1 Real functions and integrals

1.1 Elementary integrals

1.1.1 Stone vector lattices

A Stone vector lattice L is a vector lattice of real functions on the set X that satisfies the Stone condition: $f \in L$ implies $f \wedge 1 \in L$.

An elementary integral m is a linear function $m: L \to \mathbf{R}$ that is linear and satisfies monotone convergence for sequences of functions within L.

Example: Let $X = \mathbf{R}$ and $L = C_c(\mathbf{R})$. Then L is a Stone vector lattice. By Dini's theorem (a result that depends on compactness) every linear function m is an elementary integral.

1.1.2 Vector lattices with constants

A vector lattice with constants L is a vector lattice of real functions on the set X such that $1 \in L$.

Example: Let X = [0, 1] and L = C([0, 1]). Then L is a vector lattice with constants. By Dini's theorem every linear function m is an elementary integral.

1.2 Integrals

1.2.1 σ -rings of real functions

A *monotone class* is a collection of functions that is closed under upward and downward monotone convergence of sequences.

A σ -ring of real functions \mathcal{F}_0 is a Stone vector lattice that is also a monotone class.

1.2.2 σ -algebras of real functions

A σ -algebra of real functions \mathcal{F} is a vector lattice with constants that is also a monotone class.

An *integral* is a function $\mu : \mathcal{F}^+ \to [0, +\infty]$ that satisfies linearity (for positive scalars) and upward monotone convergence for sequences of functions.

Theorem (Daniell-Stone). Let L be a Stone vector lattice of real functions on X. Let $m: L \to \mathbf{R}$ be an elementary integral. Then there is an integral μ that agrees with m on L^+ .

Theorem. The elementary integral m uniquely determines the integral μ on the σ -ring of real functions generated by L.

Example: When $X = \mathbf{R}$ and $L = C_c(\mathbf{R})$, then the σ -ring of functions generated by L is the Borel σ -algebra of functions.

2 Subsets and measures

2.1 Elementary measures

2.1.1 Rings of subsets

A ring of subsets A of a set X is a collection of subsets closed under finite unions and relative complements.

An elementary measure m is an additive function $m : A \to [0, +\infty)$ that satisfies monotone convergence for sequences of subsets within A.

Example: Let $X = \mathbf{R}$ and A consist of all finite unions of intervals (a, b]. Then A is a ring of subsets. Each increasing right-continuous function $F : \mathbf{R} \to \mathbf{R}$ determines an elementary measure by m((a, b]) = F(b) - F(a). The proof of monotone convergence involves compactness and an additional argument using the right continuity.

2.1.2 Algebras of subsets

An algebra of subsets A is a ring of subsets of X such that $X \in A$.

Example: Let X = (0, 1] and A be as before. Then A is an algebra of subsets. Each increasing right-continuous function $F : (0, 1] \to \mathbf{R}$ determines an elementary measure by m((a, b]) = F(b) - F(a).

2.2 Measures

2.2.1 σ -rings of subsets

A *monotone class* is a collection of subsets that is closed under upward and downward monotone convergence of sequences.

A σ -ring of subsets \mathcal{F}_0 is a ring of subsets that is also a monotone class.

2.2.2 σ -algebras of subsets

A σ -algebra of subsets \mathcal{F} is an algebra of subsets that is also a monotone class.

A measure is an additive function $\mu : \mathcal{F} \to [0, +\infty]$ that satisfies upward monotone convergence for sequences of subsets.

Theorem. Let A be a ring of subsets of X. Let $m : A \to [0, +\infty)$ be an elementary measure. Then there is a measure μ that agrees with m on A.

Theorem. The elementary measure m uniquely determines the measure μ on the σ -ring of subsets generated by A.

Example: When $X = \mathbf{R}$ and A consists of finite unions of intervals (a, b], then the σ -ring of subsets generated by L is the Borel σ -algebra of subsets.

3 The relation between integrals and measures

3.1 Elementary integrals and elementary measures

Suppose A is a ring of subsets of X. Then there is a corresponding Stone vector lattice L consisting of all finite real linear combinations of indicator functions

$$f = \sum_{k=1}^{n} c_k \mathbf{1}_{E_k}$$

of subsets in A.

Suppose $m : A \to [0, +\infty)$ is an elementary measure. Then there is a corresponding elementary integral $m : L \to \mathbf{R}$ defined by

$$m(f) = \sum_{k=1}^{n} c_k m(E_k).$$

Thus the Stone-Daniell theorem on the construction of integrals implies the corresponding theorem on construction of measures. The converse is not true; the Stone vector lattice associated to a ring of subsets is only one special kind of Stone vector lattice. So the Daniell-Stone theorem is stronger.

3.2 Integrals and measures

There is a natural equivalence between σ -rings of subsets and σ -rings of real functions. The real functions in the σ -ring are those functions with the property that the inverse image of every Borel subset B of \mathbf{R} with $0 \notin B$ is in the σ -ring of subsets.

There is a natural equivalence between σ -algebras of subsets and σ -algebras of real functions. The real functions in the σ -algebra are those functions with the property that the inverse image of every Borel subset B of \mathbf{R} is in the σ -algebra of subsets.

There is a natural equivalence between measures on a σ -algebra of subsets and integrals on the corresponding σ -algebra of real functions.

3.3 Terminology

The terms vector lattice and Stone vector lattice are standard. There are various terms for elementary integral, including pre-integral and Daniell integral. Terms such as σ -algebra of real functions are not so common. The usual convention is to refer to functions measurable with respect to a give σ -algebra of subsets. The intrinsic characterization of integral in terms of its properties is also relatively rare; it is more common to think of an integral as being derived from a measure.

The terms *ring* and *algebra* are standard in the context of subsets. An *elementary measure* might also be called a *pre-measure*. However many authors would allow a pre-measure to have values in $[0, +\infty]$. This gives a somewhat more general construction of measure. Terms such as σ -algebra of subsets and measure are standard.