.
For example, we can think of I as a set of n = 52 cards and M as a set of m = 4
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players, each of whom gets 13 cards. So the occupation numbers are 13, 13, 13,
13.

There are alternative of thinking of this. We can think of taking the subsets
in order and then selecting the elements of each subset in order. The number
of ordered divisions into labeled subsets is

(n)n1(n− n1)n2(n− n1 − n2)n3 · · · (n− n1 − · · · − nm−1)nm = n! (2.21)

This says that if you select in order all elements of I that go in the first subset,
then those that go in the second subset, and so on, this is just the same as
selecting all the elements of I in order. In the card example this is the (52)!
ways of dealing the cards.

If we take the subsets in order, but then neglect the order within each subset,
then we get the division into labeled subsets. The number of such divisions into
labeled subsets is
(
n

n1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(
n− n1 − · · · − nm−1

nm

)
=
(

n

n1, n2, · · · , nm

)
.

(2.22)
This says that if you select the first subset, then the next subset, and so on,
this generates the entire division. The number of such divisions is given by
the multinomial coefficient. It is the number of functions from I to M with
given occupation numbers, but thought of as ways of dividing up I. In the
card example this is the

(
52

13,13,13,13

)
ways choosing a subset of 13 cards for each

player.
Consider the case when all the occupation numbers are equal. Then there is

even a third way of thinking of this, where we forget about the labels. That is,
we think of the n element set I and of m subsets, each with the given number
n1 of elements, so that n = mn1. This neglects the order in which the sets are
taken as well as neglecting the order within each subset. The number of such
divisions into unlabeled subsets is then

1
m!

(
n

n1, n1, · · · , n1

)
. (2.23)

In the card example this is the 1
4!

(
52

13,13,13,13

)
ways making four piles of 13 cards

without specifying an order for the piles.
Some problems can be solved with any one of the three points of view. For

instance, take the problem of finding the probability that all the spades go to
one of the players (the player not specified).

1. From the ordered point of view, this is 4(13)!(39)! divided by (52)!. This
is because there are (13)! ways the spades can be dealt to a specified player and
(39)! ways the remaining cards can be dealt to the other three players. There
are 4 ways to specify the player.

2. From the division into labeled subsets point of view, this is 4
(

39
13,13,13

)

divided by
(

52
13,13,13,13

)
. This is because there is only one way to give the spades

to a specified player, and there are
(

39
13,13,13

)
ways the remaining cards may be
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divided up among the other three players. There are 4 ways to specify the
player.

2. From the division into unlabeled subsets point of view, this is (1/3!)
(

39
13,13,13

)

divided by (1/4!)
(

52
13,13,13,13

)
. This is because to make four equal piles out of the

52, one of which consists of the spades, is the same as making three equal piles
out of the 39 non-spades. There are (1/3!)

(
39

13,13,13

)
ways of doing this.



Chapter 3

Discrete Random Variables

3.1 Mean

A discrete random variable X is a function from the sample space S that has
a finite or countable infinite number of real numerical values. For a discrete
random variable each event X = x has a probability P [X = x]. This function
of x is called the probability mass function of the random variable X.

The mean or expectation of X is

µX = E[X] =
∑
x

xP [X = x], (3.1)

where the sum is over the values of X.
One special case of a discrete random variable is a random variable whose

values are natural numbers. Sometimes for technical purposes the following
theorem is useful. It expresses the expectation in terms of a sum of probabilities.

Theorem 3.1 Let Y be a random variable whose values are natural numbers.
Then

E[Y ] =
∞∑

j=1

P [Y ≥ j]. (3.2)

Proof: We have

E[Y ] =
∞∑

k=1

kP [Y = k] =
∞∑

k=1

k∑

j=1

P [Y = k] =
∞∑

j=1

∞∑

k=j

P [Y = k]. (3.3)

On the other hand,
∞∑

k=j

P [Y = k] = P [Y ≥ j]. (3.4)

Note that if X is a discrete random variable, and g is a function defined for
the values of X and with real values, then g(X) is also a random variable.

17
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Theorem 3.2 The joint probability mass function of a random variable Y =
g(X) that is a function of a random variable X may be computed in terms of
the joint probability mass function of X by

P [g(X) = y] =
∑

x:g(x)=y

P [X = x]. (3.5)

By definition, the expectation of g(X) is

E[g(X)] =
∑
y

yP [g(X) = y], (3.6)

where the sum is over all values y = g(x) of the random variable g(X). The
following theorem is particularly important and convenient. If a random variable
Y = g(X) is expressed in terms of another random variable, then this theorem
gives the expectation of Y in terms of the probability mass function of X.

Theorem 3.3 The expectation of a function of a random variable X may also
be expressed in terms of the probability mass function of X by

E[g(X)] =
∑
x

g(x)P [X = x]. (3.7)

Proof:

E[g(X)] =
∑
y

y
∑

x:g(x)=y

P [X = x] =
∑
y

∑

x:g(x)=y

g(x)P [X = x] =
∑
x

g(x)P [X = x].

(3.8)

3.2 Variance

The variance of X is

σ2
X = Var(X) = E[(X − µX)2]. (3.9)

The standard deviation of X is the square root of the variance.
By the theorem, the variance may be computed by

σ2
X =

∑
x

(x− µX)2P [X = x]. (3.10)

It is thus a weighted mean of squared deviations from the mean of the original
random variable. Sometimes this is called a “mean square”. Then the standard
deviation is a “root mean square”.

The following result is useful in some computations.

Theorem 3.4 The variance is given by the alternative formula

σ2
X = E[X2]− E[X]2. (3.11)
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3.3 Joint probability mass functions

Consider discrete random variables X, Y . Their joint probabilities are the
numbers P [X = x, Y = y]. Here we are using the comma to indicate and or
intersection. Thus the event indicated by X = x, Y = y is the event that X = x
and Y = y. The resulting function of two variables x, y is called the joint
probability mass function of X,Y . In a similar way, we can talk about the joint
probability mass function of three or more random variables.

Given the joint probability mass function of X,Y , it is easy to compute the
probability mass function of X, and it is equally easy to compute the probability
mass function of Y . The first formula is

P [X = x] =
∑
y

P [X = x, Y = y], (3.12)

where the sum is over all possible values of the discrete random variable Y .
Similarly

P [Y = y] =
∑
x

P [X = x, Y = y], (3.13)

where the sum is over all possible values of the discrete random variable X.

Theorem 3.5 The joint probability mass function of a random variable Z =
g(X,Y ) that is a function of random variables X, Y may be computed in terms
of the joint probability mass function of X, Y by

P [g(X,Y ) = z] =
∑

x,y:g(x,y)=z

P [X = x, Y = y]. (3.14)

Theorem 3.6 The expectation of a random variable Z = g(X,Y ) that is a
function of random variables X, Y may be computed in terms of the joint prob-
ability mass function of X, Y by

E[g(X,Y )] =
∑
x

∑
y

g(x, y)P [X = x, Y = y]. (3.15)

Proof:

E[g(X,Y )] =
∑
z

zP [g(X,Y ) = z] =
∑
z

z
∑

x,y:g(x,y)=z

P [X = x, Y = y] (3.16)

However this is equal to
∑
z

∑

x,y:g(x,y)=z

g(x, y)P [X = x, Y = y] =
∑
x,y

g(x, y)P [X = x, Y = y]. (3.17)

This theorem has a very important consequence for expectations. This is
the property called additivity. It says that the expectation of a sum is the sum
of the expectations. We state it for two random variables, but again the idea
extends to the sum of three or more random variables.
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Theorem 3.7 If X and Y are random variables with expectations E[X] and
E[Y ], then they satisfy the addition property

E[X + Y ] = E[X] + E[Y ]. (3.18)

Important note: The theorem can also be stated using the other notation
for mean in the form µX+Y = µX + µY .

Proof:
E[X + Y ] =

∑
x

∑
y

(x+ y)P [X = x, Y = y]. (3.19)

This is equal to
∑
x

∑
y

xP [X = x, Y = y] +
∑
x

∑
y

yP [X = x, Y = y] = E[X] + E[Y ]. (3.20)

3.4 Uncorrelated random variables

The covariance of random variables X and Y is defined by

Cov(X,Y ) = E[(X − µX)(Y − µY )]. (3.21)

In particular, the variance is given by

σ2
X = Var(X) = Cov(X,X). (3.22)

Theorem 3.8 The variance of a sum is given in terms of the variances of the
terms and the covariance by

Var(X + Y ) = Var(X) + Cov(X,Y ) + Var(Y ). (3.23)

The correlation of random variables X and Y is defined by

ρ(X,Y ) =
Cov(X,Y )
σXσY

. (3.24)

Thus the result of the theorem may also be written in the form

σ2
X+Y = σ2

X + 2ρ(X,Y )σXσY + σ2
Y . (3.25)

Random variables are said to be uncorrelated if their correlation is zero. This
is the same as saying that their covariance is zero.

Theorem 3.9 For uncorrelated random variables the variances add. That is,
if Cov(X,Y ) = 0, then

σ2
X+Y = σ2

X + σ2
Y . (3.26)
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3.5 Independent random variables

Consider discrete random variables X and Y . They are said to be independent
if the events X = x, Y = y are independent for all possible values x, y. That
is, X, Y are independent if

P [X = x, Y = y] = P [X = x][P [Y = y] (3.27)

for all possible values x, y of the two random variables.
There is of course an appropriate generalization of the notion of indepen-

dence to more than two random variables. Again there is a multiplication rule,
but this time with more than two factors.

Theorem 3.10 If X and Y are independent random variables, and f and g
are arbitrary functions, then the random variables f(X) and g(Y ) satisfy the
multiplication property

E[f(X)g(Y )] = E[f(X)]E[g(Y )]. (3.28)

This theorem has an important consequence: Independent random variables
are uncorrelated. It immediately follows that for independent random variables
the variances add.

Theorem 3.11 If X and Y are independent random variables, then X and Y
are uncorrelated random variables.

Proof: If X and Y are independent, then from the previous theorem

E[(X − µX)(Y − µY )] = E[X − µX ]E[Y − µY ] = 0 · 0 = 0. (3.29)
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Chapter 4

The Bernoulli Process

4.1 Bernoulli random variables

A Bernoulli random variable X is a random variable with values 0 or 1. Consider
a Bernoulli random variable with P [X = 1] = p and P [X = 0] = 1− p. Then

µX = 1p+ 0(1− p) = p, (4.1)

and
σ2
X = (1− p)2p+ (0− p)2(1− p) = p(1− p). (4.2)

A Bernoulli random variable is also called an indicator function (or some-
times a characteristic function). Let E be the event that X = 1. Then the
random variable X indicates this event. Conversely, given an event E, there is
a random variable X that has the value 1 on any outcome in E and the value 0
on any outcome in the complement of E. This constructs an indicator function
for the event.

4.2 Successes and failures

Consider an infinite sequence X1, X2, X3, . . . of independent Bernoulli random
variables, each with P [Xi = 1] = p. This is called a Bernoulli process. It
consists of an infinite sequence of independent trials, each of which can result
in a success or a failure. The random variable Xi is 1 if there is a success on
the ith trial, and it is 0 if there is a failure on the ith trial.

By independence, the probability of a particular sequence of successes and
failures is given by a product. Thus, for instance, the probability

P [X1 = 1, X2 = 0, X3 = 1, X4 = 1, X5 = 0] = p(1− p)pp(1− p) = p3(1− p)2.
(4.3)

More generally, the probability of a particular sequence of k successes and n−k
failures is pk(1− p)n−k.

23
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4.3 Binomial random variables

Consider a Bernoulli process with probability of success p on each trial. Let
Nn = X1 + · · ·+Xn be the number of successes in the first n trials. Then Nn is
a binomial random variable with parameters n and p. Its distribution is given
by the following theorem.

Theorem 4.1 Let Nn be binomial random variable that counts the number of
successes in n independent trials, with probability p of success on each trial.
Then

P [Nn = k] =
(
n

k

)
pk(1− p)n−k. (4.4)

Proof: Each particular sequence of successes and failures with k successes
and n − k failures has probability pk(1 − p)n−k. The event that there are a
total of k successes results if the sequence of successes is one of the k element
subsets of the set {1, 2, . . . , n} of trials. There are

(
n
k

)
such subsets. Thus we

add pk(1− p)n−k this many times. This gives the formula of the theorem.
In the proof of several theorems we use the following handy combinatorial

fact:

k

(
n

k

)
= n

(
n− 1
k − 1

)
. (4.5)

This can be proved as follows. Consider a set with n elements. Consider all
pairs consisting of a subset with k elements together with a particular element
of the subset. The number of such pairs is obviously given by the left hand side.
(Choose the subset, and then choose the element in it.) The number of such
pairs is also obviously given by the right hand side. (Choose the element, and
then choose a subset not containing the element to give the remaining elements.)
This shows that the left hand side is equal to the right hand side.

Theorem 4.2 The expectation of the binomial random variable Nn is

E[Nn] = np. (4.6)

Proof: Use the combinatorial fact:

E[Nn] =
n∑

k=0

k

(
n

k

)
pk(1−p)n−k =

n∑

k=1

n

(
n− 1
k − 1

)
pk(1−p)n−k = np

n∑

k=1

(
n− 1
k − 1

)
pk−1(1−p)n−k = np.

(4.7)
The last sum is just the probability that Nn−1 has some value 0, 1, . . . , n − 1,
which is one.

Alternative proof: Use the fact that the mean of a Bernoulli random variable
is p and the fact that the mean of a sum is the sum of the means.

Theorem 4.3 The variance of the binomial random variable Nn is

σ2
Nn = np(1− p). (4.8)
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Proof: Use the combinatorial fact twice:

E[(Nn−1)Nn] =
n∑

k=0

(k−1)k
(
n

k

)
pk(1−p)n−k =

n∑

k=2

(n−1)n
(
n− 2
k − 2

)
pk(1−p)n−k.

(4.9)
Factor to obtain

(n− 1)np2
n∑

k=2

(
n− 2
k − 2

)
pk−2(1− p)n−k = (n− 1)np2. (4.10)

The sum is just the probability that Nn−2 has some value 0, 1, . . . , n− 2, which
is one. Thus

σ2
Nn = E[N2

n]−E[Nn]2 = E[N2
n]−E[Nn]+E[Nn]−E[Nn]2 = n(n−1)p2+np−n2p2 = np−np2.

(4.11)
Alternative proof: Use the fact that the variance of a Bernoulli random

variable is p(1 − p) and the fact that the variance of a sum of independent
random variables is the sum of the variances.

These formulas for the mean and variance are very important. The fact that
the mean is np is very intuitive. The result for the variance is more subtle. It
is perhaps better to look at the standard deviation. This is

σNn =
√
n
√
p(1− p). (4.12)

Note that the factor
√
p(1− p) ≤ 1/2 for all p with 0 ≤ p ≤ 1. Thus the

standard deviation is always bounded above by (1/2)
√
n.

When 0 < p < 1, the standard deviation is greater than zero. In fact,
when 0.1 ≤ p ≤ 0.9, the standard deviation factor

√
p(1− p) satisfies 0.3 ≤√

p(1− p) ≤ 0.5. Thus in many circumstance this number is reasonably well
limited, even if we do not have a precise knowledge of p.

Now consider the case when 0 < p < 1 and n is large. Then the standard
deviation, which is proportional to

√
n, is considerably less than the mean,

which is proportional to n. This means that for large n the random variable Nn
is peaked near the mean, at least in a relative sense.

4.4 The Poisson approximation

Something quite different happens when n is very large but at the same time p
is very small. The binomial probability may be written

(
n

k

)
pk(1− p)n−k =

(n)k
k!

pk(1− p)n−k =
(np)k

k!
(n)k
nk

(1− p)n−k. (4.13)

If we set λ = np we can write this as

λk

k!
(n)k
nk

(1− λ

n
)n(1− λ

n
)−k. (4.14)
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Now take the limit as n → ∞ and p → 0 with λ = np fixed. The first factor
does not depend on n. The second factor goes to one. The third factor has limit
e−λ. The fourth factor goes to one. So the result is

P [N = k] =
λk

k!
e−λ. (4.15)

This is the Poisson probability formula.
Here is some more detail on the limits. The quotient (n)k divided by nk may

be computed by dividing each of the k factors in (n)k by n. Then the limit of
each of the resulting k factors is one. So the limit of the product is one. This
is reasonable. The (n)k is the number of ordered samples without replacement
of size k from a population of size n. The nk is the number of ordered samples
with replacement of size k from a population of size n. It is reasonable that for
a very large population the two methods of sampling give equivalent results.

The limit of (1−λ/n)n may be computed by using properties of logarithms.
The Taylor series of 1/(1 − x) = 1 + x + x2 + x3 + · · ·, the geometric series.
Therefore, by integrating, the Taylor series of the logarithm is − ln(1 − x) =
x+x2/2+x3/3+x4/4+· · ·, the integral of the geometric series. The logarithm of
(1−λ/n)n is n ln(1−λ/n). Expand the logarithm in a Taylor series. This gives
−n[λ/n + (1/2)λ2/n2 + · · ·]. Multiply out. This gives −[λ + (1/2)λ2/n + · · ·].
This shows that as n→∞ the limit of the logarithm of (1−λ/n)n is −λ. Since
the exponential is the inverse function of the logarithm, the limit as n→∞ of
(1− λ/n)n is e−λ.

Note that in this chapter the parameter λ is dimensionless and has the
interpretation of the mean of the Poisson probability. The variance is also λ.
Therefore the standard deviation is

√
λ. When λ is large, then the standard

deviation is small relative relative to the mean. Thus for large λ the Poisson
distribution is peaked around the mean, at least in a relative sense.

4.5 Geometric random variables

Consider a Bernoulli process with parameter p > 0. Let W be the trial on which
the first success occurs. Then the probability of the event that W = n is the
probability of a pattern of n − 1 failures followed by a success. This kind of
random variable is called geometric. This proves the following theorem.

Theorem 4.4 For a geometric random variable W with parameter p the dis-
tribution is given for n = 1, 2, 3, . . . by

P [W = n] = P [Nn−1 = 0]P [Xn = 1] = (1− p)n−1p. (4.16)

Theorem 4.5 The expectation of the geometric random variable is

E[W ] =
1
p
. (4.17)
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Proof: This is the series

E[W ] =
∞∑
n=1

nP [W = n] =
1
p

∞∑
n=1

n(1− p)n−1p2 =
1
p
. (4.18)

This is because n(1− p)n−1p2 is the probability that the second success occurs
on the n + 1st trial. If we grant that there is eventually going to be a second
success, then these probabilities should add to one.

Theorem 4.6 The variance of the geometric random variable is

σ2
W =

1
p2

(1− p). (4.19)

Proof: Consider the series

E[W (W + 1)] =
∞∑
n=1

n(n+ 1)P [W = n] =
2
p2

∞∑
n=1

n(n+ 1)
2

(1− p)n−1p3 =
2
p2
.

(4.20)
This is because n(n+ 1)/2 (1− p)n−1p3 is the probability that the third success
occurs on the n + 2nd trial. If we grant that there is eventually going to be a
third success, then these probabilities should add to one. Thus

σ2
W = E[W 2]−E[W ]2 = E[W 2]+E[W ]−E[W ]−E[W ]2 =

2
p2
−1
p
− 1
p2

=
1
p2

(1−p).
(4.21)

These formula for the mean and expectation of the geometric waiting time
are quite important. The formula for the mean is 1/p, which is a quite intuitive
result. The formula for the variance is also important. It is better to look at
the standard deviation. This is 1/p

√
1− p. If p is well below one, so that one

has to wait a long time for a success, then the standard deviation is almost as
large as the mean. This means that one not only has to wait a long time for a
success, but the variability of the length of the wait is also quite long. Maybe
it will be short; maybe it will be several times the mean.

4.6 Negative binomial random variables

Consider a Bernoulli process with parameter p > 0. Let Tr = W1 + · · · + Wr

be the trial on which the rth success occurs. Then the probability of the event
that W = n is the probability of a pattern of r − 1 successes and n− r failures
on the first n− 1 trials, followed by a success. This kind of random variable is
called negative binomial. This proves the following theorem.

Theorem 4.7 For a negative binomial random variable Tr with parameters r
and p the distribution is given for n = r, r + 1, r + 2, . . . by

P [Tr = n] = P [Nn−1 = r − 1]P [Xn = 1] =
(
n− 1
r − 1

)
pr(1− p)n−r. (4.22)
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Theorem 4.8 The expectation of the negative binomial random variable is

E[W ] = r
1
p
. (4.23)

Proof: This is the series

E[Tr] =
∞∑
n=r

nP [Tr = n] =
r

p

∞∑
n=r

(
n

r

)
(1− p)n−rpr+1 =

1
p
. (4.24)

This is because P [Tr+1 = n+ 1] =
(
n
r

)
(1− p)n−rpr+1 is the probability that the

r + 1st success occurs on the n + 1st trial. If we grant that there is eventually
going to be a second success, then these probabilities should add to one.

Alternative proof: Use the fact that the mean of a geometric random variable
is 1/p and the fact that the mean of a sum is the sum of the means.

Theorem 4.9 The variance of the negative binomial random variable is

σ2
Tr = r

1
p2

(1− p). (4.25)

Proof: Consider the series

E[Tr(Tr+1)] =
∞∑
n=r

n(n+1)P [Tr = n] = r(r+1)
1
p2

∞∑
n=r

n

(
n+ 1
r + 1

)
(1−p)n−rpr+2 =

r(r + 1)
p2

.

(4.26)
This is because P [Tn+2 = n+ 1] =

(
n+1
r+1

)
(1− p)n−rpr+2 is the probability that

the r+2nd success occurs on the n+2nd trial. If we grant that there is eventually
going to be a r+ 2nd success, then these probabilities should add to one. Thus

σ2
Tr = E[T 2

r ]−E[Tr]2 = E[T 2
r ]+E[Tr]−E[Tr]−E[Tr]2 =

r(r + 1)
p2

−r
p
−r

2

p2
=

r

p2
(1−p).

(4.27)
Alternative proof: Use the fact that the variance of a geometric random

variable is 1/p2(1 − p) and the fact that the variance of a sum of independent
random variables is the sum of the variances.

These formula for the mean and expectation of the negative binomial waiting
time are quite important. When r = 1 this is the geometric waiting time,
so we already know the facts. So consider the case when we are waiting for
the rth success and r is large. The formula for the mean is r 1/p, which is
a quite intuitive result. The formula for the variance is also important. It is
better to look at the standard deviation. This is

√
r 1/p

√
1− p. Note that the

standard deviation is considerably smaller than the mean. This means that the
distribution is somewhat peaked about the mean, at least in a relative sense.
Very small values are unlikely, so are very large values (relative to the mean).
The reason for this behavior is that the waiting time for the rth success is the
sum of r independent geometric waiting times. These are individually quite
variable. But the short geometric waiting times and the long geometric waiting
times tend to cancel out each other. The waiting time for the rth success is
comparatively stable.
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4.7 Summary

Consider a sequence of independent success-failure trials, with probability p
of success on each trial. The random variable Nn that counts the number of
successes in the first n trials is a binomial random variable. (When n = 1 the
random variable N1 is a Bernoulli random variable.) The random variable Tr
that gives the number of the trial on which the rth success occurs is a negative
binomial random variable. (When r = 1 this is a geometric random variable.)
The relation between Nn and Tr is that Nn ≥ r is the same event as the event
Tr ≤ n.
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Chapter 5

Continuous Random
Variables

5.1 Mean

A continuous random variable X with a probability density function f is a ran-
dom variable such that for each interval B of real numbers

P [X ∈ B] =
∫

B

f(x) dx. (5.1)

Such a continuous random variable has the property that for each real number
x the event that X = x has a probability zero. This does not contradict the
countable additivity axiom of probability theory, since the set of real number
cannot be arranged in a sequence.

Often the random variable X has units, such as seconds or meters. In such a
case the probability density function f has values f(x) that have inverse units:
inverse seconds or inverse centimeters. This is so that the integral that defines
the probability will be dimensionless. The inverse dimensions of f(x) and the
dimensions of dx cancel, and the final integral is a dimensionless probability.

The values of a probability density function are not probabilities. One goes
from the probability density function to probability by integration:

P [X ≤ b] =
∫ b

−∞
f(x) dx. (5.2)

In the other direction, one goes from probabilities to the probability density
function by differentiation:

f(x) =
d

dx
P [X ≤ x]. (5.3)

In spite of this somewhat subtle relation, most of our thinking about continuous
random variables involves their probability density functions.
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The mean or expectation of X is

µX = E[X] =
∫ ∞
−∞

xf(x) dx. (5.4)

Sometimes for technical purposes the following theorem is useful. It ex-
presses the expectation in terms of an integral of probabilities. It is most often
used for random variables Y that have only positive values; in that case the
second term is of course zero.

Theorem 5.1 Let Y be a continuous random variable with probability density
function f . Then

E[Y ] =
∫ ∞

0

P [Y > y] dy −
∫ 0

−∞
P [Y < y] dy. (5.5)

Proof: We have

E[Y ] =
∫ ∞

0

xf(x) dx+
∫ 0

−∞
xf(x) dx =

∫ ∞
0

∫ x

0

dyf(x) dx−
∫ 0

−∞

∫ 0

x

dyf(x) dx.

(5.6)
Interchange the order of integration. This gives

E[Y ] =
∫ ∞

0

∫ ∞
y

f(x) dx dy −
∫ 0

−∞

∫ y

−∞
f(x) dx dy. (5.7)

This immediately gives the result of the theorem.
Note that if X is a continuous random variable and g is a function defined for

the values of X and with real values, then Y = g(X) is also a random variable.
The following theorem is particularly important and convenient. If a random
variable Y = g(X) is expressed in terms of a continuous random variable, then
this theorem gives the expectation of Y in terms of probabilities associated to
X.

Theorem 5.2 The expectation of a function Y = g(X) of a continuous variable
X may be expressed in terms of the probability density function f associated with
X by

E[g(X)] =
∫ ∞
−∞

g(x)fX(x) dx. (5.8)

Proof:

E[g(X)] =
∫ ∞

0

P [g(X) > y] dy −
∫ 0

−∞
P [g(X) < y] dy. (5.9)

Write this in terms of the density. This gives

E[g(X)] =
∫ ∞

0

∫

g(x)>y

fX(x) dx dy −
∫ 0

−∞

∫

g(x)<y

fX(x) dx dy. (5.10)
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Now we can interchange the order of integration. This gives

E[g(X)] =
∫

g(x)>0

∫ g(x)

0

dyfX(x) dx−
∫

g(x)<0

∫ 0

g(x)

dyfX(x) dx. (5.11)

This simplifies to

E[g(X)] =
∫

g(x)>0

g(x)fX(x) dx+
∫

g(x)<0

g(x)fX(x) dx =
∫
g(x)fX(x) dx.

(5.12)
If Y = g(X), then it is possible to compute the probability density function

of Y in terms of the probability density function of X, but this is somewhat
more complicated, because there is a derivative that must be taken into account.

Theorem 5.3 Let Y = g(X) be a function of a continuous random variable X,
and assume that the derivative g′(x) vanishes only at isolated points. Then the
probability density function fY is expressed in terms of the probability density
function fX by

fY (y) =
∑

x:g(x)=y

fX(x)
1

|g′(x)| . (5.13)

Note: If we think of y = f(x), then this may be written in the form

fY (y) =
∑

x:g(x)=y

fX(x)
∣∣∣∣
dx

dy

∣∣∣∣ . (5.14)

Proof: We have

fY (y) =
d

dy
P [g(X) ≤ y] =

d

dy

∫

x:g(x)≤y
fX(x) dx. (5.15)

For each y the set of x such that g(x) ≤ y is a union of intervals. Call a typical
left hand point of such an interval l(y) and a typical right hand point of the
interval r(y). Then g(l(y)) = y and g(r(y) = y. The derivative of the integral
associated with such an interval is

d

dy

∫ r(y)

l(y)

fX(x) dx = fX(r(y))
dr(y)
dy

− fX(l(y))
dl(y)
dy

. (5.16)

However g′(l(y))dl(y)/dy = 1 and g′(r(y))dr(y)/dy = 1. So we can write the
result as

fY (y) =
∑

x:g(x)=y,g′(x)>0

fX(x)
1

g′(x)
−

∑

x:g(x)=y,g′(x)<0

fX(x)
1

g′(x)
. (5.17)

This is equivalent to the statement in the theorem.
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5.2 Variance

The variance of X is

σ2
X = Var(X) = E[(X − µX)2]. (5.18)

The standard deviation of X is the square root of the variance.
By the theorem, the variance may be computed by

σ2
X =

∫ ∞
−∞

(x− µX)2fX(x) dx. (5.19)

It is thus a weighted mean of squared deviations from the mean of the original
random variable. Sometimes this is called a “mean square”. Then the standard
deviation is a “root mean square”.

The following result is useful in some computations.

Theorem 5.4 The variance is given by the alternative formula

σ2
X = E[X2]− E[X]2. (5.20)

5.3 Joint densities

Consider continuous random variables X and Y with densities fX(x) and fY (y).
They have a joint probability density function fX,Y if for every region in the plane
the probability

P [(X,Y ) ∈ C] =
∫ ∫

C

fX,Y (x, y) dx dy. (5.21)

In a similar way, we can talk about the joint probability density function of
three or more random variables.

Given the joint probability density function of X,Y , it is easy to compute
the the probability density function of X, and it is equally easy to compute the
probability density function of Y . The first formula is

fX(x) =
∫ ∞
−∞

fX,Y (x, y) dy. (5.22)

Similarly

fY (y) =
∫ ∞
−∞

fX,Y (x, y) dx. (5.23)

Theorem 5.5 The expectation of a random variable Z = g(X,Y ) that is a
function of random variables X, Y may be computed in terms of the joint prob-
ability density function of X, Y by

E[g(X,Y )] =
∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y) dx dy. (5.24)
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Proof:

E[g(X,Y )] =
∫ ∞

0

P [g(X,Y ) > z] dz −
∫ 0

−∞
P [g(X,Y ) < z] dz. (5.25)

Writing this in terms of the joint density gives

E[g(X)] =
∫ ∞

0

∫ ∫

g(x,y)>z

f(x, y) dx dy dz −
∫ 0

−∞

∫ ∫

g(x,y)<z

f(x, y) dx dy dz.

(5.26)
Now we can interchange the order of integration. This gives

E[g(X)] =
∫ ∫

g(x,y)>0

∫ g(x,y)

0

dzf(x, y) dx dy−
∫ ∫

g(x,y)<0

∫ 0

g(x,y)

dzf(x, y) dx dy.

(5.27)
This simplifies to

E[g(X)] =
∫ ∫

g(x,y)>0

g(x, y)f(x, y) dx dy+
∫ ∫

g(x,y)<0

g(x, y)f(x, y) dx dy =
∫ ∫

g(x, y)f(x, y) dx dy.

(5.28)
This theorem has a very important consequence for expectations. This is

the property called additivity. It says that the expectation of a sum is the sum
of the expectations. We state it for two random variables, but again the idea
extends to the sum of three or more random variables.

Theorem 5.6 If X and Y are random variables with expectations E[X] and
E[Y ], then they satisfy the additivity property

E[X + Y ] = E[X] + E[Y ]. (5.29)

Important note: The theorem can also be stated in the form µX+Y = µX +
µY .

Proof:

E[X+Y ] =
∫ ∞
−∞

∫ ∞
−∞

(x+y)f(x, y) dx dy =
∫ ∞
−∞

∫ ∞
−∞

xf(x, y) dx dy+
∫ ∞
−∞

∫ ∞
−∞

yf(x, y) dx dy = E[X]+E[Y ].

(5.30)

5.4 Uncorrelated random variables

The covariance of random variables X and Y is defined by

Cov(X,Y ) = E[(X − µX)(Y − µY )]. (5.31)

In particular, the variance is given by

σ2
X = Var(X) = Cov(X,X). (5.32)
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Theorem 5.7 The variance of a sum is given in terms of the variances of the
terms and the covariance by

Var(X + Y ) = Var(X) + Cov(X,Y ) + Var(Y ). (5.33)

The correlation of random variables X and Y is defined by

ρ(X,Y ) =
Cov(X,Y )
σXσY

. (5.34)

Thus the result of the theorem may also be written in the form

σ2
X+Y = σ2

X + 2ρ(X,Y )σXσY + σ2
Y . (5.35)

Random variables are said to be uncorrelated if their correlation is zero. This
is the same as saying that their covariance is zero.

Theorem 5.8 For uncorrelated random variables the variances add. That is,
if Cov(X,Y ) = 0, then

σ2
X+Y = σ2

X + σ2
Y . (5.36)

5.5 Independent random variables

Consider continuous random variables X and Y . They are said to be indepen-
dent if their joint probability density functions factors as

fX,Y (x, y) = fX(x)fY (y). (5.37)

There is of course an appropriate generalization of the notion of independence
to more than two random variables. Again there is a multiplication rule, but
this time with more than two factors.

Theorem 5.9 If X and Y are independent random variables, and f and g
are arbitrary functions, then the random variables f(X) and g(Y ) satisfy the
multiplicativity property then

E[f(X)g(Y )] = E[f(X)]E[g(Y )]. (5.38)

This theorem has an important consequence: Independent random variables
are uncorrelated. It immediately follows that for independent random variables
the variances add.

Theorem 5.10 If X and Y are independent random variables, then X and Y
are uncorrelated random variables.

Proof: If X and Y are independent, then from the previous theorem

E[(X − µX)(Y − µY )] = E[X − µX ]E[Y − µY ] = 0 · 0 = 0. (5.39)



Chapter 6

The Poisson Process

6.1 Linear differential equations

In the following we shall need the solution of the homogeneous linear differential
equation

dy

dt
= −λy. (6.1)

The solution is given by doing the integrals
∫

1
y
dy = −λ

∫
dt. (6.2)

The solution is
ln(|y|) = −λt+A, (6.3)

or, setting C = ±eA,
y = Ce−λt. (6.4)

Clearly y = C when t = 0. This says that y decays exponentially with t at rate
λ from the initial amount C. Summary: The solution of this equation represents
exponential decay from the initial amount

We shall also need the solution of the inhomogeneous linear differential equa-
tion

dy

dt
= −λy + f(t). (6.5)

The extra term f(t) is called a source term. The method is to write the solution
in the form

y = ue−λt. (6.6)

If the f(t) term were not present we could take u to be a constant, as above.
However to get the solution with this source term present, we take u to be a
function of t. This gives

du

dt
e−λt = f(t). (6.7)

37
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The solution of this equation is

u =
∫ t

0

eλsf(s) ds+ C. (6.8)

The original y is thus

y =
∫ t

0

e−λ(t−s)f(s) dx+ Ce−λt. (6.9)

Clearly y = C when t = 0. This says that the solution at time t is given by
the decay from the initial amount C over the entire time t, plus the integral of
the decay from the source at time s over the remaining time interval of length
t−s. Summary: The solution of this equation represents exponential decay from
the initial amount plus exponential decay from the source from throughout its
history.

6.2 Jumps

Imagine a device that emits a click sound from time to time. We consider
a family of random variables N(t) that count how many clicks have occurred
between time zero and time t, measured in units of seconds. These clicks occur
at an average rate λ in units of inverse seconds. In this chapter it will be λt
that is the dimensionless number that represents the mean of N(t).

As t increases the number N(t) occasionally jumps by one. The jump occurs
exactly at the time of the click, and the value of N(t) at that time is the total
number of clicks, including the one that took place at that time.

The idea is that the chance of a jump in any tiny interval of time of length
dt is λ dt and is independent of the number of previous jumps. This gives the
fundamental differential equations. The first is

P [N(t+ dt) = 0] = (1− λ dt)P [N(t) = 0]. (6.10)

This says that probability that N(t + dt) = 0 is the probability that N(t) = 0
and there is no jump between t and t+ dt. The others for k ≥ 1 are

P [N(t+ dt) = k] = (1− λ dt)P [N(t) = k] + λ dtP [N(t) = k − 1]. (6.11)

They say that the probability that N(t+dt) = k is the probability that N(t) = k
and there is no jump between t and t+dt plus the probability that N(t) = k−1
and there is a jump between t and t+ dt.

These equations can (and should) be written as differential equations

dP [N(t) = 0]
dt

= −λP [N(t) = 0] (6.12)

with initial condition P [N(0) = 0] = 1 and

dP [N(t) = k]
dt

= −λP [N(t) = k] + λP [N(t) = k − 1] (6.13)

with initial condition P [N(0) = k] = 0 for k ≥ 1.
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6.3 Poisson random variables

The first equation is homogeneous and has the solution

P [N(t) = 0] = e−λt. (6.14)

The second equation is inhomogeneous with source term λP [N(t) = k − 1] and
has the solution

P [N(t) = k] =
∫ t

0

e−λ(t−s)λP [N(s) = k − 1] ds. (6.15)

These equations may be solved to find P [N(t) = k].

Theorem 6.1 The solution of the differential equations is

P [N(t) = k] =
(λt)k

k!
e−λt. (6.16)

The result is that N(t) is a Poisson random variable with parameter λt.

Proof: This is proved by noting that it is true for k = 0. Furthermore, we
shall see that for each k ≥ 1, if it is true for k− 1 it is also true for k. Therefore
it must be true for all k.

To show that if it is true for k − 1 it is also true for k, suppose that

P [N(s) = k − 1] =
(λs)k−1

(k − 1)!
e−λs (6.17)

for all s ≥ 0. Then from the solution of the differential equation

P [N(t) = k] =
∫ t

0

e−λ(t−s)λ
(λs)k−1

(k − 1)!
e−λs ds. (6.18)

This can be written

P [N(t) = k] =
λk

(k − 1)!
e−λt

∫ t

0

sk−1 ds =
λk

(k − 1)!
e−λt

tk

k
. (6.19)

This immediately gives the result that

P [N(t) = k] =
(λt)k

k!
e−λt (6.20)

for all t ≥ 0.

Theorem 6.2 The expectation of the Poisson random variable N(t) is

E[N(t)] = λt. (6.21)
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Proof: Compute

E[N(t)] =
∞∑

k=0

kP [N(t) = k] = λt

∞∑
n=1

λtk−1

(k − 1)!
e−λt = λt. (6.22)

The last equation uses the fact that the probabilities of the events N(t) = k− 1
for k = 1, 2, 3, . . . add to one.

Theorem 6.3 The variance of the Poisson random variable N(t) is

σ2
N(t) = λt. (6.23)

Proof: Compute

E[((N(t)− 1)N(t)] =
∞∑

k=0

(k − 1)kP [N(t) = k] = (λt)2
∞∑
n=2

λtk−2

(k − 2)!
e−λt = λt.

(6.24)
The last equation uses the fact that the probabilities of the events N(t) = k− 2
for k = 2, 3, 4, . . . add to one. Thus

σ2
N(t) = E[N(t)2]−E[N(t)]2 = E[N(t)2]−E[N(t)]+E[N(t)]−E[N(t)]2 = (λt)2−λt−(λt)2 = λt.

(6.25)
These formulas for the mean and variance are very important. The fact that

the mean is λt is very intuitive. The result for the variance is more subtle. It is
perhaps better to look at the standard deviation. This is

σN(t) =
√
λt. (6.26)

Now consider the case when λt is large. Then the standard deviation is consid-
erably less than the mean. This means that for large time the random variable
N(t) is peaked near the mean, at least in a relative sense.

6.4 The gamma function

The gamma function is defined for all real numbers t > 0 by

Γ(t) =
∫ ∞

0

ut−1e−u du. (6.27)

The important property of the Γ function is the identity

Γ(t+ 1) = tΓ(t). (6.28)

This may be proved by integration by parts.

Theorem 6.4 The value of Γ(m + 1) for natural numbers m = 0, 1, 2, 3, . . . is
the factorial

Γ(m+ 1) =
∫ ∞

0

ume−u du = m!. (6.29)
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Such an integral is called a Γ(m + 1) integral. The result follows from the
identity and the obvious fact that Γ(1) = 1.

It is worth recording that there is also an explicit formula for the Gamma
function for half-integer values.

Theorem 6.5 The value of Γ(m+ 1
2 ) for natural numbers m = 0, 1, 2, 3, . . . is

given by

Γ(m+
1
2

) = (m− 1
2

)(m− 3
2

) · · · 3
2

1
2
√
π. (6.30)

Such an integral is called a Γ(m + 1
2 ) integral. The result follows from the

identity and the non-obvious fact that Γ(1
2 ) =

√
π. The reason for this last fact

is that
Γ(

1
2

) =
∫ ∞

0

t−
1
2 e−t dt = 2

∫ ∞
0

e−w
2
dw =

√
π. (6.31)

The last equality comes from the normalization integral for a Gaussian (normal)
density with variance parameter 1/2.

6.5 Exponential random variables

Consider a Poisson process. Let W be the waiting time until the first jump.
This kind of random variable is called exponential with parameter λ. Then since
the event W ≤ t is the same as the event N(t) ≥ 1, we have the following result.

Theorem 6.6 Let W be an exponential random variable with parameter λ.
Then

P [W ≤ t] = 1− e−λt (6.32)

for t ≥ 0.

The following theorem may be proved by differentiating. However we give
another more direct proof below.

Theorem 6.7 For an exponential random variable W with parameter λ the
probability density is given by

f(t) = λe−λt (6.33)

for t ≥ 0.

Proof: If the waiting time for the first jump is in the interval from t to
λdt, then there were no jumps up to time t, and then there was a jump in the
following tiny interval. Thus

P [t < W < t+ dt] = P [N(t) = 0]λ dt. (6.34)

Theorem 6.8 The expectation of an exponential random variable with parame-
ter λ is

E[W ] =
1
λ
. (6.35)
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Proof: Compute the integral

E[W ] =
∫ ∞

0

tλe−λt dt. (6.36)

After a change of variable it becomes a Γ(2) integral.

Theorem 6.9 The variance of the geometric random variable is

σ2
W =

1
λ2
. (6.37)

Proof: Compute the integral

E[W 2] =
∫ ∞

0

t2λe−λt dt. (6.38)

After a change of variable it becomes a Γ(3) integral. The result is 2/λ2. It
follows that Var(W ) = E[W 2]− E[W ]2 = 1/λ2.

These formula for the mean and expectation of the exponential waiting time
are quite important. The formula for the mean is 1/λ, which is a quite intuitive
result. The formula for the variance is also important. It is better to look at
the standard deviation. This is also 1/λ. The standard deviation is the same as
the mean. The variability of the length of the wait is comparable to the average
length of the wait. Maybe the jump will occur soon, maybe considerably later.

6.6 Gamma random variables

Consider a Poisson process with parameter λ. Let Tr be the time of the rth
jump. We can write it as the sum of waiting times between jumps as Tr =
W1 +W2 + · · ·+Wr. If t < Tr ≤ t+dt, then up to t there were only r−1 jumps,
and the last jump occurs in the tiny interval from t to dt. By independence, the
probability is

P [t < Tr < t+ dt] = P [N(t) = k − 1]λ dt. (6.39)

This kind of random variable is called gamma with parameters r and λ. This
proves the following theorem.

Theorem 6.10 For a gamma distribution with parameters r and λ the proba-
bility density is given by

f(t) =
(λt)(r−1)

(r − 1)!
e−λtλ. (6.40)

Since this is a probability density function the integral from zero to infinity
must be equal to one. This may be checked by a change of variable that reduces
the integral to a Γ(r) integral. This is the origin of the name.
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Theorem 6.11 The expectation of the gamma random variable is

E[Tr] = r
1
λ
. (6.41)

Proof: Compute the integral

E[Tr] =
∫ ∞

0

t
(λt)(r−1)

(r − 1)!
e−λtλ dt. (6.42)

After a change of variable it becomes a Γ(r + 1) integral.
Alternative proof: Use the formula for the mean of an exponential random

variable and the fact that the mean of a sum is the sum of the means.

Theorem 6.12 The variance of the gamma random variable is

σ2
Tr = r

1
λ2
. (6.43)

Proof: Compute the integral

E[T 2
r ] =

∫ ∞
0

t2
(λt)(r−1)

(r − 1)!
e−λtλ dt. (6.44)

After a change of variable it becomes a Γ(r+2) integral. The result is (r+1)r/λ2.
It follows that Var(Tr) = E[T 2

r ]− E[Tr]2 = r/λ2.
Alternative proof: Use the formula for the variance of an exponential random

variable and the fact that the variance of a sum of independent random variables
is the sum of the variances.

These formula for the mean and expectation of the gamma waiting time are
quite important. When r = 1 this is the exponential waiting time, so we already
know the facts. So consider the case when we are waiting for the rth success and
r is large. The formula for the mean is r/λ, which is a quite intuitive result. The
formula for the variance is also important. It is better to look at the standard
deviation. This is

√
r/λ. Note that the standard deviation is considerably

smaller than the mean. This means that the distribution is somewhat peaked
about the mean, at least in a relative sense. Very small values are unlikely, so
are very large values (relative to the mean). The reason for this behavior is that
the waiting time for the rth success is the sum of r independent exponential
waiting times. These are individually quite variable. But the short exponential
waiting times and the long exponential waiting times tend to cancel out each
other. The waiting time for the rth success is comparatively stable.

6.7 Summary

Consider a Poisson process with rate λ. Thus the expected number of jumps in
an interval of time of length t is λt. The random variable N(t) that counts the
number of jumps up to and including time t is a Poisson random variable. The
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random variable Tr that gives the time of the rth success is a gamma random
variable. (When r = 1 this is an exponential random variable.) The relation
between N(t) and Tr is that N(t) ≥ r is the same event as the event Tr ≤ t.

The Poisson process is a limiting situation for the Bernoulli process. The
Bernoulli process takes place at discrete trials indexed by n, with probability p
of success on each trial. Take a small time interval ∆t > 0. Let t = n∆t and
p = λ∆t. Then the binomial random variable Nn is approximately Poisson with
mean np = λt, and the negative binomial random variable Tr when multiplied
by ∆t is approximately exponential with mean (r/p)∆t = r/λ.



Chapter 7

The weak law of large
numbers

7.1 Independent implies uncorrelated

We begin by recalling the fact that independent random variables are uncorre-
lated random variables. We begin with the definitions in a particularly conve-
nient form.

Random variables X, Y are independent if for every pair of functions f , g
we have

E[f(X)g(X)] = E[f(X)]E[g(X)]. (7.1)

Random variables X, Y are uncorrelated if

E[XY ] = E[X]E[Y ]. (7.2)

This follows from the fact that the covariance of X, Y may be written in the
form Cov(X,Y ) = E[XY ]− E[X]E[Y ].

The following theorem comes from taking the functions f(x) = x and g(y) =
y in the definition of independence.

Theorem 7.1 If X and Y are independent, then X and Y are uncorrelated.

The converse is false. Uncorrelated does not imply independent.

7.2 The sample mean

Theorem 7.2 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ.
Let

X̄n =
X1 + · · ·+Xn

n
(7.3)

be their sample mean. Then the expectation of X̄n is

E[X̄n] = µ. (7.4)

45
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Proof: The expectation of the sample mean X̄n is

E[X̄n] = E[
1
n

n∑

i=1

Xi] =
1
n
E[

n∑

i=1

Xi] =
1
n

n∑

i=1

E[Xi] =
1
n
nµ = µ. (7.5)

Theorem 7.3 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ
and standard deviation σ. Assume that each pair Xi, Xj of random variables
with i 6= j is uncorrelated. Let

X̄n =
X1 + · · ·+Xn

n
(7.6)

be their sample mean. Then the standard deviation of X̄n is

σX̄n =
σ√
n
. (7.7)

Proof: The variance of the sample mean X̄n is

Var(X̄n) = Var(
1
n

n∑

i=1

Xi) =
1
n2

Var(
n∑

i=1

Xi) =
1
n2

n∑

i=1

Var(Xi) =
1
n2
nσ2 =

1
n
σ2.

(7.8)
We can think of these two results as a form of the weak law of large numbers.

The law of large numbers is the “law of averages” that says that averaging
uncorrelated random variable gives a result that is approximately constant. In
this case the sample mean has expectation µ and standard deviation σ/

√
n.

Thus if n is large enough, it is a random variable with expectation µ and with
little variability.

The factor 1/
√
n is both the blessing and the curse of statistics. It is a

wonderful fact, since it says that averaging reduces variability. The problem,
of course, is that while 1/

√
n goes to zero as n gets larger, it does so rather

slowly. So one must somehow obtain a quite large sample in order to ensure
rather moderate variability.

The reason the law is called the weak law is that it gives a statement about
a fixed large sample size n. There is another law called the strong law that gives
a corresponding statement about what happens for all sample sizes n that are
sufficiently large. Since in statistics one usually has a sample of a fixed size n
and only looks at the sample mean for this n, it is the more elementary weak
law that is relevant to most statistical situations.

Corollary 7.1 Let E1, E2, E3, . . . En be events, each with probability p. Let fn
be the proportion of events that happen. Then the expectation of fn is

E[fn] = p. (7.9)

Proof: Let X1, X2, X3, . . . , Xn be the corresponding Bernoulli random vari-
ables, so that Xi = 1 for outcomes in Ei and Xi = 0 for outcomes in the
complement of Ei. Then the expectation of Xi is p. The sample frequency fn
is just the sample mean of X1, . . . , Xn.
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Corollary 7.2 Let E1, E2, E3, . . . En be events, each with probability p. Assume
that each pair Ei, Ej of events with i 6= j is independent. Let fn be the proportion
of events that happen. Then the standard deviation of fn is

σfn =

√
p(1− p)√

n
. (7.10)

Proof: Let X1, X2, X3, . . . , Xn be the corresponding Bernoulli random vari-
ables, so that Xi = 1 for outcomes in Ei and Xi = 0 for outcomes in the
complement of Ei. Then the variance of Xi is p(1− p). The sample frequency
fn is just the sample mean of X1, . . . , Xn. So its variance is obtained by dividing
by n.

It is very important to note that this result gives a bound for the variance
of the sample proportion that does not depend on the probability. In fact, it is
clear that

σfn ≤
1

2
√
n
. (7.11)

This is an equality only when p = 1/2.

7.3 The Chebyshev inequality

Theorem 7.4 If Y is a random variable with mean µ and variance σ, then

P [|Y − µ| ≥ a] ≤ σ2

a2
. (7.12)

Proof: Consider the random variable D that is equal to a2 when |Y −µ| ≥ a
and is equal to 0 when |Y − µ| < a. Clearly D ≤ (Y − µ)2. It follows that
the expectation of the discrete random variable D is less than or equal to the
expectation of (Y − µ)2. This says that

a2P [|Y − µ| ≥ a] ≤ E[(Y − µ)2] = σ2. (7.13)

Corollary 7.3 Let X1, X2, X3, . . . Xn be random variables, each with mean µ
and standard deviation σ. Assume that each pair Xi, Xj of random variables
with i 6= j is uncorrelated. Let

X̄n =
X1 + · · ·+Xn

n
(7.14)

be their sample mean. Then

P [|X̄n − µ| ≥ a] ≤ σ2

na2
. (7.15)

This gives a perhaps more intuitive way of thinking of the weak law of large
numbers. It says that if the sample size n is very large, then the probability that
the sample mean X̄n is far from the population mean µ is moderately small.
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The result is stated in terms of an arbitrary number a with the same dimen-
sions as the Xi. It can also be stated in terms of an dimensionless constant t
with a = tσ/

√
n. Then the weak law of large numbers takes the form

P [|X̄n − µ| ≥ t σ√
n

] ≤ 1
t2
. (7.16)

This is actually not a very useful result, since the probability is often much less
than the bound 1/t2 on the right hand side. If t = 2, then the bound is 1/4,
but the central limit theorem shows that 1/20 is often a much more accurate
estimate.

7.4 The sample variance

The sample mean

X̄n =
∑n
i=1Xi

n
(7.17)

is a random variable that may be used to estimate an unknown population mean
µ. In the same way, the sample variance

s2 =
∑n
i=1(Xi − X̄n)2

n− 1
(7.18)

may be used to estimate an unknown population variance σ2.
The n − 1 in the denominator seems strange. However it is due to the

fact that while there are n observations Xi, their deviations from the sample
mean Xi − X̄n sum to zero, so there are only n − 1 quantities that can vary
independently. The following theorem shows how this choice of denominator
makes the calculation of the expectation give a simple answer.

Theorem 7.5 Let X1, X2, X3, . . . Xn be random variables, each with mean µ
and standard deviation σ. Assume that each pair Xi, Xj of random variables
with i 6= j is uncorrelated. Let s2 be the sample variance. Then the expectation
of s2 is

E[s2] = σ2. (7.19)

Proof: Compute

n∑

i=1

(Xi−µ)2 =
n∑

i=1

((Xi−X̄n+X̄n−µ)2 =
n∑

i=1

(Xi−X̄n)2+
n∑

i=1

(X̄n−µ)2. (7.20)

Notice that the cross terms sum to zero. Take expectations. This gives

nσ2 = E[
n∑

i=1

(Xi − X̄n)2)] + n
σ2

n
. (7.21)

The result then follows from elementary algebra.
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Remark: It is not true that the expectation of s is σ. In fact, we have the
following theorem and corollary. It is not so much a useful result as a warning
not to take things for granted. It does much to explain why statisticians find it
more convenient to work with the variance.

Theorem 7.6 Let X be a random variable that is not constant. Then E[X]2 <
E[X2]. In fact

E[X]2 = E[X2]−Var(X). (7.22)

Proof: This is just the usual alternative form Var(X) = E[X2] − E[X]2 of
writing the variance.

Corollary 7.4 Suppose that the sample standard deviation s is not constant.
Then the expectation of the sample standard deviation s is strictly less than the
population standard deviation σ. In fact,

E[s]2 = σ2 −Var(s). (7.23)

7.5 Experiments and super experiments

This last section deals with the internal consistency of probability theory. Say
that we think of measuring a random variable X with mean µ as part of a single
experiment. Then we can think of repeating this original experiment n times
under independent, identical conditions. This would give a new experiment,
which we might call a super experiment. There would be n experimental num-
bers, the X1, . . . , Xn from the n repetitions. These Xi would be independent
random variables, all with the same distribution. So the weak law of large num-
bers would apply. The probability that the sample mean X̄n is within a of the
expectation µ is some number p′ bounded below by 1− σ2/(na2). This is close
to one if n is large.

All this applies in the special case when the Xi are Bernoulli random vari-
ables corresponding to events that each have probability p. The sample mean
in this case is the sample proportion. Then the weak law of large numbers says
that the probability that the sample proportion is within a of p is some number
p′ bounded below by 1− p(1− p)/(na2). This is close to one if n is large.

However, the statements about the super experiment are also statements
about probability. So what is their empirical interpretation? Imagine a super
super experiment, in which the entire super experiment is repeated m times.
Consider the event that the sample mean in a super experiment is within a of
µ. This event has probability p′ in the super experiment. Then the probability
that the sample proportion in the super super experiment of this event is within
a′ of p′ is some number p′′ bounded below by 1−p′(1−p′)/(ma′2). This is itself
close to one if m is large.

This all shows that probability theory has a certain internal consistency.
Does it show that probability theory must apply correctly to the real world?
That is not so clear. In the end one seems to need a principle that an event
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with probability close to one should actually happen. The mathematical theory
does not quite provide this.

If the mathematical theory of probability does not fully explain the success
of probability in practice, this does not mean that probability is not a useful
tool. All it means is that the ultimate justification may need to be found in
some other branch of theoretical science.



Chapter 8

The central limit theorem

8.1 Centering and standardizing

Let X be a random variable with mean µ. Then the centered X is the random
variable X − µ. It measures the deviation of X from its expected value. Let
X be non-constant with standard deviation σ > 0. The standardized X is the
random variable

Z =
X − µ
σ

. (8.1)

It measures the deviation of X from its expected value in units of the standard
deviation.

8.2 Normal random variables

A normal (or Gaussian) random variable X with mean µ and variance σ2 is a
random variable with density

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (8.2)

The centered version of X will have density

fX−µ(x) =
1√
2πσ

e−
x2

2σ2 . (8.3)

The standardized version Z of X will have density

fZ(z) =
1√
2π
e−

z2
2 . (8.4)

We shall most often work with the centered or standardized versions. The tables
of the distributions of normal random variables are for the standardized version.

Why is the normal distribution so important? The explanation traces back
to the following remarkable property of the normal distribution.
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Theorem 8.1 Let X and Y be independent centered normal random variables
with variances σ2. Let a2 + b2 = 1. Then aX+ bY is a centered normal random
variable with variance σ2.

Proof: The joint density of X and Y is

f(x, y) =
1

2πσ2
e−

x2

2σ2 e−
y2

2σ2 . (8.5)

We can use properties of exponentials to write this as

f(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (8.6)

Let Z = aX + bY and W = −bX + aY . We can write the joint density of X
and Y as

f(x, y) =
1

2πσ2
e−

(ax+by)2+(−bx+ay)2

2σ2 . (8.7)

Now we can factor this again as

f(x, y) =
1

2πσ2
e−

(ax+by)2

2σ2 e−
(−bx+ay)2

2σ2 . (8.8)

Let Z = aX + bY and W = −bX + aY . The transformation z = ax + by,
w = −bx + ay is a rotation. Therefore it preserves areas: dz dw = dx dy. It
follows that Z and W have joint density

f(z, w) =
1

2πσ2
e−

x2+y2

2σ2 . (8.9)

Corollary 8.1 Let X1, . . . , Xn be independent random variables with centered
normal distributions with variance σ2. Then the sum X1 +X2 + · · ·+Xn is also
normal, with variance nσ2.

Proof: We can prove this by showing that it is true when n = 1 and by
showing that for all n, if it is true for n, it is also true for n+ 1.

The fact that it is true for n = 1 is obvious. Suppose that it is true for
n. Then the sum X1 + · · · + Xn is normal with variance nσ2. It follows that
(X1 + · · · + Xn)/

√
n is normal with variance σ2. The next term Xn+1 is also

normal with variance σ2. Take a =
√
n/
√
n+ 1 and b = 1/

√
n+ 1. Then by

the theorem (X1 + · · · + Xn + Xn+1)/
√
n+ 1 is normal with variance σ2. It

follows that X1 + · · ·+Xn+1 is normal with variance (n+ 1)σ2.

8.3 The central limit theorem: statement

Theorem 8.2 Let X1, . . . , Xn be independent and identically distributed ran-
dom variables, each with mean µ and standard deviation σ. Let X̄n be their
sample mean. Then the standardized variable

Zn =
X1 + · · ·+Xn − nµ√

nσ
=
X̄n − µ
σ/
√
n

(8.10)
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has the property that

lim
n→∞

P [s < Zn ≤ t] = P [s < Z ≤ t], (8.11)

where Z is standard normal.

Sometimes the theorem is used in the version where s = −∞. It is also
common to see it in the two sided version where t > 0 and s = −t. For instance,
it says that for large n the sample mean satisfies

P [|X̄n − µ| ≤ t σ√
n

] ≈
∫ t

−t

1√
2π
e−

z2
2 dz. (8.12)

It is not only close to the population mean, but this tells exactly how close it is
likely to be.

Corollary 8.2 Let E1, . . . , En be independent events, each with probability p.
Let Nn be the number of events that happen, and let fn = Nn/n be the relatively
frequency of the events that happen. Then the standardized variable

Zn =
Nn − np√
n
√
p(1− p) =

fn − p√
p(1− p)/√n (8.13)

has the property that

lim
n→∞

P [s < Zn ≤ t] = P [s < Z ≤ t], (8.14)

where Z is standard normal.

8.4 The central limit theorem: proof

In this section we give a proof of the central limit theorem. We actually prove
a somewhat different version that deals with expectations instead of probabil-
ities. It is shown in more advanced treatments that the different versions are
equivalent.

Theorem 8.3 Let X1, X2, X3, . . . be independent identically distributed random
variables with mean zero and variance σ2. Let Z be a normal random variable
with mean zero and variance σ2. Let f be a smooth function with bounded
derivatives. Then

E[f(
X1 + · · ·+Xn√

n
)]→ E[f(Z)] (8.15)

as n→∞. Here Z is a standard normal random variable.

Proof: Write

E[f(
X1 + · · ·+Xn√

n
)]−E[f(

Z1 + · · ·+ Zn√
n

)] =
n∑

i=1

(E[f(Wi+
Xi√
n

)]−E[f(Wi+
Zi√
n

)]).

(8.16)
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Here
Wi =

X1 + · · ·+Xi−1 + Zi+1 + · · ·+ Zn√
n

. (8.17)

Next write

f(Wi +
Xi√
n

) = f(Wi) + f ′(Wi)
Xi√
n

+
1
2
f ′′(Wi)

X2
i

n
+Ri. (8.18)

Here R1 is a remainder. In the same way, write

f(Wi +
Zi√
n

) = f(Wi) + f ′(Wi)
Zi√
n

+
1
2
f ′′(Wi)

Z2
i

n
+ Si. (8.19)

Again Si is a remainder.
Now calculate the expectations. The expectations of the zeroth order terms

are the same.
Use independence to calculate

E[f ′(Wi)
Xi√
n

] = E[f ′(Wi)]E[
Xi√
n

] = 0. (8.20)

and similarly for the other case. The expectations of the first order terms are
zero.

Use independence to calculate

E[f ′(Wi)
X2
i

n
] = E[f ′(Wi)]E[

X2
i

n
] = E[f ′′(Wi)]

σ2

n
(8.21)

and similarly for the other case. The expectations of the second order terms are
the same.

This is the heart of the argument: up to second order everything cancels
exactly. This shows that the sum of interest is a sum of remainder terms.

E[f(
X1 + · · ·+Xn√

n
)]− E[f(

Z1 + · · ·+ Zn√
n

)] =
n∑

i=1

(E[Ri]− E[Si]). (8.22)

The only remaining task is to show that these remainder terms are small. This
is a somewhat technical task. Here is an outline of how it goes.

Write

Ri =
1
2

(f ′′(Wi + α
Xi√
n

)− f ′′(Wi))
X2
i

n
. (8.23)

In the same way, write

Si =
1
2

(f ′′(Wi + β
Zi√
n

)− f ′′(Wi))
Z2
i

n
. (8.24)

Look at the first remainder E[Ri]. Break up the sample space into two parts.
The first part is where |Xi| ≤ ε

√
n. The second part is where |Xi| > ε

√
n.
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Assume that the absolute value of the third derivative of f is bounded by a
constant C. Then the size of the first part of the first remainder is bounded by

E[|Ri|; |Xi| ≤ ε
√
n] ≤ 1

2
Cε

σ2

n
. (8.25)

Assume that the absolute value of the second derivative of f is bounded by a
constant M . The size of the second part of the first remainder is bounded by

E[|Ri|; |Xi| > ε
√
n] ≤M 1

n
E[X2

i ;Xi > ε
√
n]. (8.26)

Let ε depend on n, so we can write it as a sequence εn. Then the first
remainder is bounded by

E[|Ri|] ≤ 1
2
Cεn

σ2

n
+M

1
n
E[X2

i ;Xi > εn
√
n]. (8.27)

Thus the absolute value of the first sum is bounded by

n∑

i=1

E[|Ri|] ≤ 1
2
Cεnσ

2 +ME[X2
i ;Xi > εn

√
n]. (8.28)

Take εn → 0 with εn
√
n → ∞. Then the first sum goes to zero as n → ∞.

The same idea works for the other sum. This completes the proof.
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Chapter 9

Estimation

9.1 Sample mean and population mean

The picture is that there is a very large (theoretically infinite) population. Each
member of the population has some characteristic quantity X. The mean of this
quantity for the whole population is µ. The standard deviation of this quantity
over the whole population is σ.

One can think of taking a single random member of the population and
measuring this quantity X1. Then the expectation of the random variable X1

is µ, and the standard deviation of X1 is σ.
Now consider the experiment of taking a random sample of size n and mea-

suring the corresponding quantities X1, . . . , Xn.

Theorem 9.1 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ.
Let

X̄n =
X1 + · · ·+Xn

n
(9.1)

be their sample mean. Then the expectation of X̄n is

E[X̄n] = µ. (9.2)

Theorem 9.2 (Weak Law of Large Numbers) Let X1, X2, X3, . . . , Xn be inde-
pendent random variables, each with mean µ and standard deviation σ. Let

X̄n =
X1 + · · ·+Xn

n
(9.3)

be their sample mean. Then the standard deviation of X̄n is

σX̄n =
σ√
n
. (9.4)

For the statistician the µ and σ are unknown. The significance of the above
theorems is that it is reasonable to use the experimental sample mean X̄n to
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estimate the unknown population parameter µ, provided that n is large enough.
If n is large enough, then X̄n is quite likely to be near µ. The central limit
theorem gives a rather precise idea of how variable these sample means are.

Theorem 9.3 (Central Limit Theorem) Let X1, . . . , Xn be independent and
identically distributed random variables, each with mean µ and standard devia-
tion σ. Let X̄n be their sample mean. Then the standardized variable

Zn =
X̄n − µ
σ/
√
n

(9.5)

has the property that

lim
n→∞

P [s < Zn ≤ t] = P [s < Z ≤ t], (9.6)

where Z is standard normal.

Now the only trouble with this is that the σ is also an unknown population
parameter. So to understand what one is doing, one has to estimate σ. The
following result tells how to do this.

Define the sample variance as

s2 =
∑n
i=1(Xi − X̄n)2

n− 1
(9.7)

This is an experimental quantity used to estimate the unknown population
variance σ2.

Theorem 9.4 Let X1, X2, X3, . . . Xn be independent random variables, each
with mean µ and standard deviation σ. Let s2 be the sample variance. Then the
expectation of s2 is

E[s2] = σ2. (9.8)

9.2 Sample median and population median

The picture is that there is a very large (theoretically infinite) population. Each
member of the population has some characteristic quantity X. Consider a num-
ber α between zero and one. Then there is supposed to be a number tα such
that the proportion of the population for which the X is less than or equal to
α is tα.

One can think of taking a single random member of the population and
measuring this quantity X1. The assumption is that X1 is a continuous ran-
dom variables. Then the cumulative distribution function F (t) = P [X ≤ t] is
continuous. It follows that there is a tα such that F (tα) = α.

There are several common examples. The most important is the value such
that half the population is above this value and half the population is below
this value. Thus when α = 1/2 the corresponding t 1

2
is called the population

median m.
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Similarly, when α = 1/4 the t 1
4

is called the lower population quartile. In
the same way, when α = 3/4 the t 3

4
is called the upper population quartile. In

statistics the function F characterizing the population is unknown. Therefore
all these tα are unknown quantities associated with the population.

Now consider the experiment of taking a random sample of size n and mea-
suring the corresponding quantities X1, . . . , Xn. Thus again we have indepen-
dent random variables all with the same distribution. We are assuming that
the distribution is continuous. Thus the probability is one that for all i 6= j the
quantities Xi 6= Xj are unequal.

The order statistics X(1), . . . , X(n) are the quantities obtained by arranging
the random variables X1, . . . , Xn in increasing order. Thus by definition

X(1) < X(2) < · · · < X(i) < · · · < X(n−1) < X(n). (9.9)

The order statistics are no longer independent, as we now see.
The joint density of X1, . . . , Xn is f(x1) · · · f(xn). This product structure is

equivalence to the independence of the random variables. On the other hand,
the joint density of the order statistics X(1), . . . , X(n) is n!f(x1) · · · f(xn) for
x1 < x2 < · · · < xn and zero otherwise. There is no way to factor this. The
order statistics are far from independent.

The order statistics are quite useful for estimation. Take α = i/(n + 1).
Then it seems reasonable to use the order statistics X(i) to estimate tα.

Thus, for instance, if n is odd and i = (n + 1)/2 and α = 1/2, then X(i) is
the sample median. This estimates the population median m = t 1

2
.

The fundamental theorem on order statistics is the following. It shows that
questions about order statistics reduce to questions about binomial random
variables.

Theorem 9.5 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. For each
x, let Nn(x) be the number of i such that Xi ≤ x. Then Nn(x) is a binomial
random variable with parameters n and F (x). Furthermore,

P [X(j) ≤ x] = P [Nn(x) ≥ j]. (9.10)

This result can be stated even more explicitly in terms of the binomial prob-
abilities. In this form it says that if P [Xi ≤ x] = F (x), then

P [X(j) ≤ x] =
n∑

k=j

(
n

k

)
F (x)k(1− F (x))n−k. (9.11)

This theorem is remarkable, in that it gives a rather complete description of
order statistics for large sample sizes. This is because one can use the central
limit theorem for the corresponding binomial random variables.

Theorem 9.6 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. Fix α and
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let F (tα) = α. Let n→∞ and let j →∞ so that
√
n(j/n− α)→ 0. Then the

order statistics X(j) is approximately normally distributed with mean

E[X(j)] ≈ tα (9.12)

and standard deviation

σX(j) ≈
√
α(1− α)
f(tα)

√
n
. (9.13)

Proof: Compute

P [X(j) ≤ tα +
a√
n

] = P [
Nn(tα + a√

n
)

n
≥ j

n
]. (9.14)

The random variable has mean α′n = F (tα +a/
√
n) and variance α′n(1−α′n)/n.

So we can use the central limit theorem and j/n→ α to write this as

P [X(j) ≤ tα +
a√
n

] ≈ P [Z ≥ α− α′n√
α′n(1− α′n)/

√
n

]. (9.15)

However
α′n − α = F (tα +

a√
n

)− F (tα) ≈ f(tα)
a√
n
. (9.16)

So we use this together with αn → α to get

P [X(j) ≤ tα +
a√
n

] ≈ P [Z ≥ − f(tα)a√
α(1− α)

]. (9.17)

In other words,

P [X(j) ≤ tα +
a√
n

] ≈ P [−
√
α(1− α)
f(tα)

Z ≤ a]. (9.18)

This gives the result.

Corollary 9.1 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. Let m be
the population median. Consider sample sizes n that are odd, so that the sample
median Mn = X(n+1

2 ) is defined. Let n → ∞. Then the sample median Mn is
approximately normally distributed with mean

E[Mn] ≈ m (9.19)

and standard deviation

σMn ≈
1

2f(m)
√
n
. (9.20)
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9.3 Comparison of sample mean and sample me-
dian

Say that each Xi has density f with population mean

µ =
∫ ∞
−∞

xf(x) dx (9.21)

and population variance

σ2 =
∫ ∞
−∞

(x− µ)2f(x) dx. (9.22)

Then our tendency is to use the sample mean X̄n to estimate the population
mean µ.

Say that

F (x) =
∫ x

−∞
f(t) dt (9.23)

is the distribution function. Say that m is the population median, so F (m) = 1
2 .

Then our tendency is to use the sample median Mn to estimate the population
median m.

Now say that the density function is symmetric about some point. Then the
population mean is the same as the sample mean. So the mean and the median
are both trying to estimate the same quantity. Which is better?

The relative efficiency of the sample median to the sample mean is found by
seeing which has smaller variance. The smaller the variance, the more efficient
the estimation. The efficiency of the sample median with respect to the sample
mean is the variance of the sample mean divided by the variance of the sample
median. This ratio is

σ2/n

1/(4f(m)2n)
= 4f(m)2σ2. (9.24)

If this ratio is less than one, then the sample mean is a better estimator. If this
ration is greater than one, then the sample median is better.

For the normal distribution f(m) = f(µ) = 1/(
√

2πσ). Thus the relative
efficiency of the sample median to the sample mean is 2/π. This is not particu-
larly good. If a statistician somehow knows that the population distribution is
normal, then the sample mean is the better statistic to use.

However it is quite possible that the density value f(m) > 0 is well away
from zero, but the distribution has long tails so that the σ is huge. Then the
median may be much more efficient than the mean. So in many situations the
median is the safer estimator to use.

Of course, maybe the statistician does not know the size of f(m) or the size
of σ. Some kind of preliminary analysis of the data is then necessary to establish
a preference.
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9.4 The Kolmogorov-Smirnov statistic

Say that one has a hypothesis that the population distribution is F and wants
to check it. The following theorem gives a method.

Theorem 9.7 Let X be a random variable with a continuous distribution F .
Then U = F (X) is a uniform random variable.

Theorem 9.8 Let X1, . . . , Xn be independent random variables with the same
continuous distribution. Let X(1), . . . , X(n) be their order statistics. Let U1 =
F (X1), . . . , Un = F (Xn). Then these are independent random variables, each
uniformly distributed in the interval [0, 1]. Their order statistics are U(1) =
F (X(1)), . . . , U(n) = F (X(n)).

The method is to compute the U(1), . . . , U(i), . . . , U(n) and compare them
with 1/(n + 1), . . . , i/(n + 1), . . . , n/(n + 1). If they are close, then this is a
confirmation of the hypothesis.

There is a famous Kolmogorov-Smirnov statistic that is based on this general
idea. This statistics gives a quantitative measure of the degree to which the order
statistics U(i) = F (X(i)) behave as anticipated by the hypothesis.

In this statistic, the comparison is between the order statistics U(i) and the
numbers (i− 1/2)/n (rather than i/(n+ 1)). The reason for using (i− 1/2)/n
seems technical. The following may provide some motivation. The proportion
of order statistics less than the ith order statistic is (i− 1)/n; the proportion of
order statistics less than or equal to the ith order statistics is i/n. The average
of these two numbers is (i− 1/2)/n.

Thus the Kolmogorov-Smirnov statistic is defined to be

D =
1

2n
+ max

1≤i≤n

∣∣∣∣F (X(i))−
i− 1

2

n

∣∣∣∣ . (9.25)

The first term is there because the Kolmogorov-Smirnov statistics is usually
defined by a different and perhaps more natural formula, from which this term
emerges after a calculation.

A typical result about the Kolmogorov-Smirnov statistics is that if F is the
distribution function of the Xi, then for moderately large n

P [D >
1.36√
n

] ≤ 0.05. (9.26)

So this provides a test of whether the data Xi really come from a population
described by F . If so, then large values of D are unlikely.


