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Chapter 1

Expectation

1.1 Random variables and expectation

This chapter is a brief review of probability. We consider an experiment with a
set Ω of outcomes. A random variable is a function from Ω to R. Thus for each
outcome ω in Ω there is a corresponding experimental number X(ω).

A probability model assigns to each positive random variable X ≥ 0 an
expectation (or mean) E[X] with 0 ≤ E[X] ≤ ∞. If X is a random variable that
is not positive, then it is possible that the expectation is not defined. However, if
E[|X|] <∞, then E[X] is defined, and |E[X]| ≤ E[|X|]. In some circumstances
the expectation will be called the population mean.

The expectation satisfies the following properties.

1. E[aX] = aE[X].

2. E[X + Y ] = E[X] + E[Y ]

3. X ≤ Y implies E[X] ≤ E[Y ].

4. E[c] = c.

The first two properties are called linearity. The third property is the order
property, and the fourth property is normalization.

One more special but very useful class consists of the random variables for
which E[X2] < ∞. We shall see in a moment that for every such random
variable E[|X]]2 ≤ E[X2], so this is included in the class of random variables
for which E[X] is defined. There is a fundamental inequality that is used over
and over, the Schwarz inequality.

Theorem 1.1
|E[XY ]| ≤

√
E[X2]

√
E[Y 2]. (1.1)

Proof:

1



2 CHAPTER 1. EXPECTATION

Use the elementary inequality

±XY ≤ 1
2
a2X2 +

1
2

1
a2
Y 2. (1.2)

By the order property and linearity

±E[XY ] ≤ 1
2
a2E[X2] +

1
2

1
a2
E[Y 2]. (1.3)

If E[X2] > 0, then choose a2 =
√
E[Y 2]/

√
E[X2]. If E[X2] = 0, then by taking

a sufficiently large one sees that ±E[XY ] = 0.

Corollary 1.1
|E[X]| ≤

√
E[X2]. (1.4)

In probability it is common to use the centered random variable X − E[X].
This is the random variable that measures deviations from the expected value.
There is a special terminology in this case. The variance of X is

Var(X) = E[(X − E[X])2]. (1.5)

In the following we shall sometimes call this the population variance. Note the
important identity

Var(X) = E[X2]− E[X]2. (1.6)

There is a special notation that is in standard use. The mean of X is written

µX = E[X]. (1.7)

The Greek mu reminds us that this is a mean. The variance of X is written

σ2
X = Var(X) = E[(X − µX)2]. (1.8)

The square root of the variance is the standard deviation of X. This is

σX =
√
E[(X − µX)2]. (1.9)

The Greek sigma reminds us that this is a standard deviation. If we center the
random variable and divided by its standard deviation, we get the standardized
random variable

Z =
X − µX
σX

. (1.10)

The covariance of X and Y is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]. (1.11)

Note the important identity

Cov(X,Y ) = E[XY ]− E[X]E[Y ]. (1.12)

From the Schwarz inequality we have the following important theorem.
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Theorem 1.2
|Cov(X,Y )| ≤

√
Var(X)

√
Var(Y ). (1.13)

Sometimes this is stated in terms of the correlation coefficient

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
(1.14)

which is the covariance of the standardized random variables. In the following
we shall sometimes call this the population correlation coefficient. The result is
the following.

Corollary 1.2
|ρ(X,Y )| ≤ 1. (1.15)

Perhaps the most important theorem in probability is the following. It is a
trivial consequence of linearity, but it is the key to the law of large numbers.

Theorem 1.3

Var(X + Y ) = Var(X) + 2 Cov(X,Y ) + Var(Y ). (1.16)

Random variables X and Y are said to be uncorrelated if Cov(X,Y ) = 0.
Note that this is equivalent to the identity E[XY ] = E[X]E[Y ].

Corollary 1.3 If X and Y are uncorrelated, then the variances add:

Var(X + Y ) = Var(X) + Var(Y ). (1.17)

1.2 The sample mean

In statistics the sample mean is used to estimate the population mean.

Theorem 1.4 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ.
Let

X̄n =
X1 + · · ·+Xn

n
(1.18)

be their sample mean. Then the expectation of X̄n is

E[X̄n] = µ. (1.19)

Proof: The expectation of the sample mean X̄n is

E[X̄n] = E[
1
n

n∑

i=1

Xi] =
1
n
E[

n∑

i=1

Xi] =
1
n

n∑

i=1

E[Xi] =
1
n
nµ = µ. (1.20)
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Theorem 1.5 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ
and standard deviation σ. Assume that each pair Xi, Xj of random variables
with i 6= j is uncorrelated. Let

X̄n =
X1 + · · ·+Xn

n
(1.21)

be their sample mean. Then the standard deviation of X̄n is

σX̄n =
σ√
n
. (1.22)

Proof: The variance of the sample mean X̄n is

Var(X̄n) = Var(
1
n

n∑

i=1

Xi) =
1
n2

Var(
n∑

i=1

Xi) =
1
n2

n∑

i=1

Var(Xi) =
1
n2
nσ2 =

1
n
σ2.

(1.23)
We can think of these two results as a form of the weak law of large numbers.

The law of large numbers is the “law of averages” that says that averaging
uncorrelated random variable gives a result that is approximately constant. In
this case the sample mean has expectation µ and standard deviation σ/

√
n.

Thus if n is large enough, it is a random variable with expectation µ and with
little variability.

The factor 1/
√
n is both the blessing and the curse of statistics. It is a

wonderful fact, since it says that averaging reduces variability. The problem,
of course, is that while 1/

√
n goes to zero as n gets larger, it does so rather

slowly. So one must somehow obtain a quite large sample in order to ensure
rather moderate variability.

The reason the law is called the weak law is that it gives a statement about
a fixed large sample size n. There is another law called the strong law that gives
a corresponding statement about what happens for all sample sizes n that are
sufficiently large. Since in statistics one usually has a sample of a fixed size n
and only looks at the sample mean for this n, it is the more elementary weak
law that is relevant to most statistical situations.

1.3 The sample variance

The sample mean

X̄n =
∑n
i=1Xi

n
(1.24)

is a random variable that may be used to estimate an unknown population mean
µ. In the same way, the sample variance

s2 =
∑n
i=1(Xi − X̄n)2

n− 1
(1.25)

may be used to estimate an unknown population variance σ2.
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The n − 1 in the denominator seems strange. However it is due to the
fact that while there are n observations Xi, their deviations from the sample
mean Xi − X̄n sum to zero, so there are only n − 1 quantities that can vary
independently. The following theorem shows how this choice of denominator
makes the calculation of the expectation give a simple answer.

Theorem 1.6 Let X1, X2, X3, . . . Xn be random variables, each with mean µ
and standard deviation σ < ∞. Assume that each pair Xi, Xj of random vari-
ables with i 6= j is uncorrelated. Let s2 be the sample variance. Then the
expectation of s2 is

E[s2] = σ2. (1.26)

Proof: Compute
n∑

i=1

(Xi−µ)2 =
n∑

i=1

(Xi−X̄n+X̄n−µ)2 =
n∑

i=1

(Xi−X̄n)2 +
n∑

i=1

(X̄n−µ)2. (1.27)

Notice that the cross terms sum to zero. Take expectations. This gives

nσ2 = E[
n∑

i=1

(Xi − X̄n)2)] + n
σ2

n
. (1.28)

The result then follows from elementary algebra.

1.4 The central limit theorem

Random variables X,Y are called independent if for all functions g and h we
have

E[g(X)h(Y )] = E[g(X)]E[h(Y )]. (1.29)

Clearly independent random variables are uncorrelated. The notion of indepen-
dence has an obvious generalization to more than two random variables.

Two random variables X and Y are said to have the same distribution if
for all functions g we have E[g(X)] = E[g(Y )]. Thus all probability predictions
about the two random variables, taken individually, are the same.

From now on we deal with a standard situation. We consider a sequence
of random variables X1, X2, X3, . . . , Xn. They are assumed to be produced
by repeating an experiment n times. The number n is called the sample size.
Typically we shall assume that these random variables are independent. Further,
we shall assume that they all have the same distribution, that is, they are
identically distributed.

We say that a random variable Z has a standard normal distribution if for
all bounded functions f we have

E[g(Z)] =
∫ ∞
−∞

g(z)
1√
2π

exp(−z
2

2
) dz. (1.30)

It is called standard because it has mean zero and variance 1.
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Theorem 1.7 Let X1, . . . , Xn be independent random variables, all with the
same mean µ and standard deviation σ. Assume that they are identically dis-
tributed. Let X̄n be the sample mean. The standardized sample mean is

Zn =
X̄n − µ
σ/
√
n
. (1.31)

Let g be a bounded piecewise continuous function. Then

E[g(Zn)]→ E[g(Z)] (1.32)

as n→∞, where Z is standard normal.

1.5 Joint distributions of random variables

Let X1, . . . , Xn be random variables. Then the joint distribution of these ran-
dom variables is specified by giving either a continuous density or a discrete
density.

If for all functions g for which the expectation exists we have

E[g(X1, . . . , Xn)] =
∫
· · ·
∫
g(x1, . . . , xn)f(x1, . . . , xn | θ) dx1 · · · dxn, (1.33)

then the random variables have a continuous probability density f(x1, . . . , xn |
θ) with parameter θ.

If for all functions g for which the expectation exists we have

E[g(X1, . . . , Xn)] =
∑
x1

· · ·
∑
xn

g(x1, . . . , xn)f(x1, . . . , xn | θ), (1.34)

then the random variables have a discrete probability density f(x1, . . . , xn | θ)
with parameter θ.

In the case of independent identically distributed random variables the joint
probability density factors:

f(x1, . . . , xn | θ) = f(x1 | θ) · · · f(xn | θ). (1.35)

Example: The exponential distribution is defined by the continuous density

f(x | θ) = θe−θx (1.36)

for x ≥ 0 and f(x | θ) = 0 for x < 0. Here θ > 0 is related to the mean by
µ = 1/θ. It is a typical distribution for a waiting time (in continuous time)
for the next jump. The distribution of X1 + · · · + Xn is then Gamma with
parameters n, θ. It is the waiting time for the nth jump.

Example: The normal distribution is defined by the continuous density

f(x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (1.37)
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The distribution of X1 + · · · + Xn is then normal with mean nµ and variance
nσ2.

Example: The Bernoulli distribution is defined by the discrete density

f(x | p) = px(1− p)1−x (1.38)

for x = 0, 1. Here µ = p. This counts the occurrence of a single success or
failure. The distribution of X1 + · · · + Xn is then binomial. It counts the
number of successes in n independent trials.

Example: The geometric distribution is defined by the discrete density

f(x | p) = p(1− p)x (1.39)

for x = 0, 1, 2, 3, . . .. Here µ = 1
p − 1. This is the distribution of the number

of failures before the first success. The distribution of X1 + · · · + Xn is then
negative binomial. It is the number of failures before the nth success.

Example: The Poisson distribution with mean µ > 0 is defined by the dis-
crete density

f(x | µ) =
µx

x!
e−µ (1.40)

for x = 0, 1, 2, 3, . . .. It is a typical distribution of the number of successes in a
fixed interval of continuous time. The distribution of X1 + · · ·+Xn is Poisson
with mean nµ. It counts the number of successes in n disjoint intervals.

1.6 Problems

1. Consider the experiment of throwing a die n times. The results are
X1, . . . , Xn. Then E[f(Xi)] = 1

6

∑6
k=1 f(k), and the Xi are independent.

Find the mean µ and standard deviation σ of each Xi.

2. Consider the dice experiment. Take n = 25. Find the mean µX̄ of the
sample mean X̄. Find the standard deviation σX̄ of the sample mean X̄.

3. Perform the dice experiment with n = 25 and get an outcome ω. Record
the 25 numbers. Report the sample mean X̄(ω). Report the sample
standard deviation s(ω).

4. Consider independent random variables X1, . . . , Xn. For notational con-
venience, consider the centered random variables Yi = Xi − µ, so that
E[Yi] = 0. Let σ2 = E[Y 2

i ] and q4 = E[Y 4
i ]. Prove that

E[Ȳ 4
n ] =

1
n4

[nq4 + 3n(n− 1)σ4]. (1.41)

5. In the proceeding problem, show that

E[
∞∑

n=k

Ȳ 4
n ] ≤ 1

2
q4 1

(k − 1)2
+ 3σ4 1

(k − 1)
. (1.42)
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In terms of the original Xi this says that there is a constant C such that

E[
∞∑

n=k

(X̄n − µ)4] ≤ C 1
k
. (1.43)

Thus if k is large, then all the sample means X̄n for n ≥ k are likely to
be close to µ, in some average sense. This is a form of the strong law of
large numbers. Compare with the weak law

E[(X̄k − µ)2] = σ2 1
k
, (1.44)

which only shows that, for each fixed k, the sample mean X̄k is very likely
to be close to µ.



Chapter 2

Probability

2.1 Events and probability

Probability is a special case of expectation!
We consider an experiment with a set Ω of outcomes. An event is a subset

of Ω. For each event A, there is a random variable 1A called the indicator of
this event. The value 1A(ω) = 1 if the outcome ω belongs to A, and the value
1A(ω) = 0 if the outcome ω does not belong to A. Thus one scores 1 if the
outcome belongs to A, and one scores zero if the outcome does not belong to
A. The probability of the event is defined by

P [A] = E[1A]. (2.1)

In the following we shall sometimes call the probability of an event the
population proportion. Probability satisfies the following properties:

1. P [Ω] = 1.

2. P [A ∪B] + P [A ∩B] = P [A] + P [B]]

3. A ⊂ B implies P [A] ≤ P [B].

4. P [∅] = 0.

The second properties is additivity. The third property is the order property.
The first and fourth properties are normalizations. They say that the probability
of the sure event Ω is one, while the probability of the impossible event ∅ is zero.

The additivity property is often used in the following form. Say that A, B are
exclusive events if A∩B = ∅. If A, B are exclusive, then P [A∪B] = P [A]+P [B].

Another useful concept is that of complementary event. The event Ac is
defined to consist of all of the outcomes that are not in A. Then by additivity
P [A] + P [Ac] = 1.

Events A, B are said to be independent if P [A ∩B] = P [A]P [B].

9
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In realistic probability problems the set theory language is often replaced by
an equivalent terminology. An event is thought of as a property of outcomes.
The notions of union, intersection, complement are replaced by the logical nota-
tions or, and, not. Thus additivity says that for exclusive events, the probability
that one or the other occurs is the sum of the probabilities. Also, the probability
that an event occurs plus the probability that an event does not occurs is one.
The definition of independent events is that the probability that one event and
the other event occur is the product of the probabilities.

Sometimes the conjunction (the intersection) is represented by a comma.
Thus, for example, the definition of independent events could be written P [A,B] =
P [A]P [B].

If X is a random variable, and S is a set of real numbers, then the event
X ∈ S that X is in S consists of all the outcomes ω such that X(ω) is in S. Let
1S be the indicator function defined on the set of real numbers that is 1 for a
number in S and 0 for a number not in S. Then the indicator function of the
event that X is in S is the random variable 1S(X).

If X and Y are random variables with the same distribution, then for each
set S of real numbers we have P [X ∈ S] = P [Y ∈ S].

If X and Y are independent random variables, then for each pair of sets S, T
of real numbers we have P [X ∈ S, Y ∈ T ] = P [X ∈ S]P [Y ∈ T ].

2.2 The sample proportion

In statistics the sample proportion fn is used to estimate the population pro-
portion p.

Theorem 2.1 Let A1, A2, A3, . . . , An be events, each with probability p. Let
Nn = 1A1 + · · ·+ 1An be the number of events that occur. Let

fn =
Nn
n

(2.2)

be the sample frequency. Then the expectation of fn is

E[fn] = p. (2.3)

Theorem 2.2 Let A1, A2, A3, . . . , An be events, each with probability p. As-
sume that each pair Ai, Aj of events i 6= j are independent. Let Nn = 1A1 +
· · ·+ 1An be the number of events that occur. Let

fn =
Nn
n

(2.4)

be the sample frequency. Then the standard deviation of fn is

σfn =

√
p(1− p)√

n
. (2.5)
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Proof: The variance of 1A1 is p− p2 = p(1− p).
In order to use this theorem, the following remark upper bound on the

standard deviation for one observation is fundamental.

√
p(1− p) ≤ 1

2
. (2.6)

This means that one can figure out an upper bound on the standard deviation
of the sample frequency without knowing the population probability. Often,
because of the central limit theorem, one wants to think of a reasonable bound
on the probable error to be 2 standard deviations. Thus the memorable form
of this result is

2σfn ≤
1√
n
. (2.7)

This is not quite as important, but for many practical problems there is
also a useful lower bound for the standard deviation of one observation. If
1/10 ≤ p ≤ 9/10, then 3/10 ≤

√
p(1− p).

2.3 The central limit theorem

If a random variable Z has a standard normal distribution, the we know the
probability that Z belongs to a given interval. The distribution is symmetric
about zero, so we only need to know the probabilities for intervals of positive
numbers. In particular, P [0 < Z < 1] = .341, P [1 < Z < 2] = .136, while
P [2 < Z] = .023. These sum to P [0 < Z] = .5. If we want to memorize these
numbers to a rough approximation, we can think of them as 34 percent, 13 and
a half percent, and 2 and a half percent. Sometimes it is also useful to know
that [1.645 < Z] = .05 and P [1.96 < Z] = .025.

Recall the central limit theorem. It may be stated in terms of probabilities
as follows.

Theorem 2.3 Let X1, . . . , Xn be independent random variables, all with the
same mean µ and standard deviation σ < ∞. Assume that they are identically
distributed. Let X̄n be the sample mean. The standardized sample mean is

Zn =
X̄n − µ
σ/
√
n
. (2.8)

Then
P [a < Zn < b]→ P [a < Z < b] (2.9)

as n→∞, where Z is standard normal.

It is important to remember in connection with this theorem that P [|Z| >
2] = 0.046 which is approximately 5 percent. So two standard deviations is a
kind of cutoff after which probability gets reasonably small. About 95 percent
of the probability will be between two standard deviations of the mean.
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Events A,B are independent if P [A ∩ B] = P [A]P [B]. The notion of inde-
pendence has a generalization to a set of more than two events: Every subset
of the set must satisfy the product property.

If events A,B are independent, then so are the events A,Bc, and the events
Ac, B, and the events Ac, Bc. So it does not matter whether one works with the
original events or with their complements.

We consider a sequence of random variables A1, A2, A3, . . . , An. The are
assumed to be produced by repeating an experiment n times. The number
n is called the sample size. Typically we shall assume that these events are
independent. Further, we shall assume that they all have the same probability.

Theorem 2.4 Let A1, . . . , An be independent events, all with the same prob-
ability p. Assume that they are identically distributed. Let fn be the sample
proportion. Let

Zn =
fn − p√

p(1− p)/√n. (2.10)

Then
P [a < Zn < b]→ P [a < Z < b] (2.11)

as n→∞.

This theorem is proved by letting Xi = 1Ai and applying the general version
of the central limit theorem. It was historically the first version of the central
limit theorem.
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2.4 Problems

1. Consider the experiment of throwing a die n times. Let Ai be the event
that the ith throw gives a number in the range from 1 to 4. Find the mean
µ and standard deviation σ of the indicator function of each Ai.

2. Consider the same dice experiment. Take n = 50. Find the mean µf of
the sample proportion f . Find the standard deviation σf of the sample
proportion f .

3. Perform the dice experiment with n = 50 and get an outcome ω. Record
the 50 events Ai. Report the sample proportion f(ω).

4. Consider a random sample of size n from a very large population. The
question is to find what proportion p of people in the population have a
certain opinion. The proportion in the sample who have the opinion is f .
How large must n be so that the standard deviation of f is guaranteed to
be no larger than one percent?

5. Consider independent identically distributed random variables X1, . . . , Xn

with finite variance. We know from the weak law of large numbers that

E[(X̄n − µ)2] = σ2 1
n
, (2.12)

Use this to prove that

P [|X̄n − µ| ≥ t] ≤ σ2

nt2
. (2.13)

Thus for large n the probability that the sample mean X̄n deviates from
the population mean µ by t or more is small. This is the weak law of large
numbers.

6. The result of the last problem can also be written

P [|X̄n − µ| ≥ ε σ√
n

] ≤ 1
ε2
. (2.14)

Compare the result obtained from this for ε = 2 with the result obtained
from the central limit theorem. Which gives more useful information for
large n?

7. Consider independent random variables X1, . . . , Xn with finite fourth mo-
ments. We have seen that

E[
∞∑

j=n

(X̄j − µ)4] ≤ C

n
. (2.15)

Show that
P [max

j≥n
|X̄j − µ| ≥ t] ≤ C

nt4
. (2.16)
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Thus for large n the probability that there exists some j ≥ n such that
the sample mean X̄j deviates from the population mean µ by t or more is
small. This is the strong law of large numbers.

8. Let X1 and X2 be the numbers resulting from throwing two dice. Let A
be the event that X1 is odd, let B be the event that X2 is odd, and let C
be the event that X1 +X2 is odd. Show that A,B are independent, A,C
are independent, and B,C are independent. Show that A,B,C are not
independent.



Chapter 3

Estimation

3.1 Estimating means

Each member of a population has some characteristic quantity X. The mean
of this quantity for the whole population is µ. The standard deviation of this
quantity over the whole population is σ. One can think of taking a single ran-
dom member of the population and measuring this quantity X1. Then the
expectation of the random variable X1 is µ, and the standard deviation of X1

is σ. Now consider the experiment of taking a random sample of size n and
measuring the corresponding quantities X1, . . . , Xn. These are to be indepen-
dent random variables. (If the population is small, the sampling is taken to be
with replacement. If the population is very large compared to the sample size,
then it does not matter whether the sampling is with replacement or without
replacement.)

Theorem 3.1 Let X1, X2, X3, . . . , Xn be random variables, each with mean µ.
Let

X̄n =
X1 + · · ·+Xn

n
(3.1)

be their sample mean. Then the expectation of X̄n is

E[X̄n] = µ. (3.2)

Theorem 3.2 (Weak Law of Large Numbers) Let X1, X2, X3, . . . , Xn be inde-
pendent random variables, each with mean µ and standard deviation σ. Let X̄n

be their sample mean. Then the standard deviation of X̄n is

σX̄n =
σ√
n
. (3.3)

For the statistician the µ and σ are unknown. The significance of the above
theorems is that it is reasonable to use the experimental sample mean X̄n to
estimate the unknown population parameter µ, provided that n is large enough.

15
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If n is large enough, then X̄n is quite likely to be near µ. The central limit
theorem gives a rather precise idea of how variable these sample means are.

Theorem 3.3 (Central Limit Theorem) Let X1, . . . , Xn be independent and
identically distributed random variables, each with mean µ and standard devia-
tion σ <∞. Let X̄n be their sample mean. Then the standardized variable

Zn =
X̄n − µ
σ/
√
n

(3.4)

has the property that

lim
n→∞

P [a < Zn < b] = P [a < Z < b], (3.5)

where Z is standard normal.

To estimate the unknown population parameter σ2, define the sample vari-
ance as

s2 =
∑n
i=1(Xi − X̄n)2

n− 1
(3.6)

This is an experimental quantity used to estimate the unknown population
variance σ2.

Theorem 3.4 Let X1, X2, X3, . . . Xn be independent random variables, each
with mean µ and standard deviation σ. Let s2 be the sample variance. Then the
expectation of s2 is

E[s2] = σ2. (3.7)

If the sample size n is large, then s2 will have small variance and be quite
close to σ2. However if the sample size is small, the random variable s2 might
be considerably larger or smaller than σ2. If happens to be considerably smaller
than σ2, that is, unusually close to zero, then it is giving a misleadingly opti-
mistic impression of how well sample means estimate the population mean.

Note: The central limit theorem gives normality of the sample means, but
only for moderately large sample size n. Sometimes the statistician knows (or
optimistically assumes) that the underlying population is normal. This means
that the (Xi − µ)/σ are already standard normal random variables. In this
case the random variable (X̄n − µ)/(σ/

√
n) is automatically normal for every

n. In this case the distribution of s2/σ2 does not depend on µ or on σ. Its
distribution is what is known as χ2

n−1/(n − 1). This is known to have mean 1
and variance 2/(n− 1). If n is larger than about 20 the corresponding standard
deviation is quite small, but if n is smaller than something like 10, the chance
of an abnormally small value of s2 becomes quite significant.
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3.2 Two population means

A very common situation is when one is interested in the difference between
two population means. Say that one population has mean µ1 and the other
population has mean µ2. Then one is interested in µ1−µ2. It seems reasonable
to use the difference of sample means X̄1n1 − X̄2n2 to estimate µ1 − µ2. In
order to see how good a job one is doing with this method, it is useful to know
the standard deviation of the difference of sample means. The variance of the
difference is

Var(X̄1n1 − X̄2n2) =
σ2

1

n1
+
σ2

2

n2
. (3.8)

The standard deviation, the quantity of real interest, is the square root of this
variance. In order to use this result, one needs to know the two population
variances σ2

1 and σ2
2 . If the sample sizes n1 and n2 are large enough, these

may be estimated by the corresponding sample variances for the two samples.
Sometimes there is reason to believe (or hope) that the two population variances
σ2

1 = σ2
2 are the same. In that case one can pool the sample variances. The

usual formula for this is

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 − 1 + n2 − 1
. (3.9)

This should estimate the common variance σ2.

3.3 Estimating population proportions

In statistics the sample proportion fn is used to estimate the population pro-
portion p.

Theorem 3.5 Let A1, A2, A3, . . . , An be events, each with probability p. Let
Nn = 1A1 + · · ·+ 1An be the number of events that occur. Let

fn =
Nn
n

(3.10)

be the sample frequency. Then the expectation of fn is

E[fn] = p. (3.11)

Theorem 3.6 Let A1, A2, A3, . . . , An be events, each with probability p. As-
sume that each pair Ai, Aj of events i 6= j are independent. Let fn be the
sample frequency. Then the standard deviation of fn is

σfn =

√
p(1− p)√

n
. (3.12)

Typically the p that occurs in the square root is unknown. So one estimates
it with fn.
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Theorem 3.7 Let A1, . . . , An be independent events, all with the same prob-
ability p. Assume that they are identically distributed. Let fn be the sample
proportion. Let

Zn =
fn − p√

p(1− p)/√n. (3.13)

Then
lim
n→∞

P [a < Zn < b] = P [a < Z < b], (3.14)

where Z is standard normal.

In some problems one wants to use this result in a situation where the p is
unknown. There is nothing to be done about the p in the numerator, but the p
in the denominator can be estimated by fn. Thus for large n the statistic

Zn =
fn − p√

fn(1− fn)/
√
n

(3.15)

is approximately standard normal.

3.4 Two population proportions

Say that one population has proportion p1 and the other population has propor-
tion p2, and one is interested in p1−p2. It seems reasonable to use the difference
of sample proportions f1n1 − f2n2 to estimate p1− p2. In order to see how good
a job one is doing with this method, it is useful to know the standard deviation
of the difference of sample proportions. The variance of the difference is

Var(f1n1 − f2n2) =
p1(1− p1)

n1
+
p2(1− p2)

n2
. (3.16)

The standard deviation, the quantity of real interest, is the square root of this
variance. In order to use this result, one needs to know the two population
variances p1(1−p1) and p2(1−p2). If the sample sizes n1 and n2 are large enough,
these may be estimated by using f1n1 to estimate p1 and f2n2 to estimate p2.

3.5 Supplement: Confidence intervals

Confidence intervals usually occur in the context of estimation. Suppose we
have a population of numbers with unknown mean µ and unknown standard
deviation σ. Consider a sample X1, . . . , Xn of size n. Then the sample mean
X̄ estimates µ. One often wants to convey an idea of how good this estimate
is. This information is conveyed by σX̄ = σ/

√
n. However the σ that occurs in

this formula is not known. One method is to use the sample standard deviation
s to estimate σ. Then s/

√
n estimates σX̄ = σ/

√
n.
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Let us assume that the sample size n is reasonably large. Then by the central
limit theorem,

Z =
X̄ − µ
σ/
√
n

(3.17)

is approximately standard normal. Since for n large s is probably quite close to
σ, it is also true that

t =
X̄ − µ
s/
√
n

(3.18)

has a distribution that is approximately standard normal. In that case

P [−2 < t < 2] = 0.95, (3.19)

since this is correct for the standard normal distribution.
Let L = X̄ − 2s/

√
n and R = X̄ + 2s/

√
n. Then this is equivalent to saying

P [L < µ < R] = 0.95, (3.20)

since L < µ < R is algebraically equivalent to −2 < t < 2. Thus these two
conditions define the same event. The interval from L to R is called a 95%
confidence interval for the unknown population mean. This is a random interval.
This means that most of the time that statisticians use this procedure they
get an interval that contains the unknown population mean. However about
one time in twenty it does not contain the unknown population mean. The
statistician is of course not aware that this has happened.

It is important to realize that the two numbers L and R contain exactly the
same information as the two numbers X̄ and s/

√
n. This is because we can

go from the estimators to the confidence interval by L = X̄ − 2s/
√
n and R =

X̄ + 2s/
√
n, and we can go back from the confidence interval to the estimators

by X̄ = (R+L)/2 and s/
√
n = (R−L)/4. The confidence interval is a packaging

of the information that is more attractive to some people.
If the sample size n is small and the population is normal, then the statistic

t has the t distribution with n− 1 degrees of freedom. In this case to get a 95%
confidence interval one has to replace the 2 with a slightly larger number a,
depending on n. This is to compensate for the fact that there is an appreciable
chance that s/σ may be considerably smaller than one. Since the s occurs in
the denominator, this gives a chance for somewhat large t values. However this
does not make a huge change. Even though n = 8 is a quite small sample size,
the corresponding value of a is about 2.3, which is not all that different. In any
case, with the proper determination of a the probability that −a < t < a is
0.95. The corresponding 95% confidence interval goes from L = X̄ − as/√n to
R = X̄ + as/

√
n.

3.6 Problems

1. You are given Data Set 3.1 with sample size n drawn from a population
with unknown mean µ and unknown standard deviation σ. The population
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consists of stars, and the measurements are indices of brightness in a
certain frequency range. Estimate µ. Estimate σ. Estimate the standard
deviation of the sample means X̄n in this kind of experiment.

2. You are given Data Set 3.2 with sample size n drawn from a population
divided into successes and failures. The proportion p of successes is un-
known. The population consists of people, and success is having knowledge
of a certain public health measure. Estimate p. Estimate the standard
deviation of the sample proportions fn in this kind of experiment.

3. The chi square distribution is defined to be the distribution of the random
variable χ2

n = Z2
1 + · · ·+Z2

n, where each Zi is standard normal, and where
the Zi are independent. Show that the mean of χ2

n is n and the variance
of χ2

n is 2n.

4. For a normal population (n−1)s2/σ2 has the distribution χ2
n−1. Find the

mean and variance of s2. Show that the variance is small for large n.



Chapter 4

Hypothesis testing

4.1 Null and alternative hypothesis

The philosophy of hypothesis testing is that there is some effect that may or
may not be present. If the effect is not present, then the population parameters
satisfy some special equations. If the effect is present, then these equations no
longer hold. The first case is called the null hypothesis and the second case is
called the alternative hypothesis.

Unfortunately, the experimenter does not know which hypothesis is true.
So one tries to construct a procedure that will make an intelligent guess. The
procedure should be constructed so that if the null hypothesis is true, then with
high probability the experimenter guesses the null hypothesis. On the other
hand, the procedure should also ensure that if the alternative hypothesis is true
(and the equation defining the null hypothesis is rather far from being satisfied),
then with high probability the experimenter guesses the alternative hypothesis.

In general, such a procedure can be found only if the sample size is fairly
large. Otherwise there is an unpleasant tradeoff, so that a procedure that works
well in one situation will work badly in the other situation.

The most common method of approaching this problem is to concentrate on
the null hypothesis. This is largely a matter of convenience. One wants to pick
a procedure that has the property that if the null hypothesis is true, then the
experiment guesses the null hypothesis with at least reasonably high probability.
Then one wants to try to finance a sample large enough so that there is also a
good chance of making a correct decision if the alternative hypothesis is true.

4.2 Hypothesis on a mean

The picture is that there is a very large (theoretically infinite) population. Each
member of the population has some characteristic quantity X. The mean of this
quantity for the whole population is µ. The standard deviation of this quantity
over the whole population is σ.

21
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The null hypothesis is that µ = µ0, where µ0 is some standard value. In
many situations µ0 = 0.

There are several common alternative hypotheses. The two sided alternative
is µ 6= µ0. The one-sided alternatives are µ > µ0 and µ < µ0.

Now consider the experiment of taking a random sample of size n and mea-
suring the corresponding quantities X1, . . . , Xn.

Theorem 4.1 (Central Limit Theorem) Let X1, . . . , Xn be independent and
identically distributed random variables, each with mean µ and standard devi-
ation σ. Let X̄n be their sample mean. Suppose the null-hypothesis µ = µ0 is
true. Then the standardized variable

Zn =
X̄n − µ0

σ/
√
n

(4.1)

has the property that for large n

P [s < Zn < t] ≈ P [s < Z < t], (4.2)

where Z is standard normal.

Now the only trouble with this is that the σ is also an unknown population
parameter. So to understand what one is doing, one has to estimate σ. The
following result tells how to do this. This is done with the sample standard
deviation s. When this is done, it is conventional to call the ratio t instead
of Z. However, under the null hypothesis, for large n the random variable s
will be nearly constant, and the ratio will continue to have the standard normal
distribution. In any case, the test that results is to examine

t =
X̄n − µ0

s/
√
n

(4.3)

For a two-sided test of µ = µ0 against µ 6= µ0, one guesses the null hypothesis if
|t| ≤ a. Here a is a cutoff, often taken to be somewhere near 2. For a one-sided
test, for instance µ = µ0 against µ > µ0, one guesses the null hypothesis if t ≤ b.
Here again b is a chosen cutoff value. A common value is 1.65.

If the sample size is small, then this test has problems. The sample standard
deviation s can then have a significant probability of being rather far from the
population standard deviation. In particular, it can be unusually small. This
makes the assumption that t is normal more dubious.

In this situation it is customary to assume that the individual random vari-
ables Xi are normal. That is, the population is normal. In this case one can do
more explicit computations. Write the test statistic in the form

t =
(X̄ − µ0)/(σ/

√
n)

s/σ
. (4.4)

Under the null hypothesis µ = µ0 the distribution of t is the distribution of Z =
(X̄ − µ0)/(σ/

√
n) divided by s/σ. The numerator Z has the standard normal
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distribution. The random variable (n− 1)s2/σ2 has the χ2
n−1 distribution, the

chi-squared distribution with n−1 degrees of freedom. These distributions only
depend on the sample size n. So the distribution of t only depends on the
sample size n. It is called the t distribution with n− 1 degrees of freedom. The
final result is that for small n this distribution is somewhat more spread out
than the standard normal distribution. This is because the χ2

n−1 distribution
can be considerably smaller than its expected value. This extra spread of the t
distribution for small samples must be taken into account when one computes
the cutoff values. Statistics books contain tables of these values.

But is the population normal? It is nice that even if the population is not
normal, then for a large sample one can use the law of large numbers and the
central limit theorem to compute everything.

4.3 Two means

A very common situation is when the null hypothesis involves two population
means. Often the null hypothesis is µ1 = µ2. Then clearly µ1−µ2 = 0. It seems
reasonable to use the difference of sample means X̄1n1 − X̄2n2 for the test.

In order to see how good a job one is doing with this method, it is useful to
know the standard deviation of the difference of sample means. The variance of
the difference is

Var(X̄1n1 − X̄2n2) =
σ2

1

n1
+
σ2

2

n2
. (4.5)

The standard deviation, the quantity of real interest, is the square root of this
variance.

In order to use this result, one needs to know the two population variances
σ2

1 and σ2
2 . If the sample sizes are reasonably large, then these can be estimated

by the two sample variances. However in some circumstances one knows that
these are the same number σ2. Then there is only one number to estimate, and
one uses the pooled sample variance s2. In this latter case the test statistic is

t =
X̄1n1 − X̄2n2√

s2

n1
+ s2

n2

. (4.6)

Again there are one-sided and two-sided tests.

4.4 Hypothesis on a proportion

In statistics one possible null hypothesis is that the sample proportion p = p0,
some standard value. In many experimental situations p0 = 1/2.

Theorem 4.2 Let A1, . . . , An be independent events, all with the same proba-
bility p. Let fn be the sample proportion. Assume the null hypothesis p = p0 is
true. Let

Zn =
fn − p0√

p0(1− p0)/
√
n
. (4.7)
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Then for large n
P [s < Zn < t] ≈ P [s < Z < t] (4.8)

where Z is standard normal.

4.5 Two proportions

A very common situation is when the null hypothesis is that two population
proportions are equal. Say that one population has proportion p1 and the other
population has proportion p2. Then one the null hypothesis is p1 = p2. It seems
reasonable to use the difference of sample proportions f1n1 − f2n2 to estimate
p1 − p2, which is zero if the null hypothesis is true.

In order to construct the test, it is useful to know the standard deviation of
the difference of sample proportions. The variance of the difference is

Var(f1n1 − f2n2) =
p1(1− p1)

n1
+
p2(1− p2)

n2
. (4.9)

The standard deviation, the quantity of real interest, is the square root of this
variance.

In order to use this result, one needs to know the two population variances
p1(1−p1) and p2(1−p2). Under the null hypothesis, these are the same. There
is only one p. This may be estimated by the pooled sample proportion.

f =
n1f1 + n2f2

n1 + n2
. (4.10)

It follows that the appropriate test statistics is

Z =
f1 − f2√

f(1−f)
n1

+ f(1−f)
n2

. (4.11)

4.6 Independence

The same formulas may be used in a somewhat different situation. This is when
one has events A, B and one wants to test whether they are independent. The
null hypothesis is

P [A,B] = P [A]P [B]. (4.12)

The alternative hypothesis is a violation of this equation.
We take a sample of size n. Then the results are in the form of four numbers

NA,B , NA,Bc , NAc,B , NAc,Bc . Their sum is n, so

NA,B +NA,Bc +NAc,B +NAc,Bc = n (4.13)

and there are only three independent numbers.
Define the conditional probabilities P [A | B] = P [A,B]/P [B] and P [A |

Bc] = P [A,Bc]/P [Bc]. We have the following proposition:
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Theorem 4.3 The correlation between events is related to the difference in
conditional probablities by

P [A,B]− P [A]P [B] = (P [A | B]− P [A | Bc])P [B]P [Bc]. (4.14)

This shows in particular that the null hypothesis can also be stated in the
form

P [A | B] = P [A | Bc]. (4.15)

In fact, under the original null hypothesis both sides are equal to the same
number P [A].

Thus we think instead of taking two samples of random size NB = NA,B +
NAc,B and NBc = NA,Bc + NAc,Bc . The sample frequencies are for A,B and
A,Bc are

fA|B =
NA,B
NB

(4.16)

and
fA|Bc =

NA,Bc

NBc
(4.17)

Under the null hypothesis the estimator of the common conditional probability
is the pooled frequency

fA =
NA
n
, (4.18)

where NA = NA,B +NA,Bc . The test statistic is

Z =
fA|B − fA|Bc√

fA(1− fA)
√

1
NB

+ 1
NBc

. (4.19)

Under the null hypothesis this should be approximately standard normal. Under
the alternative hypothesis values far away from zero are more probable.

It might seem irritating that the test statistic appears not to be symmetric
between A and B. After all the original null hypothesis treated them both on
the same basis.

However the test statistic is symmetric! To see this, merely compute that it
is equal to

Z =
NA,BNAc,Bc −NA,BcNAc,B√

NANAcNBNBc
n

. (4.20)

The numerator is a determinant that measures the dependence between the
columns, or, equally well, between the rows.

4.7 Power

In a test the statistician uses the data to decide for the null hypothesis or to
decide for the alternative hypothesis. The power of the test is the probability
of deciding for the alternative hypothesis. It is a function Power(θ) of the
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unknown population parameter θ. The power is a function that can and should
be computed before the experiment is conducted. It gives an almost complete
story about how the test will generally perform.

In particular, the level of the test is the power when the null hypothesis
θ = θ0 is true. Thus the level is

α = Power(θ0). (4.21)

It is desirable to have the level be a fairly small number. On the other hand,
when the alternative hypothesis is true, it is desirable to have a power near one.
So the goal is to have the power small when θ = θ0, but Power(θ) should rise
rapidly as the parameter deviates from this value.

In general, calculations of power can be complicated, especially when there
are several parameters. However computers can make such calculations feasible.
A prudent statistician will think carefully about power when designing a test.

Example: For simplicity, take the situation when the population mean µ is
unknown, but the population standard deviation σ is known. The null hypoth-
esis is µ = µ0, while the alternative hypothesis is µ > µ0.

Thus there might be an established treatment where the population mean
of the response is µ0 and the population standard deviation is σ. Both these
numbers are known from long experience. A new treatment is attempted, and
this is supposed to raise the mean response to µ. It is assumed that the standard
deviation stays the same. The null hypothesis is that the treatment is ineffective.
The alternative hypothesis is that the treatment actually increases response. If
the alternative hypothesis is true, then one should use the new treatment. If
the null hypothesis is true, then it is not worth the extra expense.

An experiment is done with n individuals, and the sample mean X̄ is mea-
sured. The test statistic is

Z =
X̄ − µ0

σ/
√
n
. (4.22)

This has a standard normal distribution when the null hypothesis is true. The
test is to decide for the alternative hypothesis when the test statistic Z is in
the critical region Z > c. This is equivalent to saying that the sample mean
satisfies X̄ > µ0 + cσ/

√
n. The number c is chosen so that

Pµ0 [Z > c] = Pµ0 [X̄ > µ0 + cσ/
√
n] = α. (4.23)

For example, if α = 0.05, then c = 1.645. The power of the test is

Power(µ) = Pµ[Z > c] = Pµ[X̄ > µ0 + cσ/
√
n]. (4.24)

This may be computed by considering

Z1 =
X̄ − µ
σ/
√
n

(4.25)

which has a standard normal distribution. The power is

Power(µ) = Pµ[X̄ > µ+ cσ/
√
n+ (µ0 − µ)]. (4.26)
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This can also be written

Power(µ) = Pµ[Z1 > c+
µ0 − µ
σ/
√
n

]. (4.27)

Yet another equivalent form is

Power(µ) = Pµ[−Z1 < −c+
µ− µ0

σ/
√
n

] = F (−c+
µ− µ0

σ/
√
n

). (4.28)

Here F is the cumulative distribution function of the standard normal distribu-
tion.

From this we see that the power starts with the value α when µ = µ0.
Thus, for instance, if c = 1.645, then F (−c) = 0.05. The power rises as rises
as µ increases. Say, for instance, that we want a power of at least 0.8. Since
F (0.84) = 0.8, this says that

−1.645 +
µ− µ0

(σ/
√
n)

= 0.84 (4.29)

or
µ− µ0 > 2.49

σ√
n
. (4.30)

In other words, to get this level of power, the alternative µ must be about 2.5
times σ/

√
n above the null µ0.

One can think of this as a requirement of a large enough sample. If it is
important to detect a certain level of effectiveness µ > µ0, then the sample size
must be large enough so that 2.5 times σ/

√
n is less than µ − µ0. If this size

sample is not available, then the test is not adequate to its purpose.
Example: Again take the case when the population mean µ is unknown, but

the population standard deviation σ is known. The null hypothesis is µ = µ0,
while the alternative hypothesis is µ 6= µ0.

The test statistic is

Z =
X̄ − µ0

σ/
√
n
. (4.31)

This has a standard normal distribution when the null hypothesis is true. The
test is to decide for the alternative hypothesis when the test statistic Z is in the
critical region |Z| > c. This is the same as Z > c or Z < −c. In terms of the
sample mean, it says that X̄ > µ0 + cσ/

√
n or X̄ < µ0 − cσ/

√
n. The number

c is chosen so that
Pµ0 [|Z| > c] = α. (4.32)

For example, if α = 0.05, then c = 1.96. The power of the test is

Power(µ) = Pµ[|Z| > c]]. (4.33)

This may be computed by considering

Z1 =
X̄ − µ
σ/
√
n

(4.34)
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which has a standard normal distribution. The power can be written

Power(µ) = Pµ[Z1 > c+
µ0 − µ
σ/
√
n

] + Pµ[Z1 < −c+
µ0 − µ
σ/
√
n

]. (4.35)

Yet another equivalent form is

Power(µ) = F (−c+
µ− µ0

σ/
√
n

) + F (−c+
µ0 − µ
σ/
√
n

). (4.36)

Here F is the cumulative distribution function of the standard normal distribu-
tion.

Say that we want a power of at least 0.8. Since F (−1.96 + 2.8) +F (−1.96−
2.8) = 0.8, this says that |µ− µ0| must be at least 2.8 times σ/

√
n.

Example: Here is an example in the case of a population of successes and
failures. The population proportion p is unknown. The null hypothesis is p =
1/2, while the alternative hypothesis is p > 1/2.

This could arise in a matched pair experiment where one subject in each
pair gets the treatment, and the other is the control. A success is when the
treated subject appears to respond better than the untreated subject. The null
hypothesis is that the treatment is ineffective. The alternative hypothesis is
that the treatment succeeds. An experiment is done with n individuals, and the
sample proportion f is measured. The test statistic is

Z =
f − 1

2

1/(2
√
n)
. (4.37)

If both np and n(1 − p) are considerably larger than one, then this has an
approximate standard normal distribution when the null hypothesis is true.
The test is to decide for the alternative hypothesis when the test statistic Z
is in the critical region Z > c. This is equivalent to saying that the sample
proportion satisfies f > 1/2 + c/(2

√
n). The number c is chosen so that

P 1
2
[Z > c] = P 1

2
[f >

1
2

+ c
1

2
√
n

] = α. (4.38)

The power of the test is

Power(p) = Pp[Z > c] = Pp[f >
1
2

+ c
1

2
√
n

]. (4.39)

This may be computed by considering

Z1 =
f − p√

p(1− p)/√n (4.40)

which has a standard normal distribution. The power is

Power(p) = Pp[f > p+ c
1

2
√
n

+ (
1
2
− p)]. (4.41)
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This can also be written

Power(p) = Pp[Z1 > c
1

2
√
p(1− p) +

1
2 − p√

p(1− p)/√n ]. (4.42)

Yet another equivalent form is

Power(p) = Pp[−Z1 < (−c+ p− 1
2

1/(2
√
n)

)
1

2
√
p(1− p) ] = F ((−c+ p− 1

2

1/(2
√
n)

)
1

2
√
p(1− p) ).

(4.43)
Here F is the cumulative distribution function of the standard normal distribu-
tion.

It turns out that the last factor involving the reciprocal of 2
√
p(1− p) or-

dinarily does not matter too much. This is because for the range of p of main
interest this factor is close to one. Obviously one wants to stay away from p = 0
or p = 1.

To see this, take the example when c = 1.645. Then the power at p = 1/2
is 0.05. Say that we want a p > 1/2 that makes the power 0.8. Then p − 1/2
divided by 1/(2

√
n) times 2

√
p(1− p) is about 2.5. Consider a sample of even

moderate size, such as n = 25. Then 1/(2
√
n) is 0.10, and so if we neglect the

third factor the required p is 0.75 = 3/4. Then
√

(p(1− p) =
√

3/4 = 0.433,
which is not all that different from 1/2. If the sample is larger, say n = 50, then
p = 0.67 = 2/3, and

√
p(1− p) =

√
2/3 = 0.47, which is quite close to 1/2. The

conclusion is that for reasonable sample sizes the power may be approximated
by

Power(p) = F (−c+
p− 1

2

1/(2
√
n)

). (4.44)

In other words, to get a power of 0.8, the alternative p must be about 2.5 times
1/(2
√
n) above the null 1/2. A sample of 100 will have a good chance to detect

a p of 0.625. If it is important to detect a certain proportion p > 1/2, then the
sample size must be large enough so that 2.5 times 1/(2

√
n) is less than p−1/2.

To detect a p of 0.55 requires a sample size at least 625.

4.8 Loss

Often hypothesis testing experiments are considered using the concept of power,
without any explicit concept of loss. However if one is to act on the basis of a
decision for the null or alternative hypothesis, then it may be worth considering
the loss from making an inappropriate decision.

In a hypothesis testing experiment there are two loss functions to consider.
The loss function L(θ, 1) is the loss due to deciding for the alternative hypothesis
when the true parameter value is θ. When θ = θ0 this is the loss from a type I
error.

The loss function L(θ, 0) is the loss due to deciding for the null hypothesis
when the true parameter value is θ. When θ 6= θ0 this is the loss from a type II
error.
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The risk function R(θ) for a particular test is the expected loss when using
that test, as a function of the unknown parameter θ. That is

R(θ) = L(θ, 1)Power(θ) + L(θ, 0)(1− Power(θ)). (4.45)

Risk is to be avoided. That is, one would like the values of this function to
be reasonably small. Sometimes the criterion is to choose the test to make the
maximum risk (as θ varies) as small as possible, but this is not the only possible
strategy.

What is the loss function? Statistics does not give the answer. One must
think about the real world consequences of one actions. In writing a loss func-
tion there must be a balance between realism and simplicity. Here are some
possibilities.

0. The simplest choice is a piecewise constant function. However this choice
is not even continuous.

1. The next simplest choice is a piecewise linear function. This way one can
at least get continuous functions.

2. Perhaps quadratic functions could be convenient. One could take L(θ, 0) =
a(θ − θ0)2 and L(θ, 1) = c− b(θ − θ0)2.

Example: This example is too artificial, but it is instructive. Consider a test
of the null hypothesis µ = µ0 versus the alternative hypothesis µ > µ0. Assume
for convenience of analysis that the value of σ is known. Take the simplest kind
of loss function, piecewise constant.

Thus L(µ, 0) = 0 for µ0 ≤ µ < µ∗ and L(µ, 0) = L0 for µ∗ < µ. This says
that a parameter value between µ0 and µ∗ is so lacking in practical importance
that one does not even mind missing it. But an alternative larger than µ∗ is
vitally important, and missing it by incorrectly guessing the null hypothesis
(type II error) is catastrophic.

Similarly, L(µ, 1) = L1 for µ0 ≤ µ < µ∗ and L(µ, 0) = 0 for µ∗ < µ. This
says that an alternative between µ0 and µ∗ is so lacking in practical importance
that in acting on the alternative hypothesis one is making a costly mistake.
However there is no loss to correctly deciding for the alternative when the pa-
rameter is larger than µ∗.

With this model the risk R(µ) = L1Power(µ) for 0 ≤ µ < µ∗ and is R(µ) =
L0(1− Power(µ)) when µ∗ < µ.

Say that the test is to decide for the alternative if

Z =
X̄ − µ0

σ/
√
n

> c. (4.46)

Equivalently, one decides for the alternative if

X̄ > µ0 + c
σ√
n

(4.47)

The choice of test is determined by the choice of the critical value c. Then
the power is given by

Power(µ) = F (−c+
√
n

σ
(µ− µ0)). (4.48)
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The maximum risk occurs at the point µ∗. This maximum risk may be
minimized by making the risk function continuous at this point. This says that

L1Power(µ∗) = L0(1− Power(µ∗)), (4.49)

which may be solved to give

Power(µ∗) =
L0

L0 + L1
. (4.50)

Say that L0 = 4 and L1 = 1. This says that one is particularly afraid of
making a type II error, missing out on an important alternative. Then the right
hand side of the last equation is 4/5 = 0.8. Since F (0.84) = 0.8, the equation
is equivalent to

−c+
√
n

σ
(µ∗ − µ0) = 0.84 (4.51)

which says that the cutoff for X̄ is

µ0 + c
σ√
n

= µ∗ − 0.84
σ√
n
. (4.52)

Thus when n is large, the cutoff for X̄ is just a small amount under µ∗. This is
sufficient to guard against the large loss L0 = 4 that could be incurred if µ > µ∗,
but it also takes into account the loss L1 = 1 that could happen if µ < µ∗. On
the other hand, when n is small, then one is not getting much information,
and it may be better to be conservative and decide for the alternative in most
situations. After all, one does not have as much to lose this way. It is making
the best of a bad situation.

It is clear that this analysis is rather artificial. On the other hand, one does
learn that the choice of critical point c and the corresponding level α may vary
with sample size. For large sample size, the c is large and the level α is small.
For small sample size it is just the opposite. This is supposed to guard against
the worst possible risk.

4.9 Supplement: P-values

The P -value is a sample statistic that sometimes occurs in the context of hy-
pothesis testing. Say that for instance we have a test of a null hypothesis µ = µ0

against a one-sided alternative µ > µ0. The test statistic is

t =
X̄ − µ0

s/
√
n

(4.53)

If the level of the test is to be α, then under the null hypothesis this statistics
has the appropriate t distribution. So one can calculate a critical value c such
that under the null hypothesis

P [t > c] = α. (4.54)
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The test is then to decide for the null hypothesis if t ≤ c and to decide for the
alternative hypothesis if t > c. If the null hypothesis is true, then the probability
of making an error is α.

If the alternative hypothesis is true, then the t statistic as defined above
does not have the t distribution. This is because the number that is subtracted
from the sample mean is µ0 which is not the true mean µ. If µ is considerably
larger than µ0 and if n is reasonably large, then the probability that t > c is
close to one. Thus under the alternative hypothesis the probability of making
an error is small.

The P-value is a sample statistic defined as follows. Consider an independent
repetition of the experiment, say to be done in the future. Let the test statistic
for this experiment be denoted by t′. One regards this as an experiment for
which the null hypothesis happens to be true. The P value is this probability
under the null hypothesis of a value of t′ in the future experiment that is greater
than the present experimental value of t.

Another way of thinking of this is the following. Let F be the cumulative
probability distribution function for the t distribution. Then for a one-sided
test like this, the P -value is 1−F (t), where the value of t in this formula comes
from the result of the present experiment.

Example: Say n is large, so that under the null hypothesis t has an approx-
imately standard normal distribution. Say that α = 0.05, so the critical value
c = 1.645. The test is to decide for the alternative if t > 1.645. Say that the
experimental value of t is 3.18. Then the decision is for the alternative. The
P-value is the probability that t′ > 2.85, which is a very small number, about
0.002. Notice that the P-value is also an experimental number, since it depends
on the experimental number 2.85. The fact that the P-value is smaller than α
is another way of saying that one should decide for the alternative.

Some people think of a tiny P-value as an indication that an event of very
small probability under the null hypothesis has occured. There are problems
with this view. An event is a question about the experiment, and the question
must be specified in advance. The event that t′ > t(ω) for the future t′ depends
on the experimental value of t(ω), and so does not meet this condition. On
the other hand, there are all sorts of events that have small probability under
the null hypothesis. No matter how the experiment turns out, some of these
improbable events are bound to occur. Example: For each integer k, consider
the event Ak that k/1, 000, 000 < t ≤ (k + 1)/1, 000, 000. Surely one of these
events will occur. Yet each of them has small probability.

Clearly it is necessary to specify events that have some importance. Events
such as t > c that have a better explanation under the alternative hypothesis
are reasonable to consider. But then one is in a framework that goes beyond
small probability under the null hypothesis. The alternative hypothesis comes
explicitly into the picture.

The P-value has the property that a test of level α will decide for the alter-
native precisely when P is less than α. So some statisticians want to think of
the P -value as a measure of the evidence in favor of the alternative. A smaller
P -value is stronger evidence.
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However this point of view is no longer hypothesis testing, at least if one
considers hypothesis testing as making a decision between two courses of action.
It does make some kind of sense, however, if one considers it as estimation.

Here is how to think of P -values in the context of estimation. Consider a
quantity θ that is 1 if the null hypothesis µ = µ0 is true and 0 if the alternative
hypothesis µ > µ0 is true. Say that one wants to use some statistic T to
estimate θ. So θ is either 1 or 0, but which one is unknown. Obviously, if the
null hypothesis is true, then one would like to have the statistic T tend to be
near 1. If the alternative hypothesis is true, then one would like T to be near
0. One would like T to tend to be close to θ in any case. If the evidence is
inconclusive, then a T somewhere near one half is a conservative compromise,
since the distance from θ (which is either 0 or 1) will not be much more than one
half. The P-value is a candidate for such a statistic T . When t is negative, then
the alternative hypothesis begins to look less plausible, and then the P -value
is not too far from 1. When t is very positive, then the alternative hypothesis
begins to look convincing, and correspondingly the P -value gets very close to 0.

This use of the P value can be criticized, however, as naive. For one reason, it
is not clear why one should use 1−F , rather than some other decreasing function
of the test statistic. This particular function does not use any information about
the distribution of the test statistic under the alternative hypothesis. Thus it
misses what would be an important part of any serious analysis.

In some cases it may be better to forget about P-values and deal directly
with estimation. In other cases the proper framework may be a multiple decision
problem. Thus one may have to decide between three actions: decide for the
null hypothesis, decide for the alternative hypothesis, or report a failure to get
conclusive evidence. Each of these actions may have practical consequences. It
is not difficult to extend the ideas of hypothesis testing to this more general
kind of multiple decision problem.

4.10 Problems

Each of these problems is a hypothesis test. For each situation, specify the
null hypothesis and specify the alternative hypothesis. Set up the test so that
if the null hypothesis is true, then the probability of incorrectly rejecting it is
five percent. Specify the test. Perform the test with the data, and describe its
conclusion.

1. Consider an experiment in which n pairs of individuals are carefully matched.
One member of the pair is treated; the other is untreated. A blood sample
in taken from each individual and a certain characteristic is measured. The
data in Data Set 4.1 give the differences of these characteristics (treated
minus untreated). Does the treatment make a difference, one way or the
other?

2. Batteries without additives have average lifetime µ1. Batteries with addi-
tives have average lifetime µ2. Data Set 4.2 involves two samples of size
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n1 and n2. Does this information indicate that µ2 > µ1? [It is natu-
ral to do this test with the usual pooled estimate of standard deviation.
If, however, the lifetimes are regarded as exponentially distributed, then
the population mean and the population standard deviation are equal,
and so the pooled sample mean gives a natural estimate of the standard
deviation.]

3. An experiment was conducted with n pairs of identical twins. One twin
was treated, the other was untreated. A health trait was measured in each
twin. Data Set 4.3 shows the twins for which the treated twin had the
greater value of the health trait. Does the treatment improve health?

4. A television broadcast was intended to inform people of a certain issue.
Let p1 be the proportion of people informed about the issue in an area
without the broadcast. Let p2 be the proportion in an area with the
broadcast. Data Set 4.4 gives samples of sizes n1 and n2. Do the data
indicate that p2 > p1?

5. A survey studied smoking and abnormal hair loss. The sample size was
1200. The number of smokers with abnormal hair loss was 112. The
number of smokers without abnormal hair loss was 325. The number of
non-smokers with abnormal hair loss was 155. The number of non-smokers
without abnormal hair loss was 608. Are smoking and abnormal hair loss
independent?



Chapter 5

Order statistics

5.1 Sample median and population median

The picture is that there is a very large (theoretically infinite) population. Each
member of the population has some characteristic quantity X. Consider a num-
ber α between zero and one. Then there is supposed to be a number tα such
that the proportion of the population for which the X is less than or equal to
tα is α.

One can think of taking a single random member of the population and
measuring this quantity X1. The assumption is that X1 is a continuous ran-
dom variable. Then the cumulative distribution function F (t) = P [X ≤ t] is
continuous. It follows that there is a tα such that F (tα) = α.

There are several common examples. The most important is the value such
that half the population is above this value and half the population is below
this value. Thus when α = 1/2 the corresponding t 1

2
is called the population

median m.
Similarly, when α = 1/4 the t 1

4
is called the lower population quartile. In

the same way, when α = 3/4 the t 3
4

is called the upper population quartile. In
statistics the function F characterizing the population is unknown. Therefore
all these tα are unknown quantities associated with the population.

Now consider the experiment of taking a random sample of size n and mea-
suring the corresponding quantities X1, . . . , Xn. Thus again we have indepen-
dent random variables all with the same distribution. We are assuming that
the distribution is continuous. Thus the probability is one that for all i 6= j the
quantities Xi 6= Xj are unequal.

The order statistics X(1), . . . , X(n) are the quantities obtained by arranging
the random variables X1, . . . , Xn in increasing order. Thus by definition

X(1) < X(2) < · · · < X(i) < · · · < X(n−1) < X(n). (5.1)

The order statistics are no longer independent, as we now see.

35
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The joint density of X1, . . . , Xn is f(x1) · · · f(xn). This product structure is
equivalence to the independence of the random variables. On the other hand,
the joint density of the order statistics X(1), . . . , X(n) is n!f(x1) · · · f(xn) for
x1 < x2 < · · · < xn and zero otherwise. There is no way to factor this. The
order statistics are far from independent.

The order statistics are quite useful for estimation. Take α = i/(n + 1).
Then it seems reasonable to use the order statistics X(i) to estimate tα.

Thus, for instance, if n is odd and i = (n + 1)/2 and α = 1/2, then X(i) is
the sample median. This estimates the population median m = t 1

2
.

The fundamental theorem on order statistics is the following. It shows that
questions about order statistics reduce to questions about binomial random
variables.

Theorem 5.1 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. For each
x, let Nn(x) be the number of i such that Xi ≤ x. Then Nn(x) is a binomial
random variable with parameters n and F (x). Furthermore,

P [X(j) ≤ x] = P [Nn(x) ≥ j]. (5.2)

This result can be stated even more explicitly in terms of the binomial prob-
abilities. In this form it says that if P [Xi ≤ x] = F (x), then

P [X(j) ≤ x] =
n∑

k=j

(
n

k

)
F (x)k(1− F (x))n−k. (5.3)

This theorem is remarkable, in that it gives a rather complete description of
order statistics for large sample sizes. This is because one can use the central
limit theorem for the corresponding binomial random variables.

Theorem 5.2 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. Fix α and
let F (tα) = α. Let n→∞ and let j →∞ so that

√
n(j/n− α)→ 0. Then the

order statistics X(j) is approximately normally distributed with mean

E[X(j)] ≈ tα (5.4)

and standard deviation

σX(j) ≈
√
α(1− α)
f(tα)

√
n
. (5.5)

Proof: Compute

P [X(j) ≤ tα +
a√
n

] = P [
Nn(tα + a√

n
)

n
≥ j

n
]. (5.6)

The random variable has mean α′n = F (tα +a/
√
n) and variance α′n(1−α′n)/n.

So to standardize the random variable we need to subtract α′n and multiply by
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√
n/
√
α′n(1− α′n). So we can use the central limit theorem to write this as the

probability that Z is greater than or equal to j/n−α′n times
√
n/
√
α′n(1− α′n).

Write this as (j/n − α) + (α − α′n) times
√
n/
√
α′n(1− α′n). If we use the

assumption that
√
n(j/n− α)→ 0, we get

P [X(j) ≤ tα +
a√
n

] ≈ P [Z ≥ α− α′n√
α′n(1− α′n)/

√
n

]. (5.7)

However
α′n − α = F (tα +

a√
n

)− F (tα) ≈ f(tα)
a√
n
. (5.8)

So we use this together with αn → α to get

P [X(j) ≤ tα +
a√
n

] ≈ P [Z ≥ − f(tα)a√
α(1− α)

]. (5.9)

In other words,

P [X(j) ≤ tα +
a√
n

] ≈ P [−
√
α(1− α)
f(tα)

Z ≤ a]. (5.10)

This gives the result.

Corollary 5.1 Let X1, . . . , Xn be independent random variables with a common
continuous distribution. Let X(1), . . . , X(n) be their order statistics. Let m be
the population median. Consider sample sizes n that are odd, so that the sample
median Mn = X(n+1

2 ) is defined. Let n → ∞. Then the sample median Mn is
approximately normally distributed with mean

E[Mn] ≈ m (5.11)

and standard deviation
σMn ≈

1
2f(m)

√
n
. (5.12)

5.2 Comparison of sample mean and sample me-
dian

Say that each Xi has density f with population mean

µ =
∫ ∞
−∞

xf(x) dx (5.13)

and population variance

σ2 =
∫ ∞
−∞

(x− µ)2f(x) dx. (5.14)
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Then our tendency is to use the sample mean X̄n to estimate the population
mean µ.

Say that

F (x) =
∫ x

−∞
f(t) dt (5.15)

is the distribution function. Say that m is the population median, so F (m) = 1
2 .

Then our tendency is to use the sample median Mn to estimate the population
median m.

Now say that the density function is symmetric about some point. Then the
population mean is the same as the population median. So the sample mean
and the sample median are both trying to estimate the same quantity. Which
is better?

The relative efficiency of the sample median to the sample mean is found by
seeing which has smaller variance. The smaller the variance, the more efficient
the estimation. The efficiency of the sample median with respect to the sample
mean is the variance of the sample mean divided by the variance of the sample
median. This ratio is

σ2/n

1/(4f(m)2n)
= 4f(m)2σ2. (5.16)

If this ratio is less than one, then the sample mean is a better estimator. If this
ration is greater than one, then the sample median is better.

For the normal distribution f(m) = f(µ) = 1/(
√

2πσ). Thus the relative
efficiency of the sample median to the sample mean is 2/π. This is not particu-
larly good. If a statistician somehow knows that the population distribution is
normal, then the sample mean is the better statistic to use.

However it is quite possible that the density value f(m) > 0 is well away
from zero, but the distribution has long tails so that the σ is huge. Then the
median may be much more efficient than the mean. So in many situations the
median is the safer estimator to use.

Of course, maybe the statistician does not know the size of f(m) or the size
of σ. Some kind of preliminary analysis of the data is then necessary to establish
a preference.

5.3 The Kolmogorov-Smirnov statistic

Say that one has a hypothesis that the population distribution is F and wants
to check it. The following theorem gives a method.

Theorem 5.3 Let X be a random variable with a continuous distribution F .
Then U = F (X) is a uniform random variable.

Theorem 5.4 Let X1, . . . , Xn be independent random variables with the same
continuous distribution. Let X(1), . . . , X(n) be their order statistics. Let U1 =
F (X1), . . . , Un = F (Xn). Then these are independent random variables, each
uniformly distributed in the interval [0, 1]. Their order statistics are U(1) =
F (X(1)), . . . , U(n) = F (X(n)).
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The method is to compute the U(1), . . . , U(i), . . . , U(n) and compare them
with 1/(n + 1), . . . , i/(n + 1), . . . , n/(n + 1). If they are close, then this is a
confirmation of the hypothesis.

There is a famous Kolmogorov-Smirnov statistic that is based on this general
idea. This statistics gives a quantitative measure of the degree to which the order
statistics U(i) = F (X(i)) behave as anticipated by the hypothesis.

In this statistic, the comparison is between the order statistics U(i) and the
numbers (i− 1/2)/n (rather than i/(n+ 1)). The reason for using (i− 1/2)/n
seems technical. The following may provide some motivation. The proportion
of order statistics less than the ith order statistic is (i− 1)/n; the proportion of
order statistics less than or equal to the ith order statistics is i/n. The average
of these two numbers is (i − 1/2)/n. It may not matter all that much which
definition is used, since the random errors are going to be proportional to 1/

√
n,

which is considerably bigger.
Thus the Kolmogorov-Smirnov statistic is defined to be

D =
1

2n
+ max

1≤i≤n

∣∣∣∣F (X(i))−
i− 1

2

n

∣∣∣∣ . (5.17)

The first term is there because the Kolmogorov-Smirnov statistics is usually
defined by a different and perhaps more natural formula, from which this term
emerges after a calculation. Again it should not matter much for large n.

A typical result about the Kolmogorov-Smirnov statistics is that if F is the
distribution function of the Xi, then for moderately large n

P [D >
1.36√
n

] ≤ 0.05. (5.18)

The fact that this is proportional to 1/
√
n is not so surprising, as this is the

usual amount of misalignment of order statistics. This provides a test of whether
the data Xi really come from a population described by F . If so, then large
values of D are unlikely.

5.4 Other goodness of fit statistics

Recall that the Kolmogorov-Smirnov statistic is

D =
1

2n
+ max

1≤i≤n

∣∣U(i) − pi
∣∣ , (5.19)

where pi = (i− 1/2)/n and the random variable U(i) = F (X(i)).
Instead of this, one can use the Cramér-von Mises statistics

W 2 =
1

12n
+

n∑

i=1

(U(i) − pi)2 (5.20)

for a test. This is even more convenient, and in some circumstances the resulting
test has better power. Furthermore, calculations with this statistic tend to
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be relatively simple. If the U(i) are indeed order statistics from a uniform
distribution, then for large n the expectation of W 2 is about 1/6. It may be
shown that the top five percent cutoff is about 0.46. That is, if the order
statistics are really order statistics from a uniform distribution, then P [W 2 >
0.46] ≈ 0.05. This may be used for a test.

Yet another possible choice is the Anderson-Darling statistic. This may be
even better, especially when one wants to detect large deviations in the tails.
This statistic is

A2 = −n− 2
n∑

i=1

[pi log(U(i)) + (1− pi) log(1− U(i))]. (5.21)

Notice that the expression on the right is minimized when each U(i) = pi.
Furthermore, when we expand to second order we see that

A2 ≈ −n− 2
n∑

i=1

[pi log(pi) + (1− pi) log(1− pi)] +
n∑

i=1

(U(i) − pi)2

pi(1− pi) . (5.22)

This shows that this is very much like the Cramér-von Mises statistic, except
that the order statistics near the extremes receive greater emphasis. For large n
the first two terms should cancel. This is because −2

∫ 1

0
[p log p+ (1− p) log(1−

p)] dp = 1. This gives the even more suggestive form

A2 ≈
n∑

i=1

(U(i) − pi)2

pi(1− pi) . (5.23)

It may be shown that for large n the expectation of A2 is about one. This
makes it plausible that the top five percent cutoff is about 2.5. That is, if
the order statistics are really order statistics from a uniform distribution, then
P [A2 > 2.5] ≈ 0.05. This may be used for a test.

5.5 Comparison with a fitted distribution

The Kolmogorov-Smirnov statistic and its relatives are suited for the case when
the null hypothesis is that the underlying population has a given distribution F .
However, often the hypothesis is simply that the underlying population belongs
to a parametric family. For instance, it might be normal, but with unknown µ
and σ.

In such a case, it is tempting to use X̄ and s to estimate µ and σ. Then
one can perform the test with F̂ , the distribution obtained from the X̄ and s
parameters.

It is important to realize that this is going to make these statistics tend to be
smaller, since the data itself was used to defined the distribution with which the
data is compared. Thus one should use such a test with caution. It is necessary
to use tables specially prepared for such a situation. On the other hand, if the
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statistic is big, then this gives rather good evidence that the population does
not belong to the parametric family.

There are many variations on the idea of the Kolmogorov-Smirnov statistic.
As mentioned, it would be possible to compare F (X(i) with i/(n + 1) instead
of with (i − 1/2)/n. Or one could compare X(i) directly with F−1(i/(n + 1)).
In either case one should get something rather close to a straight line.

5.6 Supplement: Uniform order statistics

For uniform random variables it is easy to do explicit computations with the
order statistics. In this case the joint density is n! for x1 < x2 < · · · < xn and
zero otherwise.

Theorem 5.5 Let U1, U2, U3, . . . , Un be independent random variables each uni-
formly distributed on [0, 1]. Let U(1), U(2), U(3), . . . , U(n) be their order statistics.
Then the expectation of U(i) is

E[U(i)] =
i

n+ 1
. (5.24)

Theorem 5.6 Let U1, U2, U3, . . . , Un be independent random variables each uni-
formly distributed on [0, 1. Let U(1), U(2), U(3), . . . , U(n) be their order statistics.
Then the variance of U(i) is

Var(U(i)) =
1

n+ 2
i

n+ 1

(
1− i

n+ 1

)
. (5.25)

Note that if n → ∞ is large and i/(n + 1) → α, then the mean of U(i)

converges to α and n times the variance of U(i) converges to α(1 − α). So this
is consistent with the general picture given before. The nice thing is that one
can do the calculations with fixed n.

We can use these results to obtain a better understanding of some of the
statistics that we have been considering. Consider the Cramér-von Mises statis-
tics

W 2 =
1

12n
+

n∑

i=1

(U(i) − pi)2. (5.26)

We neglect the first term, which is small. Make the crude approximation that
for large n each U(i) has variance pi(1− pi)/n. Then each term has expectation
approximately equal to this quantity. The expectation of W 2 is the sum of these
expectations. If we approximate the sum by an integral, then we get the answer∫ 1

0
p(1− p) dp = 1/6.
The argument is similar for the Anderson-Darling statistic

A2 = −n− 2
n∑

i=1

[pi log(U(i)) + (1− pi) log(1− U(i))]. (5.27)
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Use the large n approximation

A2 ≈
n∑

i=1

(U(i) − pi)2

pi(1− pi) . (5.28)

Then each term has variance about 1/n. Thus the expectation of A2 is about
one.

5.7 Problems

1. For uniform random variables it is easy to do explicit computations with
the order statistics. In this case the joint density is n! for x1 < x2 < · · · <
xn and zero otherwise. Let U1, U2, U3, . . . , Un be independent random
variables each uniformly distributed on [0, 1]. Let U(1), U(2), U(3), . . . , U(n)

be their order statistics. Show that the expectation of U(i) is

E[U(i)] =
i

n+ 1
. (5.29)

2. Data Set 5.1 is a sample of size 49 from a Cauchy distribution with median
m = 100 and scale s = 10. Thus the density is

f(x) = c

(
x−m
s

)
1
s
, (5.30)

where
c(z) =

1
π

1
z2 + 1

. (5.31)

Compute the theoretically the standard deviation of the sample mean.
Compute theoretically the standard deviation of the sample median. Com-
pute the sample mean for the data. Compute the sample median for the
data. How well do they do? How does this compare with the theory?

3. Data Set 5.2 is purported to be a random sample of size 35 from a nor-
mal population with mean 41 and standard deviation 5, but it might be
that this is incorrect. Use the Kolmogorov-Smirnov statistic to test this
hypothesis.



Chapter 6

The bootstrap

6.1 Bootstrap samples

Consider the situation of an independent sample X1, . . . , Xn from some popu-
lation. The statistic θ̂ computed from the sample that is an estimate of some
parameter θ of the population. Thus θ could be the population mean, and θ̂
could be the sample mean. Or θ could be the population median, and θ̂ could
be the sample median. In order to see how well θ̂ estimates θ, it is useful to
know the variance of the random variable θ̂. However in order to do this, one
has to know something about the population.

Nevertheless, there is a general method to estimate the variance of θ̂ from
the sample. This method is known as the bootstrap. The idea of the bootstrap
is to treat the sample as a new population. Thus let X1, . . . , Xn be the sample
values. We think of this as a finite population. We consider the experiment of
taking an ordered random sample with replacement of size n from this finite
population. Thus X∗1 , . . . , X

∗
n are independent random variables, each of which

can take on the value Xi with probability 1/n. That is,

P [X∗i = Xj ] =
1
n
. (6.1)

Once we have the bootstrap sample, then we can compute the corresponding
random variable θ̂∗. Thus θ̂∗ could be the sample mean or the sample median
of the bootstrap sample X∗1 , . . . , X

∗
n. The idea is to use the variance of θ̂∗ (with

X1, . . . , Xn fixed) as an estimate of the variance of θ̂. This variance is called
the ideal bootstrap estimator.

How can one compute the ideal bootstrap estimator? In principle, it is
simple. There are a finite number nn of bootstrap samples, each with probability
1/nn. For each such bootstrap sample, compute the value of θ̂∗. Compute the
mean of these nn numbers. Then compute the mean of the squared deviations
from this mean. This number is the ideal bootstrap estimator. The problem
with this, of course, is that nn is a huge number. Enumerating all the bootstrap
samples in this way is completely impractical, even for moderate sized n.

43
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6.2 The ideal bootstrap estimator

There is one case where one can carry out the computation explicitly. Say that
we are interested in the population mean θ = µ. Consider the case when θ̂ is
the sample mean

θ̂ = X̄ =
∑n
i=1Xi

n
(6.2)

This is the obvious estimate of µ. The variance of this X̄ is known to be σ2/n,
but unfortunately we do not know σ2.

In the context of the bootstrap this sample mean is considered as if it were
a population mean for a finite population. The corresponding variance for this
finite population is

σ̂2 =
∑n
i=1(Xi − X̄)2

n
. (6.3)

Then
θ̂∗ =

X∗1 + · · ·+X∗n
n

(6.4)

is the bootstrap sample mean. In independent sampling, we know that the
variance of such a sample mean is given by the variance of the population
divided by the sample size. This shows that the ideal bootstrap estimator, the
bootstrap variance of θ̂∗ is precisely

Var(θ̂∗) =
σ̂2

n
. (6.5)

This is almost exactly the usual estimate of variance of the sample means. The
only modification is that the denominator is n instead of n − 1. Thus the
bootstrap for this case has given us nothing essentially new.

6.3 The Monte Carlo bootstrap estimator

On the other hand, say that we are interested in the population median θ = m.
The estimator for that case is the sample median θ̂ = M , the middle order
statistic for the sample X1, . . . , Xn.

Each time we take a bootstrap sample X∗1 , . . . , X
∗
n we get a bootstrap sample

median θ̂∗ = M∗. We would like to compute the variance of this random
variable, but this would require summing over all nn samples. There is no
simple formula for the result.

The solution is to use the Monte Carlo method, that is, to take some number
B of bootstrap samples (say a couple hundred), compute the statistic θ̂∗ for each
sample, and then use the sample variance of these numbers to estimate the ideal
bootstrap estimate of variance.

Thus the Monte Carlo bootstrap estimator is obtained as follows. Take the
B bootstrap samples. Compute the sample mean

θ̂∗(·) =
∑B
b=1 θ̂

∗(b)
B

. (6.6)
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and then the sample variance

∑B
b=1(θ̂∗(b)− θ̂∗(·))2

B − 1
. (6.7)

as an estimate of the ideal bootstrap estimator of variance.
This procedure needs a computer, but it is practical. Thus one takes B

random bootstrap samples. For each bootstrap sample one computes its sample
median. This gives B numbers. Then one computes the sample mean and
sample variance of these B numbers. The latter is the Monte Carlo bootstrap
estimator.

There are two sources of error in this procedure. The first was caused by
using the sample X1, . . . , Xn as a way of getting imperfect information about the
population. There is nothing that can be done about this error if these are all the
available data. The second is the error obtained by taking B bootstrap samples
in the Monte Carlo method, rather than looking at all bootstrap samples. This
error can be decreased at will, at the expense of more computer computation,
simply by taking a larger value of B.

The actual computer simulation is fairly simple. You need the original data
points X1, . . . , Xn. You need a random number generator that will generate
the numbers 1, 2, 3, . . . , n with equal probability. One repeats the following
procedure B times. Run the random number generator n times, generating
numbers i1, . . . , in. Pick the data pointsX∗1 = Xi1 , . . . , X

∗
n = Xin corresponding

to these n numbers. (Usually some data points Xi will be picked more than
once, but this is inherent in sampling with replacement, and it is necessary for
the method to work.) Calculate the statistic (median or whatever) from these
X∗1 , . . . , X

∗
n. This calculated value of the statistic is recorded. Then at the end

one uses these B calculated values as the input to a program that computes the
sample mean and sample variance is the usual way. This final sample variance
is the Monte-Carlo bootstrap estimator.

6.4 Supplement: Sampling from a finite popu-
lation

This section records some basic facts about sampling from a finite population.
Say that we have a sample of size n from a population of size m. The bootstrap
is a special case in which we take m = n and sample with replacement.

The first kind of sampling is sampling with replacement. In this case, an
ordered sample is a function f from the set {1, 2, 3, . . . , n} to the population
M of size m. There are mn such samples. Each such sample has the same
probability

P [f ] =
1
mn

. (6.8)

In the case of sampling with replacement, an unordered sample consists of
a function χ from M to the natural numbers such that

∑
p∈M χ(p) = n. This
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function is called an occupation number function. It measures the number of
times each element of the population is selected. The number of occupation
number functions is given by the binomial coefficient

(
m+n−1

n

)
. The number of

ordered samples corresponding to occupation number function is given by the
multinomial coefficient

(
n
χ

)
, where χ is the list of occupation numbers. This

multinomial coefficient may be expressed in terms of binomial coefficients as
(
n

χ

)
=
(

n

χ(1)

)(
n− χ(1)
χ(2)

)(
n− χ(1)− χ(2)

χ(3)

)
· · ·
(
n− χ(1)− χ(2)− · · ·χ(m− 1)

χ(m)

)
.

(6.9)
This is because to choose a function with given occupation numbers, you first
have to choose the χ(1) elements of the index set {1, . . . , n} that go to the
first member of the population, then you have to choose among the remaining
elements n − χ(1) elements of the index set the χ(2) elements that go to the
second member of the population, and then among the remaining n−χ(1)−χ(2)
elements of the index set the χ(3) elements that go to the third member of the
population, and so on. Thus the probability of an unordered sample is

P [χ] =
(
n

χ

)
1
mn

. (6.10)

Notice that these probabilities are not all the same. For each unordered sample,
one has to work out the corresponding multinomial coefficient.

Consider a random variable X for the sampling with replacement experi-
ment. Then its expectation may be computed by the finite sum over ordered
samples

E[X] =
∑

f

X(f)
1
mn

. (6.11)

If the random variable does not depend on the order of the sampling, then it
may also be computed by a finite sum over unordered samples

E[X] =
∑
χ

X(χ)
(
n

χ

)
1
mn

. (6.12)

The second kind of sampling is sampling without replacement. In this case,
an ordered sample is a one-to-one function f from the set {1, 2, 3, . . . , n} to the
population M of size m. There are (m)n = m(m − 1)(m − 2) · · · (m − n + 1)
such samples. Each such sample has the same probability

P [f ] =
1

(m)n
. (6.13)

In the case of sampling without replacement, an unordered sample consists
of a subset χ of M with n elements. This subset consists of the elements of the
population that are selected. The number of subsets is given by the binomial
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coefficient
(
m
n

)
. The number of ordered samples corresponding to each unordered

sample is given by the n!. Thus the probability of an unordered sample is

P [χ] = n!
1

(mn)
=

1(
m
n

) . (6.14)

Consider a random variable X for the sampling without replacement exper-
iment. Then its expectation may be computed by the finite sum over ordered
samples

E[X] =
∑

f

X(f)
1

(m)n
. (6.15)

If the random variable does not depend on the order of the sampling, then it
may also be computed by a finite sum over unordered samples

E[X] =
∑
χ

X(χ)
1(
m
n

) . (6.16)

The bootstrap is the case of sampling with replacement when m = n. Thus
the number of ordered samples is nn. This is huge. However most random
variables that one would want to consider do not depend on the order. There-
fore one can compute the expectation by summing over the unordered samples
and weighting by the corresponding probabilities. There are

(
2n−1
n

)
unordered

samples, which seems considerably less. However this number is asymptotically
(1/
√
πn)22n−1 which is still huge even for moderate n.

Sampling without replacement can be used in a similar way for some statis-
tics problems. One situation is when there are two populations. The null hy-
pothesis is that they are the same. One takes samples of size n1 and n2 from the
two populations. A test statistic is computed in terms of the two samples. If the
null hypothesis were true, then it should not matter which of the n1 + n2 = m
values come from the first population. So to see how variable the test statistic
is under the null hypothesis, one can consider samples without replacement of
size n1 from the m data points. For each such sample the test statistics has
some value. The behavior of the test statistic in this new situation is supposed
to give an indication of what would happen in the original situation, if the null
hypothesis were true. This is sometimes called the permutation test.

6.5 Problems

1. A certain population consists of a large number of fuel containers with
varying amounts of fuel. A sample of size n = 3 was taken and the
sample values were 1, 3, 4. The sample median of 3 is the statistician’s
estimate of the population median for the population of fuel containers.
The statistician wishes to get an estimate of the standard deviation of
the sample medians from the fuel container population in this kind of
experiment. The statistician instead considers random samples of size
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n = 3 with replacement from the population consisting of the date points
1, 3, 4. For each such sample there is a median. Compute the expectation
of the median and the standard deviation of the median. The latter is the
ideal bootstrap estimator.

2. Take B = 10 random samples with replacement from the three sample
values 1, 3, 4. For each such sample there is a median. Calculate the
sample mean and the sample standard deviation of the medians from
these samples. This is the Monte-Carlo bootstrap estimator. Compare
the Monte-Carlo bootstrap estimator with the ideal bootstrap estimator.



Chapter 7

Variance and bias in
estimation

7.1 Risk

A common estimation problem is when there is an unknown population param-
eter θ. One wants to estimate this using data X1, . . . , Xn. The probabilistic
nature of the sample is described by a probability model that depends on θ.
Therefore we want a random variable T that depends on the X1, . . . , Xn such
that no matter what θ is, T is likely to be close to θ.

Say that we measure the loss from making an estimate T that is not com-
pletely accurate by the squared error, so that the loss is (T − θ)2. Then when
one does the experiment, this is a measure of the actual amount of pain inflicted
by not being right on target.

It seems reasonable to try to use a procedure so that the risk, or expected
loss, is small. Thus one would like the procedure to make Eθ[(T − θ)2] small.
This quantity measures the amount of pain in the long run. Of course for any
particular experiment one may have a greater or less loss, but as a measure of
how the procedure is doing this quantity is reasonable.

The risk may be computed in terms of the variance and the bias b(θ) =
Eθ(T )− θ. The formula is

Eθ[(T − θ)2] = Var
θ

(T ) + (Eθ[T ]− θ)2. (7.1)

So in general one wants small variance and small bias.
One method might be to use unbiased estimators. For such an estimator the

risk is just the variance. We now look at some properties of unbiased estimators.
Example 1. Assume that the standard deviation σ is known, and we want to

estimate the mean µ. We take a sample of size n. Say that we use the sample
mean T = X̄. Then X̄ is an unbiased estimate of µ. The risk is the variance
σ2/n and does not depend on µ.

49



50 CHAPTER 7. VARIANCE AND BIAS IN ESTIMATION

On the other hand, one could take T = µ0, independent of the data. Here
µ0 is some guess, or some dictate of authority. For this type of estimator the
risk is all bias. In fact the risk is (µ − µ0)2. This is quite pleasant close to µ0,
but it is huge when µ is far from µ0. Now the point is that one does not know
µ0. So this type of estimator seems unreasonable, though there is no strictly
logical reason for ruling it out. Maybe someone with a strong hunch will ignore
the evidence—and be right after all. But this is not usually a good strategy for
people with a sense of how things can go wrong.

Example 2. Say that the standard deviation σ is known, and we want to
estimate the square of the mean µ2. The expectation of X̄2 is µ2 + σ2/n. So
this is a biased estimator. If we want an unbiased estimate, we would take
X̄2 − σ2/n as the estimate of µ2. However this has a certain absurd feature: It
can give negative results. On the other hand, if we throw away negative results
and replace them by zero, we get less risk, but a biased estimator again. The
biased estimator is clearly better.

Example 3. Now take a normal population. Assume that the mean µ is
known, but the variance σ2 is to be estimated. For this purpose the obvious
estimator is

T =
∑n
i=1(Xi − µ)2

n
. (7.2)

Then nT/σ2 is a χ2
n random variable. A χ2

n random variable has mean n and
variance 2n. So the mean of T is σ2 and the variance of T is 2σ4/n. In particular,
T is an unbiased estimate of σ2. Also, the risk of T is Var(T ) = 2σ4/n. So this
would seem to be a reasonable estimator. This, however is wrong, because one
can decrease the risk without any penalty. Say that one uses the estimator aT .
Then the risk of this is

a2 Var(T ) + (aσ2 − σ2)2 = a2 2σ4

n
+ (a− 1)2σ4. (7.3)

This is minimized when a = n/(n + 2). The constant risk is 2/(n + 2)σ4.
This third example shows rather conclusively that unbiased estimators are not
necessarily desirable!

7.2 Unbiased estimators

In spite of the fact that unbiased estimators may not be particularly good, we
may choose to consider them. It may simply be convenient to do so.

The requirement that T be unbiased is that

Eθ[T ] = θ. (7.4)

Given an unbiased estimator, we want the variance

Var
θ

(T ) = Eθ[(T − θ)2] (7.5)

is as small as possible.



7.2. UNBIASED ESTIMATORS 51

Examples: The sample mean X̄ is an unbiased estimator of µ. The sample
variance s2 is an unbiased estimator of σ2.

Note, however, the following general fact: E[T 2] = E[T ]2 + Var(T ). There-
fore, for a non-constant random variable E[T 2] > E[T ]2. This says that if T is
an unbiased estimator of some parameter, so that Eθ[T ] = θ, then T 2 is not an
unbiased estimator of θ2. In fact, T 2 is biased high, Eθ[T 2] > θ2.

On the other hand, if T ≥ 0 and T 2 is an unbiased estimator of θ2, so that
E[T 2] = θ2, then T is a biased estimate of θ. In fact, it is biased low: Eθ[T ] < θ.

Example: The sample standard deviation s is a biased estimator of the
population standard deviation σ, in fact, E[s] < σ.

In any case, assuming that we have unbiased estimators, we can try to
compare them in the basis of their variance.

Example: Let X be a random variable that is uniform on the interval given
by [µ− c/2, µ+ c/2]. We could use the sample mean X̄ as an estimate of µ. Or
we could use the average (X(1) + X(n))/2 of the two extreme order statistics,
the minimum and the maximum. These are both unbiased estimators of µ.

First we need some computations with order statistics. The mean of the ith
order statistics from a uniform [0, 1] distribution is

E[U(i)] =
i

n+ 1
. (7.6)

The covariance is

Cov(U(i), U(j)) =
1

n+ 2
i

n+ 1

(
1− j

n+ 1

)
. (7.7)

for i ≤ j. Notice that if the mean i/(n+ 1) = α, then the variance is 1/(n+ 2)
times α(1− α). It is thus small near the extreme order statistics.

We can writeX = µ+c(U− 1
2 ) and use this to compute the mean and variance

of X. It follows that the variance of the sample mean is σ2/n = c2/(12n). On
the other hand, the variance of each of the extreme order statistics is given by
c2n/((n + 2)(n + 1)2). Their covariance is even smaller: c2/((n + 2)(n + 1)2).
So the variance of their average is (1/2)c2/((n + 2)(n + 1)). This has an extra
power of n in the denominator! Asymptotically, it is (1/2)c2/n2. So the method
using the minimum and maximum has much smaller risk.

Example: Again, let X be a random variable that is uniform on the interval
[µ−c/2, µ+c/2]. We could use the differenceX(n)−X(1) of the two extreme order
statistics as an estimator of c. This is slightly biased, in that its expectation is
(n − 1)/(n + 1)c. So the bias is −2/(n + 1)c. The variance of the difference is
2c2/((n+ 2)(n+ 1)). The contributions to the risk from the variance and from
the squared bias are both very small.

These example using the uniform distribution are rather singular, since they
depend on the fact that the probability has a very sharp cutoff at a particular
point. This is an unusual feature, and so one can get unusually good results.
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7.3 The Cramér-Rao bound

Now we turn to a more normal situation, where the probability densities are
nicely differentiable with respect to the parameter. The Cramér-Rao bound
shows that in this case the variance of an unbiased estimator is always bounded
below by a constant times 1/n. In addition, one can figure out the constant.

Let X1, . . . , Xn be independent, identically distributed random variables
each with density f(x | θ). This density depends on a population parame-
ter θ. In many contexts we think of the density as a function of the value x
with the parameter θ fixed. However now we want to think of this as a function
of the parameter θ, with the value x fixed. When this point of view is taken,
where f(x | θ) is considered a function of θ, this is called the likelihood func-
tion. The interest of the likelihood functions is that it shows how sensitive the
probabilities of the data are to the population parameter θ.

Consider the function

t1(x | θ) =
∂ log f(x | θ)

∂θ
(7.8)

This is the rate of change of the log likelihood as a function of θ. It measures
how sensitive the probabilities are to a change in the parameter.

Let T1 = t1(X | θ). First note that
∫ ∞
−∞

f(x | θ) dx = 1. (7.9)

If we differentiate this with respect to θ, we obtain

Eθ[T1] =
∫ ∞
−∞

t1(x | θ)f(x | θ) dx = 0. (7.10)

Define the Fisher information

I(θ) = Var
θ

[T1] =
∫ ∞
−∞

(
∂ log f(x | θ)

∂θ

)2

f(x | θ) dx. (7.11)

We have the following identity

I(θ) = −Eθ[∂
2 log f(X | θ)

∂θ2
] = −

∫ ∞
−∞

∂2 log f(x | θ)
∂θ2

f(x | θ) dx. (7.12)

Theorem 7.1 The random variable T1 obtained by inserting the data into the
rate of change of the log likelihood with respect to the parameter has mean zero

Eθ[T1] = 0 (7.13)

and variance
Var
θ

(T1) = I(θ). (7.14)
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Example: Consider a normal population mean µ and standard deviation σ.
Think of σ as known. The problem is to estimate µ. The log likelihood function
is log f(x | µ) = − 1

2 log(2πσ2)−(x−µ)2/(2σ2). The first partial derivative with
respect to µ is (x − µ)/σ2. The negative of the second partial derivative with
respect to µ is 1/σ2. The variance of (X−µ)/σ2 is the same as the expectation
of 1/σ2. This is the Fisher information I(µ) = 1/σ2.

Example: Consider a normal population mean µ and standard deviation σ.
Think of µ as known. The problem is to estimate σ2. The log likelihood function
is log f(x | σ2) = − 1

2 log(2πσ2) − (x − µ)2/(2σ2). The first partial derivative
with respect to σ2 is − 1

2/σ
2 +(x−µ)2/(2σ4). The negative of the second partial

derivative with respect to σ2 is − 1
2/σ

4 + (x − µ)2/σ6. The expectation of this
is 1/(2σ4). This is the Fisher information I(σ2) = 1/(2σ4).

Now we can generalize this all to n variables. The likelihood function

f(x1, x2, . . . , xn | θ) = f(x1 | θ)f(x2 | θ) · · · f(xn | θ) (7.15)

is the joint density of these independent random variables, considered as a func-
tion of the parameter θ.

Let

tn(x1, . . . , xn | θ) =
∂ log f(x1, . . . , xn | θ)

∂θ
(7.16)

be the rate of change of the log likelihood as a function of θ.
Let

Tn = tn(X1, . . . , Xn | θ) (7.17)

be the random variable obtained by inserting the data into the rate of change
of the log likelihood function. Note that

Tn = t1(X1 | θ) + · · ·+ t1(Xn | θ) (7.18)

is a sum of independent random variables. This gives the following theorem.

Theorem 7.2 The random variable Tn obtained by inserting the data into the
rate of change of the log likelihood function with respect to the parameter has
mean zero

Eθ[Tn] = 0 (7.19)

and variance
Var
θ

(Tn) = nI(θ). (7.20)

The Cramér-Rao lower bound is the following theorem.

Theorem 7.3 Let
δ = d(X1, . . . , Xn) (7.21)

be an unbiased estimator of θ, so that

Eθ[δ] = θ. (7.22)

Then
Var
θ

(δ) ≥ 1
nI(θ)

(7.23)
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Proof: Consider the equation that says that δ is unbiased, and differentiate
it with respect to θ. The result is that

Eθ[δ Tn] = 1. (7.24)

Since Tn has mean zero, this is the covariance of δ and Tn. Since the correlation
of δ and Tn is bounded by one, the covariance is bounded by the product of the
standard deviations. Therefore 1 is bounded by the product of the standard
deviations of δ and of Tn. That is, the variance of δ is bounded below by the
variance of Tn.

This theorem shows that if we are interested in unbiased estimators, then we
cannot do better than with an estimator whose variance is exactly 1/(nI(θ)).
However it does not tell us how to find such an estimator. It may well not exist.

Example: For a normal population with known σ the best unbiased estimator
of µ is the sample mean X̄ =

∑
iXi/n. The variance is σ2/n.

Example: For a normal population with known µ the best unbiased estimator
of σ2 is

∑
i(Xi − µ)2/n. The variance is 2σ4/n.

7.4 Functional invariance

Another principle that seems appealing is functional invariance. This principle
says the method of estimation should be chosen so that if T is the estimate of
θ, then f(T ) is the estimate of f(θ).

The following theorem (Jensen’s inequality) will show that the principle of
functional invariance and the principle of unbiased estimation are incompatible.

Theorem 7.4 Let T be a random variable that is not constant. Let f be a
function such that f ′′(t) > 0 for all t. Then

E[f(T )] > f(E[T ]). (7.25)

Proof: Let θ = E[T ]. Then

f(T ) = f(θ) + f ′(θ)(T − θ) +
1
2
f ′′(τ)(T − θ)2, (7.26)

where τ is between θ and T . Take expectations. This gives

E[f(T )] = f(θ) +
1
2
E[f ′′(τ)(T − θ)2]. (7.27)

Since f is strictly convex and T is not constant, the expectation in the second
term must be strictly positive.

This result shows that we need either to give up unbiased estimators or
to give up the principle of functional invariance. We have already seen that
unbiased estimates can give us estimates that have too much risk. We shall see
that the principle of functional invariance can also lead us astray. So we shall
give up both. However in the next chapter we shall see that for large sample
size there is a sense in which one can get approximations to both at once.
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7.5 Problems

1. Consider a population with known mean µ but unknown variance σ2. Take
an independent sample X1, . . . , Xn. Show that the statistic

S2 =
∑n
i=1(Xi − µ)2

n

is an unbiased estimator of σ2.

2. Consider a uniform distribution on the interval from 0 to θ. Take a sam-
ple X of size 1. Find the estimator of the form cX that is an unbiased
estimator of θ.

3. Consider a sequence of independent success-failure trials, with probability
p of success. Let Nn be the number of successes in the first n trials. Let
Tr be the trial on which the rth success occurs. Show that P [Tr = k] =
P [Nk−1 = r− 1]p. Show that (r− 1)/(Tr − 1) is an unbiased estimator of
p. Use this to show that r/Tr is a biased estimator of p. Find the sign of
the bias.

4. Let X1, . . . , Xn be an independent sample from a Poisson population with
mean θ. Show that the sample mean is an unbiased estimator of θ. Com-
pute its variance. Use the Cramér-Rao bound to show that it there is no
unbiased estimator of θ with a smaller variance.

5. Let
f(x | θ) =

1
π

s

s2 + (x− θ)2
(7.28)

be the Cauchy density with unknown center θ and known spread s > 0.
Let X1, . . . , Xn be an independent sample from this distribution. Find
the lower bound for the variance of unbiased estimators of θ.

6. Show that if δ is an estimator of θ with bias b(θ), then its variance has a
lower bound

Var
θ

(δ) ≥ (1 + b′(θ))2

nI(θ)
. (7.29)

When can this lower bound be identically equal to zero?
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Chapter 8

Maximum likelihood
estimation

8.1 The likelihood function

We review the theory of the likelihood function. Let X1, . . . , Xn be independent,
identically distributed random variables each with density f(x | θ). This density
depends on a population parameter θ.

Consider the function

t1(x | θ) =
∂ log f(x | θ)

∂θ
. (8.1)

This is the rate of change of the log likelihood as a function of θ. It measures
how sensitive the probabilities to a change in the parameter.

First note that ∫ ∞
−∞

f(x | θ) dx = 1. (8.2)

If we differentiate this with respect to θ, we obtain

Eθ[t1(X | θ)] =
∫ ∞
−∞

t1(x | θ)f(x | θ) dx = 0. (8.3)

Define the Fisher information

I(θ) = Var
θ

[t1(X | θ)] =
∫ ∞
−∞

(
∂ log f(x | θ)

∂θ

)2

f(x | θ) dx. (8.4)

Let

t′1(x | θ) =
∂2 log f(x | θ)

∂θ2
(8.5)

We have the following identity

I(θ) = −Eθ[t′1(X | θ)] = −
∫ ∞
−∞

∂2 log f(x | θ)
∂θ2

f(x | θ) dx. (8.6)

57
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Theorem 8.1 The random variable T1 obtained by inserting the data into the
rate of change of the log of the density with respect to the parameter has mean
zero

Eθ[T1] = 0 (8.7)

and variance
Var
θ

(T1) = I(θ). (8.8)

Theorem 8.2 The random variable T ′1 obtained by inserting the data into the
second derivative of the log of the density with respect to the parameter has mean
satisfying

−Eθ[T ′1] = I[θ]. (8.9)

Now we can generalize this all to n variables. Let

tn(x1, . . . , xn | θ) =
∂ log f(x1, . . . , xn | θ)

∂θ
(8.10)

be the rate of change of the log likelihood as a function of θ. Let

t′n(x1, . . . , xn | θ) =
∂2 log f(x1, . . . , xn | θ)

∂θ2
(8.11)

Let
Tn = t(X1, . . . , Xn | θ) (8.12)

be the random variable obtained by inserting the data into the rate of change
of the log likelihood function. Note that

Tn = t1(X1 | θ) + · · ·+ t1(Xn | θ) (8.13)

is a sum of independent random variables. Similarly, let

T ′n = t′1(X1) + · · ·+ t′1(Xn) (8.14)

This gives the following theorem.

Theorem 8.3 The random variable Tn obtained by inserting the data into the
rate of change of the log likelihood function with respect to the parameter is a
sum of n independent random variables. It has mean zero

Eθ[Tn] = 0 (8.15)

and variance
Var
θ

(Tn) = nI(θ). (8.16)

Theorem 8.4 The random variable T ′n obtained by inserting the data into the
second derivative of the log likelihood function with respect to the parameter is
a sum of n independent random variables. It has mean satisfying

−Eθ[T ′n] = nI(θ). (8.17)
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8.2 The maximum likelihood estimator

Let X1, . . . , Xn be independent random variables, each with the distribution
f(x | θ) depending on the parameter θ. Recall that the likelihood function

f(x1, . . . , xn | θ) = f(x1 | θ)f(x2 | θ) · · · f(xn | θ) (8.18)

is the joint density of these random variables, considered as a function of the
parameter θ.

For each fixed x1, . . . , xn, let θ̂(x1, . . . , xn) be the value of θ that maximizes
the likelihood function f(x1, . . . , xn | θ). Of course it also maximizes the log
likelihood function. Let us be optimistic and assume that this exists and is
unique and is assumed at an interior point.

Recall that

tn(x1, . . . , xn | θ) =
∂ log f(x1, . . . , xn | θ)

∂θ
(8.19)

is the rate of change of the log likelihood as a function of θ. Then the function
θ̂(x1, . . . , xn) should satisfy

tn(x1, . . . , xn | θ̂(x1, . . . , xn)) = 0. (8.20)

This is because the derivative vanishes at a maximum.
The maximum likelihood estimator is

Θ̂ = θ̂(X1, . . . , Xn). (8.21)

Example: Consider a normal population with known σ. The log likelihood
is log f(X1, . . . , Xn | µ) = −n2 log(2πσ2) −∑i(Xi − µ)2/(2σ2). Its derivative
with respect to µ is

∑
i(Xi − µ)/σ2. If we set this equal to zero and solve for

µ, we get the maximum likelihood estimator µ̂ =
∑
iXi/n = X̄.

Example: Consider a normal population with known µ. The log likelihood
is log f(X1, . . . , Xn | σ2) = −n2 log(2πσ2) −∑i(Xi − µ)2/(2σ2). Its derivative
with respect to σ2 is −n2 /σ2 +

∑
i(Xi − µ)2/(2σ4). If we set this equal to zero

and solve for σ2, we get the maximum likelihood estimator σ̂2 =
∑
i(Xi−µ)2/n.

8.3 Asymptotic behavior of the maximum like-
lihood estimator

We want to argue that for large n the maximum likelihood estimator is about
as good as one can get. So we assume that various technical conditions are
satisfied, including that for each data result the maximum likelihood point is
unique and is an interior point where the derivative is equal to zero. Then it
may be shown that for large sample size the maximum likelihood estimator is
close to the true value of the parameter, with high probability.
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Expand the function

0 = tn(x1, . . . , xn | θ̂(x1, . . . , xn)) ≈ t(x1, . . . , xn | θ)+t′n(x1, . . . , xn | θ)(θ̂(x1, . . . , xn)−θ).
(8.22)

for θ̂(x1, . . . , xn) close to θ.
We can solve this for θ̂(x1, . . . , xn)− θ. We get

θ̂(x1, . . . , xn)− θ ≈ − tn(x1, . . . , xn | θ)
t′n(x1, . . . , xn | θ) . (8.23)

Let Tn and T ′n be as above. Then we get

Θ̂− θ ≈ −Tn
T ′n
. (8.24)

It is more illuminating to write this equation as

Θ̂− θ ≈ −Tn/n
T ′n/n

. (8.25)

The denominator is a sum of independent random variables. Thus for large n
we can use the law of large numbers and approximate −T ′n/n ≈ I(θ). This gives

Θ̂− θ ≈ Tn/n

I(θ)
. (8.26)

The numerator has mean zero and variance I(θ)/n. So the whole expression
has variance given by I(θ)/n divided by I(n)2. Furthermore, the numerator
is a sum of independent random variables, and so for large n is approximately
normal. The conclusion is the following theorem.

Theorem 8.5 Under appropriate technical assumptions, for large n the maxi-
mum liklihood estimator Θ̂ that maximizes f(X1, . . . , Xn | θ) is approximately
normal, approximately unbiased, and has variance approximately equal to the
Cramér-Rao lower bound 1/(nI(θ)).

8.4 Asymptotic theory

The result of this chapter is that for large sample size the maximum likelihood
estimator is approximately optimal. Does this mean that one should use a
maximum likelihood estimator? Certainly not. Just because a method is good
in the limit of large n, it does not mean that it is good for the moderate sample
size n that one is stuck with.

Furthermore, there may be other estimators that are good in the limit of
large n. Typically Baysian estimators have good properties in this limit, and
they also have some desirable properties for small n as well. We shall study
Baysian estimators in the next chapter. Admittedly, they are neither unbiased
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nor do they satisfy the principle of invariance. But there is no fundamental
reason to require either of these properties.

So why the theory of maximum likelihood estimators? There are several rea-
sons. First, many of the traditional estimators are maximum likelihood. Second,
if in a new situation you cannot think of an estimator, this gives something to
try that in many cases is relatively simple to compute. The fact that the prin-
ciple of invariance is satisfied can be quite convenient in finding a maximum
likelihood estimator. But the main reason is a warning: If you are using an
estimator that for large sample size has an asymptotic variance that is a large
multiple of the asymptotic variance for the maximum likelihood estimator, then
maybe you should evaluate what you are doing again.

Example: Consider the Cauchy distribution

f(x | θ) =
1
π

ε

(x− θ)2 + ε2
(8.27)

with unknown median θ and known spread ε > 0. The Fisher information is
I(θ) = 1/(2ε2). So the variance of an unbiased estimator must be bounded
below by 2ε2/n.

The asymptotic variance of the sample median is 1/(4f(θ)2n) = (π2/4)ε2/n.
Now π2/4 is almost 2.47, so there is some loss in efficiency. Perhaps it would
be better to find the maximum likelihood estimator.

This is obtained by differentiating the likelihood function for a sample from
a Cauchy population. The resulting equation is

∂f(x1, . . . , xn | θ)
∂θ

=
2(x1 − θ)

(x1 − θ)2 + ε2
+ · · ·+ 2(xn − θ)

(xn − θ)2 + ε2
= 0. (8.28)

This is a nasty equation to solve for θ. One could do it by implementing an
iterative process for solving nonlinear equations on a computer. Imagine a θ
that is a solution. Then the terms in the equation corresponding to data points
xi that are far from θ are close to zero. The terms in the equation corresponding
to data points xi that are close to θ then each have magnitude about (xi−θ)/ε2.
So the θ solution is, roughly speaking, a sample mean of part of the data, leaving
out the more extreme values. While this estimator is more efficient than the
sample median, the sample median begins to look attractive from the point of
view of convenience.

8.5 Maximum likelihood as a fundamental prin-
ciple

If the method of maximum likelihood is to be a fundamental principle, then it
should well in all circumstances. It is illuminating, then, to look at its behavior
for small samples. This can be rather poor. This can be seen easily for an
example with a sample size n = 1.
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Let us take f(x) to be a fixed probability density with mean zero and variance
one. (For example it could be normal.) Let a > 0 be a fixed number. Let
f0(x | θ) = f((x−θ+a)/σ0 | θ) to be a probability density peaked near x = θ−a.
The parameter σ0 > 0 is taken small. Similarly, f1(x | θ) = f((x−θ−a)/σ1 | θ)
is another probability density peaked near x = θ + a. The parameter σ1 > 0 is
taken even smaller. The density f1(x | θ) is narrower but with a higher peak
than that of f0(x | θ). Let

f(x | θ) = (1− p)f0(x | θ) + pf1(x | θ). (8.29)

Thus the population is a mixture of the 0 population and the 1 population, with
probabilities 1− p and p.

Take p > 0 but very close to zero. Then take σ0 > 0 so small that f0(x | θ)
is very narrow and peaked around θ−a. Then take σ1 > 0 so tiny that f1(x | θ)
is much more narrow and peaked about θ + a, in fact so that the maximum
of pf1(x | θ) is larger than the maximum of (1 − p)f0(x | θ). Consider a
single observation x. The maximum likelihood is assumed when θ = x− a. So
d−(x) = x − a is the maximum likelihood estimator. However we will see that
in many circumstances a reasonable person would prefer to use the estimator
d+(x) = x+ a.

Let us measure the loss by squared error. Then the loss using maximum
likelihood is (d−(x)−θ)2 = (x−a−θ)2. The loss using the competing estimator
is (d+(x)− θ)2 = (x+ a− θ)2. The risk is the expected loss. So the risk for the
maximum likelihood estimator is

r− =
∫

(x−a−θ)2[(1−p)f0(x | θ)+pf1(x | θ)] dx ≈ 4a2(1−p)+02p = 4a2(1−p).
(8.30)

The risk for the competing estimator is

r+ =
∫

(x+ a− θ)2[(1− p)f0(x | θ) + pf1(x | θ)] dx ≈ 02(1− p) + 4a2p = 4a2p

(8.31)
This is a much smaller risk. Certainly the competing estimator is to be prefered.
The overwhelming probability is that the observation x is near θ − a, and then
x+ a is near θ.

Note that this example does not depend critically on the fact that the loss is
measured by squared distance. It would also hold, with suitable modifications,
if we used a loss |d(x)− θ| instead of (d(x)− θ)2.

Remark: The following remark concerns a somewhat unusual circumstance.
In this circumstance the use of the maximum likelihood estimator for the above
example might seem to be preferable. Take ε > 0 to be such an incredibly small
number that it is considerably less than the width of the peak of f1(x | θ). Then
let the loss be zero if |d(x)− θ| < ε and the loss be one if |d(x)− θ| ≥ ε. Then
the risk for the maximum likelihood estimator satisfies

r− = 1−
∫

|x−a−θ|<ε
[(1−p)f0(x | θ)+pf1(x | θ)] dx ≈ 1−pf1(θ+a | θ)ε. (8.32)
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The risk for the competing estimator is

r+ = 1−
∫

|x+a−θ|<ε
[(1− p)f0(x | θ) + pf1(x | θ)] dx ≈ 1− (1− p)f0(θ − a | θ)ε.

(8.33)
In this case the competing estimator has larger risk. However this is due to a
way of measuring loss that rewards only estimates that are extremely precise.
The competing estimator is still making estimates in the right general vicinity,
but usually gets no credit for it. The overwhelming probability is that the
observation x is near θ− a, and then x+ a is near θ. But it is not usually near
enough to be rewarded. There is a tiny probability that the observation x is
extremely close to x + a, but these infrequent observations are almost always
rewarded. This situation seems rather artificial. With more typical measures of
loss in estimation, the competing estimator does much better than maximum
likelihood.

8.6 Problems

1. Consider the exponential density f(x | θ) = θe−θx with parameter θ >
0. Consider an independent sample X1, . . . , Xn of size n. a. Find the
maximum likelihood estimator of θ. b. Find the maximum likelihood
estimator of E[X1].

2. Consider the geometric density f(x | p) = p(1−p)x, where x = 0, 1, 2, 3, . . ..
Let X1, . . . , Xn be a random sample of size n. a. Find the maximum like-
lihood estimator of p. b. Consider rolling a die until a six results. The
number of times before the six results is a geometric random variable with
p = 1/6. Perform the experiment with a sample size n = 20. Give the
estimate of p based on the data.

3. The normal distribution with mean 0 and standard deviation σ is given

by the density f(x | σ) = 1√
2πσ

e−
x2

2σ2 , a. Find the maximum likelihood
estimator of σ based on an independent sample of size n. b. Find the max-
imum likelihood estimator of the variance θ = σ2 based on an independent
sample of size n.

4. Let X1, . . . , Xn be independent random variables, each uniform on the
interval from 0 to θ. Find the maximum likelihood estimator of θ. Hint:
Do not use calculus; go back to the definition of maximum.
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Chapter 9

Bayesian theory

9.1 The Bayesian framework

In Bayesian theory we use a probability distribution on the space of possible
parameters. This distribution π(θ) is called the Bayes prior distribution of the
parameter. Then f(x1, . . . , xn | θ) is regarded as the conditional distribution of
the data, given the parameter. The Bayes joint distribution of the data and the
parameters is random and given by f(x1, . . . , xn | θ)π(θ). Let

f(x1, . . . , xn) =
∫
f(x1, . . . , xn | θ)π(θ) dθ (9.1)

be the Bayes distribution of the data. Finally,

π(θ | x1, . . . , xn) =
f(x1, . . . , xn | θ)π(θ)

f(x1, . . . , xn)
(9.2)

is the Bayes posterior conditional distribution of the parameter, given the data.
The idea is that the data gives more information than is given by the prior
distribution. The posterior distribution is the revised distribution when the
data values are known.

From where does this prior distribution π(θ) arise? This is the big question
about the Bayes theory. However it does no harm to imagine such a distribution
and exploring the consequences of using it.

9.2 Baysian estimation for the mean of a normal
population

The idea of Bayesian estimation is the following. You assign a prior distribution
π(θ). Then you compute the posterior distribution π(θ | x1, . . . , xn) given the
data. The estimator is the mean of this distribution:

d(x1, . . . , xn) = Ex1,...,xn [Θ] =
∫
θπ(θ | x1, . . . , xn) dθ. (9.3)

65
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Then you take the data X1, . . . , Xn, and your estimate is d(X1, . . . , Xn). The
main computational problem is to find the posterior distribution. One common
case is that of a normal distribution.

Theorem 9.1 Suppose that the population distribution is normal with mean θ
and variance σ2. Suppose that the prior distribution π(θ) is normal with mean
µ0 and variance α2. Then the posterior distribution π(θ | x1, . . . , xn) is normal
with mean

E[Θ | x1, . . . , xn] =
σ2/n

σ2/n+ α2
µ0 +

α2

σ2/n+ α2
x̄ (9.4)

and variance
Var(Θ | x1, . . . , xn) =

1
1

σ2/n + 1
α2

. (9.5)

This proves that if the prior distribution of Θ is normal with mean µ0 and
variance α2, and if the population is normal with mean θ and variance σ2, then
the Bayes estimator is

d(X1, . . . , Xn) =
σ2/n

σ2/n+ α2
µ0 +

α2

σ2/n+ α2
X̄. (9.6)

We see that if α2 is very large or n is very large, then the Bayes estimator
is very close to X̄. That is, little prior information or a large sample make
one trust the sample mean obtained from the data. On the other hand, if α2

is small compared with the variance σ2/n of the sample mean, then the prior
information is very useful. One might as well use it and guess something close
to µ0, since the experiment is not doing much to refine your knowledge.

9.3 Probability distributions

There are a number of cases where it is easy to do Bayesian computations.
This will be treated in the next section. First we review some basic probability
distributions.

The normal (or Gaussian distribution) with parameters µ and σ2 has density

f(x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (9.7)

It has mean µ and variance σ2.
The Poisson distribution with parameter λ > 0 is the distribution of natural

numbers with discrete density

f(x | λ) =
λx

x!
e−λ (9.8)

for x = 0, 1, 2, 3, . . .. It has mean λ and variance λ.
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The Gamma distribution with parameters α > 0 and β > 0 is the distribu-
tion of positive real numbers with density

f(x | α, β) =
(βx)α−1

Γ(α)
e−βxβ (9.9)

for x ≥ 0. It has mean α/β and variance α/β2. Often α = n is a natural number.
When α = n = 1 the Gamma distribution is the exponential distribution with
density e−βxβ. In general the Gamma with α = n is the distribution of the sum
of n independent random variables, each with an exponential distribution. The
constant in the denominator is then Γ(n) = (n − 1)!. This case is important,
since it is the case of sampling from an exponential population.

The Chi-squared distribution is a special case of the Gamma distribution.
In fact, the Chi-squared distribution with m degrees of freedom is the Gamma
distribution with parameters α = m/2 and β = 1/2. When α = 1/2 and
β = 1/(2σ2) the Gamma distribution is the distribution of the square of a
normal random variable with mean zero and variance σ2. More generally the
Gamma distribution with α = m/2 and β = 1/(2σ2) is the distribution of the
sum of m independent random variables, each the square of a mean zero normal.

The binomial distribution with parameters n and p has the discrete density

f(x | p) =
(
n

x

)
px(1− p)n−x (9.10)

for x = 0, 1, . . . , n. It has mean np and variance np(1− p). When n = 1 this is
the Bernoulli distribution with density f(x | p) = px(1−p)1−x with x = 0, 1. In
general the binomial is the distribution of the sum of n independent Bernoulli
random variables. So it is the case of sampling from a population of failures
and successes, where one counts the successes with ones.

The negative binomial distribution with parameters n and p has the discrete
density

f(x | p) =
(
n+ x− 1
n− 1

)
pm(1− p)x (9.11)

for x = 0, 1, 2, . . .. It has mean n(1/p)(1 − p) and variance n(1/p2)(1 − p).
When n = 1 the negative binomial distribution is just the geometric distribution
f(x | p) = p(1 − p)x for x = 0, 1, 2, . . .. In general the negative binomial is the
distribution of the sum of n independent geometric random variables. So it
covers sampling from a geometric population.

The Beta distribution with parameters α > 0 and β > 0 has density

f(x | α, β) =
1

B(α, β)
xα−1(1− x)β−1 (9.12)

for 0 ≤ x ≤ 1. It has mean α/(α+β) and variance 1/(α+β+1) times α/(α+β)
times β/(α+ β). The normalization constant B(α, β) = Γ(α)Γ(β)/Γ(α+ β).
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9.4 Prior and posterior distributions

Consider a joint density f(x1, . . . , xn | θ) = f(x1 | θ) · · · f(xn | θ) with parame-
ter θ. Given a prior density π(θ), it is useful to be able to compute the posterior
density

π(θ | x1, . . . , xn) =
f(x1, . . . , xn | θ)π(θ)

f(x1, . . . , xn)
, (9.13)

where f(x1, . . . , xn) is the integral of f(x1, . . . , xn | θ)π(θ) over θ. There are
simple cases when this calculation is easy. Notice that once we have the posterior
distribution, we also immediately have the posterior mean.

Mean of normal Consider the case when f(x | θ, σ2) is the density of a normal
distribution with mean θ and variance σ2. The prior π(θ) is normal with
mean µ0 and variance α2. Then the posterior density is normal with mean

E[θ | x1, . . . , xn] =
σ2/n

σ2/n+ α2
µ0 +

α2

σ2/n+ α2
x̄. (9.14)

and variance
Var(θ | x1, . . . , xn) =

1
1

σ2/n + 1
α2

. (9.15)

Thus the posterior mean is a weighted mean of the prior mean and the
sample mean. Similarly, the posterior variance is the half the harmonic
mean of the prior variance and the variance of the sample mean.

Variance of normal Consider the case when f(x | µ, 1/θ) is the density of
a normal distribution with mean µ and variance 1/θ. The prior π(θ) is
Gamma with parameters α and β. Then the posterior density is Gamma
with parameters α + n/2 and β + ((x1 − µ)2 + · · · + (xn − µ)2)/2. This
has mean

E[Θ | x1, . . . , xn] =
2α+ n

2β + (x1 − µ)2 + · · ·+ (xn − µ)2
=

2
n + 1

α

2
n
β
α + 1

α

∑
(xi−µ)2

n

.

(9.16)
This is the Bayes estimator of the reciprocal of the variance of the normal.
It is a weighed harmonic average of α/β and the estimator n/

∑
i(xi−µ)2

from the sample.

Poisson Consider the case when f(x | θ) is the density of a Poisson distribution
with mean θ. The prior π(θ) is Gamma with parameters α and β. Then
the posterior density is Gamma with parameters α+x1 + · · ·xn and β+n.
This has mean

E[Θ | x1, . . . , xn] =
α+ x1 + · · ·+ xn

β + n
=

1
n
α
β + 1

β x̄
1
n + 1

β

(9.17)

This is the Bayes estimator of the mean of the Poisson. It is a weighted
average of the prior mean α

β and the sample mean x̄ from the data.
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Gamma Consider the case when f(x | ν, θ) is the density of a Gamma dis-
tribution with parameters ν and θ. (This includes the case ν = 1 of
an exponential distribution with parameter θ. It also includes the case
ν = 1/2 of the distribution of the square of a normal with mean zero
and variance 1/(2θ).) The prior π(θ) is Gamma with parameters α and
β. Then the posterior density is Gamma with parameters α + nν and
β + x1 + · · ·+ xn. This has mean

E[Θ | x1, . . . , xn] =
α+ nν

β + x1 + · · ·+ xn
=

1
nν + 1

α
1
nν

β
α + 1

α
x̄
ν

. (9.18)

This is the Bayes estimator of θ. It is a weighted harmonic average of the
α/β and the estimator ν/x̄ from the sample.

Bernoulli Consider the case when f(x | θ) = θx(1 − θ)1−x is the density of
a Bernoulli random variable with mean θ. The prior π(θ) is Beta with
parameters α and β. Then the posterior density is Beta with parameters
α+ x1 + · · ·+ xn and β + n− (x1 + · · ·+ xn). This has mean

E[Θ | x1, . . . , xn] =
α+ x1 + · · ·+ xn

α+ β + n
=

1
n

α
α+β + 1

α+β x̄
1
n + 1

α+β

. (9.19)

This is the Bayes estimator of the parameter θ. It is a weighted average
of the prior probability α/(α+ β) and the sample proportion x̄.

Geometric Consider the case when f(x | θ) = θ(1 − θ)x is the density of
a geometric distribution with parameter θ. The prior π(θ) is Beta with
parameters α and β. Then the posterior density is Beta with parameters
α+ n and β + x1 + · · ·+ xn. This has mean

E[Θ | x1, . . . , xn] =
α+ n

α+ β + n+ x1 + · · ·+ xn
=

1
n + 1

α
1
n
α+β
α + 1

α (1 + x̄)
.

(9.20)
This is the Bayes estimator of the parameter θ. It is the weighted harmonic
average of α/(α+ β) and the estimator 1/(1 + x̄) based on the sample.

9.5 Bayesian estimation of a population propor-
tion

Let us look at one of these examples in more detail. Consider the case when
f(x | θ) = θx(1 − θ)1−x is the density of a Bernoulli random variable with
mean θ. Thus the only possible values of x are 1 and 0, and the corresponding
probabilities are θ and 1− θ. Thus there is a population where the proportion
of successes is θ. The problem is to guess θ from the sample.
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In the Bayesian analysis the prior π(θ) is Beta with parameters α and β.
This says that

π(θ) =
1

B(α, β)
θα−1(1− θ)β−1. (9.21)

Here α > 0 and β > 0. The assumption that this is the distribution of θ is an
assumption that one knows probabilistic information about the populations one
will encounter. The parameter θ is taken to be a continuous random variable.
The mean of this random variable is α/(α + β). So this is prior information
saying that the proportion is somewhere near this value. The variance of this
random variable is 1/(α + β + 1) times α/(α + β) times β/(α + β). So as the
sum α+β gets larger, the variance is getting smaller. This is more certain prior
information.

The posterior density is gotten by taking the product

f(x1 | θ) · · · f(xn | θ)π(θ) = θx1(1−θ)1−x1 · · · θxn(1−θ)1−xn 1
B(α, β)

θα−1(1−θ)β−1

(9.22)
and normalizing. One can see what this has to be by looking at the exponents
of θ and of 1−θ. The posterior density is Beta with parameters α+x1 + · · ·+xn
and β+n− (x1 + · · ·+xn). The effective sample size due to the prior knowledge
and the new data is now α+ β + n.

The posterior density has mean

E[Θ | x1, . . . , xn] =
α+ x1 + · · ·+ xn

α+ β + n
=

1
n

α
α+β + 1

α+β x̄
1
n + 1

α+β

. (9.23)

This is the Bayes estimator of the parameter θ. It is a weighted average of the
prior probability α/(α+ β) and the sample proportion x̄. The weights are 1/n
and 1/(α+ β). So the value of α+ β is analogous to a sample size. It gives an
idea of the amount of prior information.

What shall we do if we have no particular idea of what the prior π(θ) should
be? One idea is to take π(θ) = 1, which corresponds to α = β = 1. In that
case, the estimator is a weighed average of the sample proportion x̄ and 1/2.
The weights are proportional to 1/2 and to 1/n. So for large n this is almost
the usual sample proportion. However this is a significant difference for small n.
In order to guard against the possibility that bad luck would make the sample
frequency close to zero or to one, while the true value of θ was somewhere in
the middle, the estimator avoid the end points. This minimizes the expected
loss, as measured by squared distance.

It is tempting to try to take a Bayes prior that gives something close to the
usual estimator, that is, the sample proportion itself. From the formula, it is
clear that this corresponds to taking α = β and very close to zero. This give
heavy prior weight to the extreme values near zero and one and makes it worth
while making estimates near these values.
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9.6 Problems

1. For each year the probability of x major earthquakes or a certain Island
is given by

f(x | θ) =
θx

x!
e−θ (9.24)

for x = 0, 1, 2, 3, . . .. Here θ > 0 is a parameter. Show that this is a
probability density by explicit summation.

2. Find the mean number of earthquakes in a year. Find the variance of the
number of earthquakes in a year.

3. Consider a sample of n years, treated as independent. Find the joint
density

f(x1, . . . , xn | θ) = f(x1 | θ) · · · f(xn | θ) (9.25)

of the number of earthquakes in each of the years.

4. Find the mean and variance of the sample mean x̄. [This is the frequentist
result.]

5. A Bayesian statistician believes that the number θ is somewhere near a
number θ∗. The statistician thinks that this prior belief is strong enough
to be worth a total of β observations. So the statistician takes the prior
distribution to be a Gamma distribution with parameters α and β, where
α = βθ∗. Thus

π(θ) =
βα

Γ(α)
θα−1e−βθ (9.26)

for θ ≥ 0. Find the mean of this distribution as a function of θ∗. Find its
variance as a function of θ∗ and β.

6. Calculate explicitly f(x1, . . . , xn | θ)π(θ) as a function of θ and show that
it is a multiple of the density of a Gamma distribution with parameters
βθ∗ + x1 + · · ·+ xn and β + n.

7. Find the mean of θ given by the posterior distribution

π(θ | x1, . . . , xn) =
f(x1, . . . , xn | θ)π(θ)∫∞

0
f(x1, . . . , xn | θ)π(θ) dθ

(9.27)

as a weighted mean of θ∗ and x̄ with weights that depend on β and n.
Also find the variance. [This is the Bayesian result.]

8. Consider the situation when n is very large. Then the Bayesian wants to
say that θ is probably close to the experimental x̄. Find an approximate
expression for the posterior mean of θ in terms of x̄. Find an approximate
expression for the posterior variance of θ in terms of x̄ and n. [This is
the Bayesian result when there is a lot of data and the prior no longer
matters.]
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9. It is accepted that the number of earthquakes on the Island is a Poisson
random variable with a certain mean. The statistician has prior beliefs
about this mean based on experience about other islands and on theoreti-
cal ideas. These beliefs are represented by taking the mean of the Poisson
distribution as being itself described by a Gamma distribution with mean
4.5. Furthermore, this belief is worth about two years of data. The statis-
tician then collects five years of data. The data values are 8, 7, 3, 8, 5.
What is the statistician’s posterior distribution for the mean number of
earthquakes, based on the prior beliefs and the data? Give the numerical
values of the parameters.

10. Graph the density of this posterior distribution. [This distribution is the
final product of the Baysian analysis.]



Chapter 10

Decision theory and
Bayesian theory

10.1 Decision theory

We now want to look more generally about how one judges the performance of a
statistical procedure. We consider a population parameter θ which is unknown.
For each value of θ there is a probability distribution f(x1, . . . , xn | θ). One
is allowed to observe the values of random variables X1, . . . , Xn. On this basis
one wants to make a decision.

A decision function is a function d(x1, . . . , xn) to a space of possible actions.
The problem is to choose a suitable function. Then the action taken by the
statistician is d(X1, . . . , Xn). It is determined by the data X1, . . . , Xn and by
the decision function employed by the statistician.

Now to see what a good decision is, one must think of the consequences of
a bad decision. Let L(θ, a) be the loss when the parameter has the value θ and
decision a is taken. One must think carefully about what this loss function.

The actual loss experienced by the statistician is random, and its value is

L(θ, d(X1, . . . , Xn)). (10.1)

Since the statistician does not know θ, the statistician does not know the actual
loss.

However the statistician can evaluate the performance of the procedure d in
the long run by evaluating the risk, or expected loss. This is

R(θ, d) = Eθ[L(θ, d(X1, . . . , Xn))]. (10.2)

This can also be written

R(θ, d) =
∫
· · ·
∫
L(θ, d(x1, . . . , xn)f(x1, . . . , xn | θ) dx1 · · · dxn. (10.3)

73
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For a given procedure d, this is a function of θ. While the actual value of θ is
unknown, this function is known. The fundamental dogma of decision theory is
that one should think hard about this function!

Example: In estimation the action is the value of the parameter that is
guessed on the basis of the data. The loss function is a measure of how far the
guessed value is from the actual value. It is traditional to take the loss function
to be L(θ, a) = (a−θ)2. However this quadratic loss is mainly for mathematical
convenience, since it makes the connection with ideas like variance that are
easily computed. It might be better to try to get a more realistic idea of the loss
function, even if this would complicate the mathematical theory. The decision
function employed by the statistician is a function d(x1, . . . , xn) that takes data
and uses it to estimate the parameter. The risk function for quadratic loss is of
the form

R(θ, d) = Eθ[(d(X1, . . . , Xn)− θ)2]. (10.4)

We have seen previously how this may be decomposed into a variance part and
a bias part.

Example: In hypothesis testing the actions are only two: guess the null
hypothesis, guess the alternative hypothesis. So the loss function amounts to
one function L(θ, 0) that is the loss from guessing the null hypothesis and L(θ, 1)
that is the loss from guessing the alternative hypothesis. Say that the null
hypothesis is that θ = θ0. Then we might take L(θ0, 0) = 0, but L(θ, 0) > 0 for
θ 6= θ0. On the other hand, we might take L(θ0, 1) > 0, but L(θ, 1) < L(θ0, 1)
for θ 6= θ0. The decision function employed by the statistician is a function
d(x1, . . . , xn) whose only possible values are 0 and 1. It divides the set of
possible data into two complementary regions. The region where the decision
function has the value 1 is called the critical region (or rejection region). The
risk function is of the form

R(θ, d) = L(θ, 0)Pθ[d(X1, . . . , Xn) = 0)] + L(θ, 1)Pθ[d(X1, . . . , Xn) = 1].
(10.5)

Notice that

Pθ[d(X1, . . . , Xn) = 0)] + Pθ[d(X1, . . . , Xn) = 1] = 1, (10.6)

so that one needs to know just one of these functions of θ. The function

Pd(θ) = Pθ[d(X1, . . . , Xn) = 1] (10.7)

is called the power function of d. The power function can also be written

Pd(θ) =
∫
· · ·
∫

d(x1,...,xn)=1

f(x1, . . . , xn | θ) dx1 · · · dxn. (10.8)

We can write the risk in term of the power function by

R(θ, d) = L(θ, 0)(1− Pd(θ)) + L(θ, 1)Pd(θ). (10.9)
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10.2 Bayesian decisions

The Bayes decision procedure corresponding to the prior distribution π(θ) is a
procedure that minimizes the average prior risk

∫
R(θ, d)π(θ) dθ =

∫
Eθ[L(θ, d(X1, . . . , Xn))]π(θ) dθ. (10.10)

In many cases this procedure will be unique.

Theorem 10.1 A Bayes procedure corresponding to the prior π(θ) is obtained
by defining for each x1, . . . , xn the decision d(x1, . . . , xn) that minimizes the
average posterior loss

∫
L(θ, d(x1, . . . , xn))π(θ | x1, . . . , xn) dθ. (10.11)

Note that one would get the same result by minimizing
∫
L(θ, d(x1, . . . , xn))f(x1, . . . , xn | θ)π(θ) dθ (10.12)

with fixed data values x1, . . . , xn. Sometimes this form is convenient.
Proof: The average risk is

∫
R(θ, d)π(θ) dθ. =

∫ ∫
L(θ, d(x1, . . . , xn))f(x1, . . . , xn | θ) dx1 · · · dxn π(θ) dθ.

(10.13)
This can also be written
∫
R(θ, d)π(θ) dθ =

∫ ∫
L(θ, d(x1, . . . , xn))π(θ | x1, . . . , xn) dθf(x1, . . . , xn) dx1 · · · dxn.

(10.14)
To make the integral over the data as small as possible, one makes the integrand
as small as possible at each data point.

Example: Consider estimation with quadratic loss. The Bayesian estimator
is then the estimator d(x1, . . . , xn) that minimizes the average posterior loss

∫
(d(x1, . . . , xn)− θ)2π(θ | x1, . . . , xn) dθ. (10.15)

However this is the mean with respect to the posterior distribution:

d(x1, . . . , xn) =
∫
θπ(θ | x1, . . . , xn) dθ. (10.16)

So to perform the estimate, first calculate the posterior distribution given the
data. Then calculate the mean of this distribution.

Example: Let us consider the case of hypothesis testing, where the only deci-
sions are between a null hypothesis and an alternative hypothesis. The decision
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function d(x1, . . . , xn) has values 0 or 1. A Bayes procedure corresponding to the
prior π(θ) is obtained by defining for each x1, . . . , xn the decision d(x1, . . . , xn)
that minimizes the average posterior loss. Therefore, given the data, one com-
putes ∫

L(θ, 0))f(x1, . . . , xn | θ)π(θ) dθ. (10.17)
∫
L(θ, 1)f(x1, . . . , xn | θ)π(θ) dθ. (10.18)

and picks the smaller of the two. This defines the corresponding decision. Thus
the critical region is where the second one is smaller. It is defined by an in-
equality ∫

(L(θ, 0))− L(θ, 1))f(x1, . . . , xn | θ)π(θ) dθ ≥ 0. (10.19)

10.3 Bayesian decisions and risk

Let L(θ, a) be the loss from taking action a when the state of nature is θ.
Let X1, . . . , Xn be random variables whose joint distribution f(x1, . . . , xn | θ)
depends on θ. Let d(x1, . . . , xn) be a decision function. The action of the
statistician using this decision function is then random; it is d(X1, . . . , Xn). The
loss the statistician incurs is also random; it is L(θ, d(X1, . . . , Xn)). The decision
theory risk of this decision function is the expected loss given the parameter
value

R(θ, d) = Eθ[L(θ, d(X1, . . . , Xn))] =
∫
· · ·
∫
L(θ, d(x1, . . . , xn))f(x1, . . . , xn | θ) dx1 · · · dxn.

This is the risk of d as a function of θ.
We say that a decision function d cannot be improved upon if for every other

decision function d′ with R(θ, d′) ≤ R(θ, d) for all θ we have as a consequence
R(θ, d′) = R(θ, d) for all θ. If d cannot be improved on, it does not necessarily
mean that d is “good” in any sense. But it does mean that any attempt to
improve on d that makes smaller risk for some parameter values will make
larger risk for some other parameter values. [In the literature of decision theory
a decision function that cannot be improved on is called “admissible”.]

Let π(θ) be a Bayesian prior distribution on the parameters. Then

r(π, d) =
∫
Eθ[L(θ, d(X1, . . . , Xn))]π(θ) dθ

is the Bayes risk of d with respect to π. The decision function d is Bayes with
respect to π if it minimizes the Bayes risk with respect to π. This says that for
every other decision function d′′ we have r(π, d) ≤ r(π, d′′).

Suppose that the decision function d is Bayes with respect to π. Suppose
that for every decision function d′ that is Bayes with respect to π and such that
R(θ, d′) ≤ R(θ, d) for all θ it follows that R(θ, d′) = R(θ, d) for all θ. Then we
say that d cannot be improved on by a Bayes decision function with the same
prior.
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Theorem 10.2 Suppose that for some π the decision function d is Bayes with
respect to the prior π. Suppose also that d cannot be improved on by a Bayes
decision function with the same prior. Then the decision function d cannot be
improved on.

Proof: Suppose that d is Bayes with respect to π. Suppose that d′ is some
other decision function (not assumed to be Bayes!) with R(θ, d′) ≤ R(θ, d) for
all θ. Then it follows by integration that

r(π, d′) ≤ r(π, d).

Since d is Bayes with respect to π, it follows that for every decision function d′′

r(π, d) ≤ r(π, d′′).

It follows from the last two inequalities that

r(π, d′) ≤ r(π, d′′).

Since d′′ is arbitrary, it follows that d′ is Bayes with respect to π. The hypothesis
says that d cannot be improved on by a Bayes decision function with the same
prior. Thus R(θ, d′) = R(θ, d) for all θ. This shows that d cannot be improved
on.

Note 1. It is possible that for the given π there is only one Bayes decision
function. Then the condition that d cannot be improved on by a Bayes decision
function with the same prior is evident.

Note 2. Also, if the prior assigns strictly positive weight to each parameter
value, so that π(θ) > 0 for each θ, and if the risk functions are continuous in
θ, then the Bayes decision function d with respect to π cannot be improved on
by a Bayes decision function with the same prior. The reason is the following.
Suppose that d′ is another Bayes decision function with the same prior. Then
r(π, d′) = r(π, d). Suppose also that R(θ, d′) ≤ R(θ, d) for all θ. If R(θ, d′) <
R(θ, d) for some θ, then we could integrateR(θ, d′)π(θ) < R(θ, d)π(θ) for these θ
and get r(π, d′) < r(π, d). This would be a contradiction. So R(θ, d′) = R(θ, d)
for all θ.

The conclusion of the above discussion is that typically a a Bayes decision
rule is not completely foolish. This is because the rule works very well against
one possible situation: that in which nature has given us parameter values that
obey the prior distribution π(θ). Of course a particular prior distribution may
be somewhat stupid, but if one admits that it can occur, then one cannot do
better in that situation.

In practice, one might want to try to think of a π(θ) that seems reasonable
and find the corresponding Bayes decision function d(x1, . . . , xn). The one could
look at the corresponding risk function R(θ, d). If this looks satisfactory, then
one might use this procedure, and hope for the best. At least one knows the
risks, and one is not foolishly overlooking something better.
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10.4 Problems

1. Consider a normal distribution f(x | µ) = 1√
2πσ

e−
(x−µ)2

2σ2 with known
standard deviation σ > 0 but unknown mean µ. Suppose a random value
X is to be observed. Calculate the risk function as a function of µ for
estimators of the form cX. Find a minimax estimator in this class of
estimators. Hint: The task is to compute R(µ, c) = Eµ[(cX−µ)2] where X
is normal with mean µ and standard deviation σ. The minimax estimator
is obtained by calculating for each fixed c the maximum value of R(µ, c).
Then try to take c to make this small.

2. Suppose in the previous problem that µ itself is uniformly distributed on
the interval from −a to a. Calculate the mean risk for the estimators cX.
Find the Bayes estimator. Hint: Compute r(a, c) = E[R(µ, c)] where the
R(µ, c) is taken from problem 1 and where the expectation is an integral
over µ. The density of the uniform is 1/(2a) in the interval from −a to
a. The Bayes estimator is obtained by taking c to minimize r(a, c). If a
is much larger than σ, then most of the information will come from the
experiment. So you should get c close to one. On the other hand, if a is
much smaller than σ, then your prior information is very informative, and
you should more or less ignore the experimental data. So you should get
c close to zero.

3. Say that f(x | θ) = 1/θ is the uniform density on the interval 0 ≤ x ≤ θ.
Say that θ itself is distributed according to a prior density π(θ) = β2θe−βθ

for θ > 0. a. Calculate the posterior density f(θ | x). b. Calculate the
Bayes squared error estimator E[θ | x].

4. Consider a random sample of size n from a Poisson distribution with mean
µ. Suppose we are using squared error as our loss function. Assume that
the prior is π(µ) = βe−βµ for µ > 0. Calculate the Bayes estimator of the
unknown µ.



Chapter 11

Testing hypotheses

11.1 Null and alternative hypothesis

In hypothesis testing the actions are only two: guess the null hypothesis, guess
the alternative hypothesis. So the loss function amounts to one function L(θ, 0)
that is the loss from guessing the null hypothesis and L(θ, 1) that is the loss
from guessing the alternative hypothesis. Say that the null hypothesis is that
θ = θ0. Then we might take L(θ0, 0) = 0, but L(θ, 0) > 0 for θ 6= θ0. On the
other hand, we might take L(θ0, 1) > 0, but L(θ, 1) < L(θ0, 1) for θ 6= θ0.

Clearly there is a region of parameters θ where L(θ, 0) < L(θ, 1) where it is
better to guess the null hypothesis, and there is a region where L(θ, 1) < L(θ, 0)
where it is better to guess the alternative hypothesis.

The decision function employed by the statistician is a function d(x1, . . . , xn)
whose only possible values are 0 and 1. It divides the set of possible data into
two regions. The value where the decision function has the value 1 is called the
critical region. The risk function is of the form

R(θ, d) = L(θ, 0)Pθ[d(X1, . . . , Xn) = 0)] + L(θ, 1)Pθ[d(X1, . . . , Xn) = 1].
(11.1)

Notice that

Pθ[d(X1, . . . , Xn) = 0] + Pθ[d(X1, . . . , Xn) = 1] = 1, (11.2)

so that one needs to know just one of these functions of θ. The function

Pd(θ) = Pθ[d(X1, . . . , Xn) = 1] (11.3)

is called the power function of d. The power function can also be written

Pd(θ) =
∫
· · ·
∫

d(x1,...,xn)=1

f(x1, . . . , xn | θ) dx1 · · · dxn. (11.4)

We can write the risk in term of the power function by

R(θ, d) = L(θ, 0)(1− Pd(θ)) + L(θ, 1)Pd(θ). (11.5)

79
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Or, we can write it in the form

R(θ, d) = L(θ, 0) + (L(θ, 1)− L(θ, 0))Pd(θ). (11.6)

The power is the probability of guessing the alternative hypothesis. We see
that if we want a test with small risk, then we want to make the power small
in the region of θ near θ0 where L(θ, 1)−L(θ, 0) > 0, that is, where it is better
to guess the null hypothesis. On the other hand, we want to make the power
large in the complementary region far from θ0 where L(θ, 1)−L(θ, 0) < 0, that
is, where it is better to guess the alternative hypothesis.

Even with a good test it is possible to have bad luck and guess wrong. If θ
is near θ0 and we guess the alternative hypothesis, then we have made a type I
error. The probability of a type I error is denoted by α(θ). Thus α(θ) = Pd(θ)
when θ is near θ0. Sometimes this is called the significance level or size of the
test. If θ is far from θ0 and we guess the null hypothesis, then we have made
a type II error. The probability of a type II error is denoted by β(θ). Thus
β(θ) = 1− Pd(θ) when θ is far from θ0.

11.2 Simple null and alternative hypotheses

One particularly simple situation is when the null hypothesis is θ = θ0 and
the alternative hypothesis is θ = θ1. Then α = Pd(θ0) and β = 1 − Pd(θ1) are
numbers. The risk function is given by R(θ0, d) = L(θ0, 0)+(L(θ0, 1)−L(θ0, 0))α
and by R(θ1, d) = L(θ1, 1) + (L(θ1, 0) − L(θ1, 1))β. The coefficients in front of
α and β are assumed to be each positive. So the real game is to try to make
both α and β small.

This is of course impossible. However there is a systematic way of making
tests that cannot be improved on. This is the content of the following Neyman-
Pearson lemma.

Theorem 11.1 Let k > 0 be a fixed constant. Let d(x1, . . . , xn) be such that

f(x1, . . . , xn | θ1) ≥ kf(x1, . . . , xn | θ0) (11.7)

when d(x1, . . . , xn) = 1 and

f(x1, . . . , xn | θ1) ≤ kf(x1, . . . , xn | θ0) (11.8)

when d(x1, . . . , xn) = 0. Let α = Pθ0 [d(X1, . . . , Xn) = 1] be the probability of
a type I error, and let β = Pθ1 [d(X1, . . . , Xn) = 0] be the probability of a type
II error. Then no other choice of d can decrease kα+ β. In particular, if d′ is
another procedure with α′ ≤ α, then β ≤ β′.

Proof: The indicated choice of d makes

1d(x1,...,xn)=0f(x1, . . . , xn | θ1) + 1d(x1,...,xn)=1kf(x1, . . . , xn | θ0) (11.9)
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minimal. Therefore it makes the integral of this quantity minimal. However the
integral is β + kα.

Example: Consider a normal population with known σ. The null hypothesis
is µ = µ0 and the alternative hypothesis is µ = µ1 > µ0. The condition on the
likelihood ration is that

exp(−
∑n
i=1(xi − µ1)2

2σ2
) ≥ k exp(−

∑n
i=1(xi − µ0)2

2σ2
). (11.10)

This is equivalent to a condition x̄ ≥ a, where a depends on k. So the critical
region is where the sample mean is large.

Example: Consider a normal population with known µ. The null hypothesis
is σ = σ0 and the alternative hypothesis is σ = σ1 < σ0. The condition on the
likelihood ration is that

1
σn1

exp(−
∑n
i=1(xi − µ)2

2σ2
1

) ≥ k 1
σn0

exp(−
∑n
i=1(xi − µ)2

2σ2
0

). (11.11)

This is equivalent to a condition
∑n
i=1(xi − µ)2

n
≤ b, (11.12)

where b depends on k. So the critical region is where this estimate of variance
is small.

11.3 Minimax risk

The Neyman-Pearson lemma gives tests that cannot be bettered, but it does
not tell us which one to use. This depends on the value of the parameter k. To
clarify this issue, one must look at the risk. The risk of the test under the two
hypotheses is

R(θ0, d) = L(θ0, 0)(1− α) + L(θ0, 1)α (11.13)

for the null hypothesis and

R(θ1, d) = L(θ1, 0)β + L(θ1, 1)(1− β) (11.14)

for the alternative hypothesis.
If we are pessimistic, then we may want to look at the maximum risk and try

to minimize it. This is the minimax criterion for making a statistical decision.

Theorem 11.2 Assume that L(θ0, 0) < L(θ0, 1) and L(θ1, 0) > L(θ1, 1). Con-
sider the test described in the Neyman-Pearson lemma. Suppose the risks for the
two possible hypotheses are equal: R(θ1, d) = R(θ0, d). Then this test minimizes
the maximum risk.
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Example: Say that one takes the situation where 0 = L(θ0, 0) < L(θ1, 0)
and 0 = L(θ1, 1) < L(θ0, 1) Thus the loss from a correct decision is zero. Then
the condition that the risks are equal is that

L(θ0, 1)α = L(θ1, 0)β. (11.15)

Say that L(θ0, 1) makes us look silly and gives a loss of 5, while L(θ1, 0) overlooks
an important discovery and gives a loss of 10. Then we should choose α = 2β.
Now we may try various values of α and compute the corresponding value of β.
Maybe when α = 0.3 we have a β = 0.15. Then the risks are 1.5 versus 1.5.
On the other hand, if α = 0.05, then the corresponding β = 0.50. With this
choice the risks are 0.5 and 2.5. Then clearly the traditional choice of α = 0.05
is exposing one to a rather unpleasant risk of a type II error. A statistician
wishing to guard against the worst that nature can provide would be better off
using the level α = 0.3.

11.4 One-sided tests

Now consider the more complicated situation with composite null hypothesis
and alternative hypotheses. For practice we look at the case of a sample from a
normal population with known variance σ2 and unknown mean θ. Let us look
at a somewhat artificial situation where the loss function for fixed decision has
two values. The loss function L(θ, 1) is equal to L(I) > 0 for θ ≤ θ0, and zero
elsewhere. The loss function L(θ, 0) is equal to L(II) > 0 for θ > θ0 and zero
elsewhere. Then the risk of the test is L(I)Pd(θ) for θ ≤ θ0 and L(II)(1−Pd(θ))
for θ > θ0. Say that we take the decision d(x1, . . . , xn) = 1 when x̄ > a. Then
Pd(θ) = Pθ[X̄ > a]. This is increasing with θ. So the greatest possible risk is
either L(1)Pd(θ0) or L(II)(1−Pd(θ0)). We can minimize this by taking choosing
a to make these equal. This give

Pθ0 [X̄ > a] =
L(II)

L(I) + L(II)
. (11.16)

Thus with this minimax procedure the size of the critical region is determined
by the losses. If a type I error is 9 times as embarrassing as a type II error, then
the level of the test should be taken to be 1/10. On the other hand, if one error
looks as bad as the other, then the size of the test should be 1/2, which amounts
to taking a = θ0 as the cutoff point, independent of the sample size. Minimax is
a conservative policy. Consider a pessimist with no prior information about the
parameter, but who must nevertheless make an important practical decision
on the basis of the data. This individual should certainly consider minimax
procedures.

11.5 Bayes tests for simple hypotheses

A Bayes procedure corresponding to the prior π(θ) is obtained by defining for
each x the decision d(x1, . . . , xn) that minimizes the average posterior loss,
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which is ∫
L(θ, d(x1, . . . , xn))f(x1, . . . , xn | θ)π(θ) dθ (11.17)

divided by f(x1, . . . , xn). Therefore, given the data, one computes
∫
L(θ, 0))f(x1, . . . , xn | θ)π(θ) dθ. (11.18)

and ∫
L(θ, 1)f(x1, . . . , xn | θ)π(θ) dθ (11.19)

and picks the smaller of the two. This defines the corresponding decision. Thus
the critical region is where the second one is smaller. It is defined by an in-
equality
∫
L(θ, 1)f(x1, . . . , xn | θ)π(θ) dθ ≤

∫
L(θ, 0)f(x1, . . . , xn | θ)π(θ) dθ. (11.20)

If we think of Θ as a random variable with the posterior distribution, this
criterion says that d(x1, . . . , xn) = 1 when

Ex1,...,xn [L(Θ, 1)] ≤ Ex1,...,xn [L(Θ, 0)]. (11.21)

We can look at all this in the special case of a simple hypothesis and simple
alternative. In this case the prior probabilities π(θ0) and π(θ1) are two numbers
that add to one. The posterior probabilities are then

π(θ0 | x1, . . . , xn) =
f(x1, . . . , xn | θ0)π(θ0)

f(x1, . . . , xn | θ0)π(θ0) + f(x1, . . . , xn | θ1)π(θ1)
(11.22)

and

π(θ1 | x1, . . . , xn) =
f(x1, . . . , xn | θ1)π(θ1)

f(x1, . . . , xn | θ0)π(θ0) + f(x1, . . . , xn | θ1)π(θ1)
(11.23)

For the purpose of the hypothesis test one can ignore the denominator and
compute

L(θ0, 0)f(x1, . . . , xn | θ0)π(θ0) + L(θ1, 0)f(x1, . . . , xn | θ1)π(θ1) (11.24)

and

L(θ0, 1)f(x1, . . . , xn | θ0)π(θ0) + L(θ1, 1)f(x1, . . . , xn | θ1)π(θ1) (11.25)

and the critical region is where the second one of these is smaller. This is
equivalent to saying that

(L(θ1, 0)−L(θ1, 1))f(x1, . . . , xn | θ1)π(θ1) ≥ (L(θ0, 1))−L(θ0, 0))f(x1, . . . , xn | θ0)π(θ0).
(11.26)
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This is the same as the result given by the Neyman-Pearson lemma, in the case
where k is the ratio of (L(θ0, 1)) − L(θ0, 0))π(θ0) to (L(θ1, 0) − L(θ1, 1))π(θ1).
So the value of k is determined by the prior probabilities of the two hypotheses.

The Bayes risk of this decision is the risk averaged with the prior probabili-
ties. This works out to be

r(π, d) = (L(θ0, 0)(1−α) +L(θ0, 1)α)π(θ0) + (L(θ1, 0)β +L(θ1, 1)(1− β))π(θ1)
(11.27)

Example: Say that there is no loss from a correct decision. However L(θ0, 1)
makes us look silly and gives a loss of 5, while L(θ1, 0) overlooks an important
discovery and gives a loss of 10. Now say that we think that the prior probability
of the important discovery is quite low, say π(1) = 0.1. Then we should use
a k equal to 5(0.9) divided by 10(0.1), that is, k = 4.5. This makes it not so
likely that we will announce the alternative hypothesis, unless the evidence is
quite strong. We remain more worried about looking silly, since we do not really
much believe that there is a discovery there to be made in the first place. Only
overwhelming evidence will convince us.

11.6 One-sided Bayes tests

For practice we look at the case of a sample from a normal population with
known variance σ2 and unknown mean θ. In keeping with the Bayes philosophy,
let us assume that θ itself is normally distributed with mean µ0 and variance α2.
Let us look at a somewhat artificial situation where the loss function for fixed
decision has two values. The loss function L(θ, 1) is equal to L(I) > 0 for θ ≤ θ0,
and zero elsewhere. The loss function L(θ, 0) is equal to L(II) > 0 for θ > θ0

and zero elsewhere. Then the posterior risk of the test when d(x1, . . . , xn) = 1
is

L(I)
∫ θ0

−∞
π(θ | x1, . . . , xn) dθ = L(I)Px1,...,xn [Θ ≤ θ0], (11.28)

where Θ is normal with the posterior mean (σ2/nµ0 + α2x̄)/(σ2/n + α2) and
with variance given by the reciprocal of the sum of the reciprocals of σ2/n and
α2. Similarly, the posterior risk of the test when d(x1, . . . , xn) = 0 is

L(II)
∫ ∞
θ0

π(θ | x1, . . . , xn) dθ = L(II)Px1,...,xn [Θ > θ0]. (11.29)

Therefore the critical region consists of all values of x1, . . . , xn such that

L(I)Px1,...,xn [Θ ≤ θ0] ≤ L(II)Px1,...,xn [Θ > θ0]. (11.30)

This is the same as requiring that

Px1,...,xn [Θ ≤ θ0] ≤ L(II)
L(I) + L(II)

. (11.31)
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For simplicity, take the case when α is very large. Then we can think of Θ
as being normally distributed with mean x̄ and variance σ2/n. Then we can
write the condition in the form

P [x̄ ≤ θ0 − (Θ− x̄)] ≤ L(II)
L(I) + L(II)

. (11.32)

Now take a such that

P [a ≤ θ0 − (Θ− x̄)] =
L(II)

L(I) + L(II)
. (11.33)

Since the random variable θ0 − (Θ− x̄) has mean θ0 and variance σ2/n, this is
the critical a that was used before in the non-Bayesian theory. Thus to get a
smaller probability we must have a ≤ x̄. So in the limit α → ∞ the Bayesian
test is the minimax test. This is of course a special feature of the one-sided
testing situation. But it shows that there can be very different ways of thinking
about the same problem that lead to the same solution.

11.7 p values

Say that we have a one-sided hypothesis test situation, so that the decision is
either for the null hypothesis θ ≤ θ0 or for the alternative hypothesis θ > θ0.
Then it is conventional to call the size (or level) α of a test to be the probability
that the decision is for the alternative when θ = θ0.

Let X1, . . . , Xn be the data values from the sampling experiment. Say that
there is a test statistic t(x1, . . . , xn) such that for each α there is a value aα
such that

Pθ0 [aα < t(X1, . . . , Xn)] = α. (11.34)

Then we use aα < t(x1, . . . , xn) as the critical region in a test of level α.
Now let X ′1, . . . , X

′
n be the random data values from an independent repe-

tition of the sampling experiment. The p value function is defined by saying
that

p(x1, . . . , xn) = P ′θ0 [t(x1, . . . , xn) < t(X ′1, . . . , X
′
n)]. (11.35)

Thus this is the probability of getting a larger value on another run.
Now we can plug the experimental values into the p-value function. This

give the random variable

p(X1, . . . , Xn) = P ′θ0 [t(X1, . . . , Xn) < t(X ′1, . . . , X
′
n)]. (11.36)

From this it is easy to see that p(X1, . . . , Xn) is a uniform random variable.
In fact, p(X1, . . . , Xn) ≤ α is equivalent to aα ≤ t(X1, . . . , Xn), which has
probability α.

Sometimes this p value random variable is used to give an idea of how much
one should believe the alternative hypothesis. This is contrary to the philoso-
phy of hypothesis testing, where the idea is that the only question is a stark
choice between two actions. However, in very special circumstances it is at least
somewhat reasonable as the solution to an estimation problem.
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Theorem 11.3 Let θ range over the real line. Let θ ≤ θ0 be the parameter
values corresponding to the null hypothesis, and let θ > θ0 be the parameter val-
ues corresponding to the alternative hypothesis. Consider a normal distribution
with mean θ and known variance σ2. Take a sample of size n. Let hθ0(θ) be 1 if
θ ≤ θ0 and 0 if θ > θ0. Consider the quadratic loss function. Let the parameter
θ be itself normal with mean µ0 and variance α2. Then in the limit α2 → ∞
the corresponding Bayes estimator of hθ0(θ) is the p value function

p(x1, . . . , xn) = Pθ0 [x̄ < X̄ ′]. (11.37)

Proof: The Bayes estimator is the expectation

d(x1, . . . , xn) = Ex1,...,xn [hθ0(Θ)] = Px1,...,xn [Θ ≤ θ0]. (11.38)

In the limit α → ∞ the random variable Θ has mean x̄ and variance σ2/n.
Hence the random variable θ0 − (Θ− x̄) has mean θ0 and variance σ2/n. So

d(x1, . . . , xn) = P [x̄ ≤ θ0 − (Θ− x̄)]. (11.39)

However the right hand side is the same as the p value function in the statement
of the theorem.

Of course this theorem does not say that the p value is the right thing to
use. Once one has decided that one has an estimation problem, then one has
to decide exactly what one wants to estimate. In the above theorem it was the
function that is 1 for θ ≤ θ0 and 0 for θ > θ0. But it could be some other
function of the parameter. And the loss might not be quadratic.

11.8 Two-sided Bayes tests

As another exercise, let us look at hypothesis testing problems where the loss
functions are quadratic. Again this is mostly for convenience. In fact, a legiti-
mate criticism of the decision theory approach to statistics is that there are few
cases where one is really sure what the loss function should be.

In any case, let us take the case of a normal distribution with unknown
mean θ and known variance σ2. The loss function is considered to be given by
L(θ, 0) = a(θ − θ0)2 and L(θ, 1) = c− b(θ − θ0)2. Thus one would like to guess
the alternative hypothesis if c − b(θ − θ0)2 ≤ a(θ − θ0)2. This is equivalent to
the condition that c/(a+ b) ≤ (θ − θ0)2. If this condition is not satisfied, then
the effect is regarded as being so weak that it has no practical importance.

In keeping with the Bayes philosophy, we consider the prior distribution of
θ to be normal with mean θ0 and variance α2. After the data is taken, the
posterior distribution of θ is modified. The test is defined in terms of this
posterior distribution. Then the rejection region is where

Ex1,...,xn [c− b(Θ− θ0)2] ≤ Ex1,...,xn [a(Θ− θ0)2]. (11.40)

This says that
c

a+ b
≤ Ex1,...,xn [(Θ− θ0)2] = Var

x1,...,xn
(Θ) + (Ex1,...,xn [Θ]− θ0)2. (11.41)
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The variance on the right hand side is a constant. On the other hand, the
difference

Ex1,...,xn [Θ]− θ0 =
α2

σ2/n+ α2
(x̄− θ0). (11.42)

So this test is based on the absolute value of the difference x̄− θ0 between the
sample mean and the θ0 of the null hypothesis. If one knows the loss functions
and the value of α2, then one knows the proper cutoff for the test. The formula
for the rejection region is given explicitly by

c

a+ b
≤ α2

σ2/n+ α2

(
σ2

n
+

α2

σ2/n+ α2
(x̄− θ0)2

)
. (11.43)

Notice how the cutoff depends on the Bayes prior. If α is very large, then it is
regarded as a priori probable that the true value of θ is very far from θ0. In that
case, for small sample size the tendency is to guess the alternative hypothesis in
any case. For large sample size the test says to guess the alternative hypothesis
unless the sample mean is well within the region near θ0 where one would prefer
to guess the null hypothesis. On the other hand, if α is very small, then one
gives large a priori probability to the null hypothesis. Then one does not guess
the alternative hypothesis until the sample mean is very far from θ0.

Perhaps this form of the prior, with just one peak at θ0, is not what is
desired. In this case one has to gear up for more complicated mathematics.
However the general plan of the computation is always the same.

11.9 Lessons for hypothesis testing

The philosophy of hypothesis testing is that there is a decision to be made be-
tween two actions. There is no other choice. When we start doing calculations
that seem to indicate a conflict with this goal, then perhaps we should be con-
sidering a multiple decision problem or even an estimation problem. Thus if
someone asks a statistician to decide whether a treatment has little effect, great
effect, or whether to continue with further study, then this is a request for a
decision among three actions. Similarly, if someone asks for a statistic that gives
the amount of evidence in favor of the effectiveness of a treatment, then this
may be an estimation problem.

However, say that we have a genuine hypothesis testing problem. Then the
decision depends on a choice of critical region. This critical region is sometimes
defined by taking a 0.05 level of the probability of type I error, given that the
null hypothesis is true. This is quite traditional, but it completely ignores the
probability of type II error, given the alternative hypothesis. It also ignores the
amount of loss due to a wrong decision.

So in choosing the level of a test, one should also look at the probabilities
of both kinds of error. Presumably one should also look at the loss function.
Perhaps one should guard against the possibility of a huge loss.

However even knowing this does not determine a test. One method of re-
solving the question is to single out prior probabilities and use a Bayes test.
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This has the standard weakness of all Bayes procedures, namely, it may not be
clear what objective basis there is for choosing a prior distribution. However if
one uses a Bayes test and is convinced that the risks are acceptable, this may
be the way to go.

Another method may be to use a minimax test. This may be appropriate
for pessimists, but there is no reason to suppose that the nature is engaged
in a conspiracy against statisticians. The assumption that this is so may be
considered as somewhat like a Bayesian assumption, but rather than using a
hunch about what is likely to be the case, one is assuming the worst possible
scenario. It is possibly that worrying about the worst possible situation puts too
much emphasis on a narrow part of parameter space. But who is to decide what
is narrow? This brings us back to the Baysian problem. It seems that there is
no best way to make decisions; the best one can hope for is to choose from a
collection of reasonable procedures. In many cases these reasonable procedures
will be among the Baysian procedures or their limits.

11.10 Problems

1. Statistician A is a consultant in a physics laboratory. This laboratory has
samples of a certain radioactive substance. It is known that the decay
time is governed by the law

f(x | θ) = θe−θx (11.44)

for x ≥ 0. Here θ > 0 is an unknown parameter. However the substance is
known to be of one of two kinds, each with a known decay rate. Thus either
θ = θ0 or θ = θ1, where θ0 < θ1. Find the joint density f(x1, . . . , xn | θ)
for n independent observations.

2. Statistician A proposes to use a decision function d that has the values 1
and 0. The idea is to decide for θ1 if d(x1, . . . , xn) = 1 and to decide for
θ0 if d(x1, . . . , xn) = 0. What is the probability of (incorrectly) deciding
for θ1 if θ = θ0. What is the probability of (incorrectly) deciding for θ0 if
θ = θ1?

3. Statistician A is under considerable pressure to make the best use of the
data to make a correct decision. The loss from deciding for θ0 when θ = θ1

is L(θ1, 0) > 0. The loss from deciding for θ1 when θ = θ0 is L(θ0, 1) > 0.
There is no loss for making a correct decision. What is the risk at θ0?
What is the risk at θ1?

4. Statistician A is not a Bayesian, but Statistican A has a Bayesian friend
B who is willing to dream up subjective prior probabilities in almost any
circumstance. B assigns prior probabilities π(θ0) and π(θ1) with π(θ0) +
π(θ1) = 1. Then B can calculate the posterior probabilities given the data,



11.10. PROBLEMS 89

which are

π(θ0 | x1, . . . xn) =
f(x1, . . . , xn | θ0)π(θ0)

f(x1, . . . , xn | θ0)π(θ0) + f(x1, . . . , xn | θ1)π(θ1)
(11.45)

and

π(θ1 | x1, . . . xn) =
f(x1, . . . , xn | θ1)π(θ1)

f(x1, . . . , xn | θ0)π(θ0) + f(x1, . . . , xn | θ1)π(θ1)
(11.46)

These look like they might depend on the sample in a complicated way.
Make B happy by writing them in terms of the sample mean x̄.

5. Even though B has no particular interest in loss functions, it seems only
reasonable to want to help his friend A. If the decision function d(x1, . . . , xn)
is used, then the posterior loss is L(θ0, 1)π(θ0 | x1, . . . , xn) where d(x1, . . . , xn) =
1 and is L(θ1, 0)π(θ1 | x1, . . . , xn) where d(x1, . . . , xn) = 0. This loss is
minimized by taking d(x1, . . . , xn) = 1 if the first of these losses is less
than the second one of the losses, and by taking d(x1, . . . , xn) = 0 if the
second is less than the first. (If the losses are equal, then B can choose
either 1 or 0.) Find the condition on the relative sizes of the likelihood
functions f(x1, . . . , xn | θ1) and f(x1, . . . , xn | θ0) that is equivalent to
d(x1, . . . , xn) = 1.

6. Express this condition in terms of a condition such as x̄ ≤ c on the sample
mean. Find the constant c. This is the test that B recommends to A.
Show that even though B could have recommended another Bayes decision
function with the same prior, the risk function that A examines is uniquely
determined by the prior provided by B.

7. Show that if B assigns much higher prior probability to θ0 than to θ1,
then B will recommend ignoring the evidence and always deciding for θ0.
Statistician A finds this disturbing. A politely listens to B, but has private
doubts.

8. Ultimately statistician A is not comfortable with Bayesian ideas and prefers
to work with the probabilities Pθ[X̄ ≤ c] for the two possible values of θ.
What is are the mean and standard deviation of X̄ in terms of θ? How
could he use the central limit theorem to compute the probabilities?

9. Statistician A has at least learned from B that each test of the form x̄ ≤ c
is a Bayes test with a uniquely determined risk function. A decision theory
analysis shows that for each such Bayes test there is no way to find find
another test that decreases risk at both θ0 and θ0. So even from a non-
Bayesian point of view these tests are reasonable to consider. However
A does not like to even think about the actual numerical values of the
Bayesian prior probabilities. For want of a better idea, A decides to use the
conservative minimax criterion L(θ0, 1)Pθ0 [X̄ ≤ c] = L(θ1, 0)Pθ1 [X̄ > c]
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with equal risks. An examination of the practical consequences of wrong
decisions shows that L(θ0, 1) is twice L(θ1, 0). The values of θ0 and θ1 are
1/15 and 1/10. The sample size is n = 25. What is the cutoff c? [This
may take some trial and error to find.] With this choice of c, what are the
probabilities under each of the two hypotheses of an incorrect decision?

10. Statistician A finds experimentally that X̄ = 12. What is the ultimate
decision?



Chapter 12

Bayes and likelihood
procedures

12.1 Bayes decisions

Recall the ingredients of a statistical decision procedure. For each value θ of the
unknown parameter there is a distribution f(x1, . . . , xn | θ) of the data. Also,
for each parameter value θ and each action a there is a loss L(θ, a). The job of
a statistician is to use the data to choose an action a = d(x1, . . . , xn). The risk
of the procedure d is defined for each θ by

R(θ, d) =
∫
L(θ, d(x1, . . . , xn))f(x1, . . . , xn | θ) dx1 · · · dxn. (12.1)

It is the expected loss when this decision procedure is used on the data.
Let d be a decision procedure. Clearly, if there is another procedure d′ such

that for all θ we have R(θ, d′) ≤ R(θ, d) and for some θ also R(θ, d′) < R(θ, d),
then the second procedure d′ is an improvement over the first one. There is no
reason to use the first one, except perhaps convenience.

If, on the other hand, whenever for all θ we have R(θ, d′) ≤ R(θ, d) we
also have R(θ, d′) = R(θ, d), then the procedure d cannot be improved on.
This does not mean that we should use the procedure d. There may be other
procedures that also cannot be improved on. However it shows that in some
sense the procedure d is not completely stupid. Bayes procedures often have
this desirable property. This is expressed in the following theorem.

Theorem 12.1 Suppose that d is a Bayes procedure arising from a prior π(θ).
Suppose that d cannot be improved on by a Bayes procedure with the same prior.
The conclusion is that the Bayes procedure d cannot be improved on.

Proof: A Bayes procedure with prior distribution π is obtained by finding a
d that makes

r(π, d) =
∫
R(θ, d)π(θ) dθ (12.2)

91



92 CHAPTER 12. BAYES AND LIKELIHOOD PROCEDURES

minimal. Thus if d′ is any other procedure, then r(π, d) ≤ r(π, d′). Suppose
that d′ is another procedure (not necessarily Bayes) such that for all θ we have
R(θ, d′) ≤ R(θ, d). Then

∫
R(θ, d′)π(θ) dθ ≤

∫
R(θ, d)π(θ) dθ. (12.3)

This shows that d′ is actually a Bayes procedure with respect to the prior
distribution π. Hence by assumption R(θ, d′) = R(θ, d) for all θ. Thus d′

cannot improve on d.

12.2 Estimation

There are not many general principles for making statistical decisions. The
purpose of this chapter is to compare two of these: the likelihood principle and
the use of a Bayesian prior.

The most common justification for the likelihood principle is that it has good
properties in the limit of large sample sizes. But Bayes methods may also have
good properties in the limit of large sample sizes. Other methods may share
this desirable feature. So good large sample behavior is not a principle that
gives a unique way of doing statistics.

One possible justification for using a Bayes method is that it cannot be
improved on. In fact, in many cases it is true that the methods that cannot be
improved on are the Bayes methods, or the limits of Bayes methods. This argues
for the point of view that the Bayes methods form a natural and desirable class
of statistical methods.

However the fact that a particular Bayes method cannot be improved on
does not mean that it is the right thing to use. There are many Bayes methods,
corresponding to many choices of prior distributions. Each of them cannot be
improved on, since each is as good as possible in the situation where nature has
chosen its own prior distribution. But this does not make clear which one is
to be preferred. To pick a particular Bayes method, one must argue that the
choice of prior π(θ) is natural, or that the resulting Bayes decision procedure d
has a risk function R(θ, d) that is acceptable.

As for the relation between the likelihood principle and the Bayes principle,
we shall see that in some situations the likelihood principle is a special case of
the Bayes principle. So this is also support for taking the Bayes point of view
as more fundamental.

The joint distribution f(x1, . . . , xn | θ) as a function of the unknown param-
eter θ, for fixed data values x1, . . . , xn, is called the likelihood. In estimation the
maximum likelihood principle says that given the data x1, . . . , xn, the estimate
of the unknown θ is that θ = θ̂ that maximizes the likelihood f(x1, . . . , xn | θ).
In practice this is often computed by solving

∂

∂θ
log f(x1, . . . , xn | θ) = 0 (12.4)
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for θ.
By contrast, the Bayes estimator needs extra information: the prior distri-

bution π(θ). The posterior distribution is then

π(θ | x1, . . . , xn) =
f(x1, . . . , xn | θ)π(θ)

f(x1, . . . , xn)
. (12.5)

Here

f(x1, . . . , xn) =
∫
f(x1, . . . , xn | θ)π(θ) dθ (12.6)

is the marginal distribution of the data. The Bayes estimator is calculated by
taking d(x1, . . . , xn) = a, where a minimizes the posterior loss

Ex1,...,xn [L(Θ, a] =
∫
L(θ, a)π(θ | x1, . . . , xn) dθ. (12.7)

Let us look at various possible loss functions. We shall see that different loss
functions lead to different estimators.

If the loss function is L(θ, a) = (θ−a)2, then the minimum is achieved when
the derivative

d

da

∫
(θ − a)2π(θ | x1, . . . , xn) dθ = 2

∫
(θ − a)π(θ | x1, . . . , xn) dθ = 0. (12.8)

This minimum is clearly when a is the expectation of the posterior distribution

Ex1,...,xn [Θ] =
∫
θπ(θ | x1, . . . , xn) dθ. (12.9)

If the loss function is L(θ, a) = |θ − a|, then the minimum is achieved when
the derivative

d

da

∫
|θ−a|π(θ | x1, . . . , xn) dθ =

∫
sign(θ−a)π(θ | x1, . . . , xn) dθ = 0. (12.10)

This minimum is clearly when
∫

θ>a

π(θ | x1, . . . , xn) dθ =
∫

θ<a

π(θ | x1, . . . , xn) dθ = 0. (12.11)

Thus a is the median of the posterior distribution
If the loss function is L(θ, a) = 1 for |θ− a| > ε, 0 otherwise, then the Bayes

loss is the probability Px1,...,xn [|Θ − a| > ε]. To minimize the loss is the same
as to maximize the probability Px1,...,xn [|Θ−a| ≤ ε]. The maximum is achieved
when the derivative

d

da

∫

|θ−a|<ε
π(θ | x1, . . . , xn) dθ = π(a+ε | x1, . . . , xn)−π(a−ε | x1, . . . , xn) = 0.

(12.12)
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If ε is small, then this quantity is approximately

π(a+ε | x1, . . . , xn)−π(a−ε | x1, . . . , xn) ≈ 2
∂

∂θ
π(θ | x1, . . . , xn)|θ=a ε. (12.13)

Thus the condition is that

∂

∂θ
π(θ | x1, . . . , xn)|θ=a = 0. (12.14)

The conclusion is that a is the mode (maximum) of the posterior distribution.
For this last case the Bayes procedure is to start with the data and maximize

π(θ | x1, . . . , xn). It is equivalent to maximize the numerator f(x1, . . . , xn |
θ)π(θ). This makes apparent the relation to the maximum likelihood estimator.
If we take π(θ) = 1, then we get the maximum likelihood estimator.

Why not, then, simply take π(θ) = 1 as the basic principle. For one thing,
this is somewhat arbitrary. It is certainly not a hypothesis that is compatible
with the principle of invariance. If we are interested in estimating a function
of θ, then the corresponding probability density will not be constant, but will
involve the absolute value of the derivative of the function. Perhaps in some
circumstances the prior π(θ) = 1 can be derived from a symmetry principle.
But it is hardly fundamental.

The conclusion is that maximum likelihood estimation is at least somewhat
related to Bayes estimation. In some circumstances this may provide a justifi-
cation for this principle.

12.3 Testing

The likelihood ratio principle is used in testing. We consider a case when the
null hypothesis is that the true value of θ is θ0. From here on we shall think of
θ0 as a fixed constant. The alternative hypothesis is some other value of θ. The
likelihood ratio principle attempts to use the likelihood ratio

k ≤ f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

. (12.15)

to define the critical region for the test, where one would guess the alternative
hypothesis. If there is only value θ = θ1 in the alternative hypothesis, then this
test is well defined and is a Bayes test. The problem is that in general there
can be several possibilities for the unknown θ.

One way around this is to consider a situation where there is a test statistic
t(x1, . . . , xn) such that

f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

= F (t(x1, . . . , xn), θ). (12.16)

We consider the one-sided situation where the null hypothesis is θ = θ0 and
the alternative hypothesis is θ > θ0. The assumption of monotone likelihood
ratio is that for each θ > θ0 the function F (z, θ) is increasing in z.
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Under the assumption of monotone likelihood ratio, the test with critical
region

a ≤ t(x1, . . . , xn), (12.17)

is equivalent to a test

F (a, θ) ≤ f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

. (12.18)

So in this way of proceeding the ratio k = F (a, θ) for the test depends on the
unknown θ. This may not matter so much; the test itself is based on a.

Example: Take the classical case when the population distribution is normal
with unknown mean θ and known variance σ2. The likelihood ration is easy to
compute, and after some algebra it works out to be

f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

= exp(
n

2σ2
(−(x̄− θ)2 + (x̄− θ0)2)). (12.19)

The test statistic is t(x1, . . . , xn) = x̄, the sample mean. The function F is

F (z, θ) = exp(
n

2σ2
(−(z − θ)2 + (z − θ0)2)) = exp(

n

2σ2
(−θ2 + 2(θ − θ0)z + θ2

0)).

(12.20)
Indeed, for each θ > θ0 it is an increasing function of z. The likelihood ratio is
F (x̄, θ). So the critical region for this kind of test is given by a condition a ≤ x̄
on the sample mean.

We now show that this version of the likelihood ratio test may be interpreted
in a Baysian framework. We take the null hypothesis to be θ = θ0. The loss
from guessing the alternative hypothesis is L(I). The alternative hypothesis is
θ > θ0. The loss from guessing the null hypothesis is L(II).

We take a Bayes prior that assigns probability π(θ0) > 0 to the null hypoth-
esis. The prior probabilities associated with the alternative hypothesis are given
by a density π(θ) for θ > θ0 with total probability 1− π(θ0). This means that

π(θ0) +
∫ ∞
θ0

π(θ) dθ = 1. (12.21)

There are two actions. The posterior risk from the action of guessing the
alternative hypothesis is proportional to L(I)f(x1, . . . , xn | θ0)π(θ0). The pos-
terior risk from the action of guessing the null hypothesis is proportional to
L(II)

∫∞
θ0
f(x1, . . . , xn | θ)π(θ) dθ. The critical region is where the first risk is

less than the second risk. This is where

L(I)f(x1, . . . , xn | θ0)π(θ0) ≤ L(II)
∫ ∞
θ0

f(x1, . . . , xn | θ)π(θ) dθ. (12.22)

This can be written in the form

L(I)
L(II)

≤
∫ ∞
θ0

f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

π(θ)
π(θ0)

dθ. (12.23)
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This integral involves the likelihood ratio. If we assume that the likelihood
ration is a function of a test statistic, this can also be written in the form

L(I)
L(II)

≤
∫ ∞
θ0

F (t(x1, . . . , xn), θ)
π(θ)
π(θ0)

dθ. (12.24)

Define

G(z) =
∫ ∞
θ0

F (z, θ)
π(θ)
π(θ0)

dθ. (12.25)

The critical region is
L(I)
L(II)

≤ G(t(x1, . . . , xn)). (12.26)

Make the assumption of monotone likelihood ratio, so that the function
F (z, θ) is increasing in z for fixed θ > θ0. Then G(z) is also an increasing
function. So this is the same as the likelihood ratio test with critical region
a ≤ t(x1, . . . , xn). The constant a is determined by

G(a) =
L(I)
L(II)

. (12.27)

This argument shows that in this special case of a one-sided test there an
equivalence between Bayes ideas and likelihood methods. Since a Bayes method
cannot be improved on, the same follows for the likelihood ratio test.

Example: Let us continue with the example of the normal population with
mean θ. The function G is given by

G(z) =
∫ ∞
θ0

exp(
n

2σ2
(−θ2 + 2(θ − θ0)z + θ2

0))
π(θ)
π(θ0)

dθ. (12.28)

The function G(z) is given by a complicated integral that may have to be done
numerically. However it is clear that it is increasing in z. So the critical region
for the test is still of the form a ≤ x̄. This is equivalent to the Bayes test
G(a) ≤ G(x̄).

There is another way to use the likelihood principle to perform a test. Again
we consider the one-sided alternative θ > θ0. The method is to insert the
maximum likelihood estimator in the likelihood function used for the test. In
the present case this is equivalent to using the test with critical region

k ≤ maxθ>θ0 f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

. (12.29)

If the likelihood ratio is a function of a test statistic, then this is

k ≤ max
θ>θ0

F (t(x1, . . . , xn), θ). (12.30)

If we set H(z) = maxθ>θ0 F (z, θ), then the critical region is

k ≤ H(t(x1, . . . , xn)). (12.31)
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Under the assumption of monotone likelihood ration, the function H(z) is in-
creasing in z. So the test is equivalent to the test a ≤ t(x1, . . . , xn), where
H(a) = k. However the function H may be quite different from the function G
in the Baysian analysis. This procedure coincides with a Bayes procedure, but
the ideas are not so close to Baysian ideas.

Example: Again take the example of the normal population with mean θ.
The function H(z) has a very simple expression:

H(z) = max
θ>θ0

exp(
n

2σ2
(−(z − θ)2 + (z − θ0)2)) = exp(

n

2σ2
(z − θ0)2)). (12.32)

Actually, this expression is correct only for z ≥ θ0, since for z < θ0 we have
H(z) = 1. Again it is clear that H(z) is increasing in z. So the critical region
for the test is still of the form a ≤ x̄. This is equivalent to the likelihood ratio
test k ≤ H(x̄).

We can see the contrast better if we go to two-sided alternatives. Thus the
null hypothesis is θ = θ0 and the alternative hypothesis is θ 6= θ0. The most
common way to do a likelihood ratio test would be to make the critical region
be

k ≤ maxθ f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

. (12.33)

If the likelihood ratio is a function of a test statistic, then this is

k ≤ max
θ
F (t(x1, . . . , xn), θ). (12.34)

If we set H(z) = maxθ F (z, θ), then the critical region is

k ≤ H(t(x1, . . . , xn)). (12.35)

Example: Again take the example of the normal population with mean θ.
The function H(z) has a very simple expression:

H(z) = max
θ

exp(
n

2σ2
(−(z − θ)2 + (z − θ0)2)) = exp(

n

2σ2
(z − θ0)2)). (12.36)

Notice that this is not increasing in z. The critical region for the test is of the
form k ≤ H(x̄). This produces a two sided test, where the critical region is
where x̄ is sufficiently far above or below θ0.

We can also analyze the two-sided alternative in the Baysian framework. We
take the null hypothesis to be θ = θ0. The loss from guessing the alternative
hypothesis is L(I). The alternative hypothesis is θ 6= θ0. The loss from guessing
the null hypothesis is L(II).

We take a Bayes prior that assigns probability π(θ0) > 0 to the null hypoth-
esis. The prior probabilities associated with the alternative hypothesis are given
by a density π(θ) with total probability 1− π(θ0). This means that

π(θ0) +
∫ ∞
−∞

π(θ) dθ = 1. (12.37)
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The critical region is where

L(I)f(x1, . . . , xn | θ0)π(θ0) ≤ L(II)
∫ ∞
−∞

f(x1, . . . , xn | θ)π(θ) dθ. (12.38)

This can be written in the form

L(I)
L(II)

≤
∫ ∞
−∞

f(x1, . . . , xn | θ)
f(x1, . . . , xn | θ0)

π(θ)
π(θ0)

dθ. (12.39)

This integral involves the likelihood ratio. If we assume that the likelihood
ration is a function of a test statistic, this can also be written in the form

L(I)
L(II)

≤
∫ ∞
−∞

F (t(x1, . . . , xn), θ)
π(θ)
π(θ0)

dθ. (12.40)

Define

G(z) =
∫ ∞
−∞

F (z, θ)
π(θ)
π(θ0)

dθ. (12.41)

The critical region is
L(I)
L(II)

≤ G(t(x1, . . . , xn)). (12.42)

The Bayes has roughly the same form as the likelihood ratio test, but it is hard
to see the correspondence. A likelihood ratio test might well be a Bayes test,
but this would be a kind of accident, and it would take some analysis to discover
this fact. In any case, the Bayes test itself uses an integral of likelihood ratios,
so the two method have something of the same spirit. It is the Bayes method
that has a more fundamental justification.

12.4 Problems

1. Consider a random sample of size 3 from a Bernoulli population. The
null hypothesis is that p = 1/2, while the alternative hypothesis is that
p = 2/3. The test must be such that when p = 1/2 the probability of a
type I error cannot exceed 1/8. What critical region defines a test such
that if p = 2/3 the probability of a type II error is as small as possible?

2. Say that f(x | θ) = θe−θx for x > 0 is an exponential density. Let θ1 < θ0.
What is the best critical region, based on a sample of size n, for testing
the null hypothesis that θ = θ0 against the alternative hypothesis that
θ = θ1?

3. Consider a normal population with unknown µ and with σ = 1 known.
Say that a test is to discriminate between the null hypothesis that µ = 10
and the alternative hypothesis that µ = 11. A random sample of size 25
is available. The test is at level 0.1 and the problem is to find the best
test and to calculate the probability of a type II error.
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4. Consider a normal population with µ = 0 and with σ2 unknown. Say
that a test is to discriminate between the null hypothesis that σ2 = 10
and the alternative hypothesis that σ2 = 12. A random sample of size 10
is available. The test is at level 0.1 and the problem is to calculate the
probability of a type II error for the best test.

5. Consider a normal random variable with µ unknown and σ = 1. The null
hypothesis is that µ = 0 and the alternative hypothesis is two-sided. The
sample size is 4. The test is the natural symmetric test at the 0.05 level.
Calculate and graph the power function for this test.

6. Consider a sample of size 3 from a Bernoulli population. Let X be the
number of successes, so that X = 0, 1, 2, 3 are all possible. The null hy-
pothesis is that p = 1/3. The critical region of a test is X = 3. Calculate
the power function. The critical region of another test is X = 2, 3. Cal-
culate the power function. Compare these power functions graphically. Is
one better than another?
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Chapter 13

Regression and Correlation

13.1 Regression

In the regression model there are values xi that are given and known. For each
xi there is a corresponding observation Yi. Here i ranges from 1 to n. The
model is

Yi = α+ βxi + εi. (13.1)

Here the εi are independent normal random variables with mean zero and vari-
ance σ2. These are not observed. Thus the unknown parameters of the model
are the α and β that convey the true linear relationship and the σ that conveys
the size of the error. The true linear relationship is expressed by saying that the
mean of Yi is µi = α+βxi. The scientific problem is to capture this relationship
from the experimental data points Yi.

Given the data Yi, the estimate β is

β̂ =
∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
. (13.2)

Also, the estimate of α is determined by

Ȳ = α̂+ β̂x̄. (13.3)

The estimate of µi is
Ŷi = α̂+ β̂xi. (13.4)

The estimate of σ2 is

σ̂2 =
∑n
i=1(Yi − Ŷi)2

n− 2
. (13.5)

These are all unbiased estimators.
As usual, we want to know how good a job these estimators do. The variance

of β̂ is

σβ̂ =
σ2

∑n
i=1(xi − x̄)2

. (13.6)
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Therefore the natural estimate of the variance of β̂ is

σ̂β̂ =
σ̂2

∑n
i=1(xi − x̄)2

. (13.7)

For a test of the null hypothesis β = β0 one can use the t statistic

t =
β̂ − β0

σ̂β̂
. (13.8)

If the null hypothesis is true, this has a t distribution with n − 2 degrees of
freedom.

Sometimes people prefer to do regression analysis in the context of a sum of
squares identity. For this case the identity expresses the sum of squares of the
observations about their mean as a sum of squares of the observations about
the regression line plus another sum of squares term that is said to be explained
by the regression line. The identity is

n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

(Yi − Ŷ )2 +
n∑

i=1

(Ŷi − Ȳ )2. (13.9)

Since Ŷi − Ȳ = β̂(xi − x̄), this can also be written

n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

(Yi − Ŷ )2 + β̂2
n∑

i=1

(x̂i − x̄)2. (13.10)

If the null hypothesis β = 0 is true, then the sum of squares explained by
the regression line should be small compared to the sum of squares about the
regression line. Thus the F statistic

F =
β̂2
∑n
i=1(x̂i − x̄)2

∑n
i=1(Yi − Ŷ )2/(n− 2)

(13.11)

should not be too large. It turns out that this is equivalent to the t test for
β = 0 given above.

There is yet another language for the analysis of regression experiments.
Define the sample correlation coefficient r by

r =
∑n
i=1(xi − x̄)(Yi − Ȳ )

√∑n
i=1(xi − x̄)2

√∑n
i=1(Yi − Ȳ )2

. (13.12)

Then there is an alternate expression for β̂, namely

β̂ = r

√∑n
i=1(Yi − Ȳ )2

√∑n
i=1(xi − x̄)2

. (13.13)
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The estimate of σ2 is

σ̂2 =
∑n
i=1(Yi − Ȳi)2

n− 2
(1− r2). (13.14)

The sum of squares identity becomes

n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

(Yi − Ŷi)2 + r2
n∑

i=1

(Yi − Ȳ )2. (13.15)

From this we see that the F statistic for testing β = 0 is

F =
r2

1−r2

n−2

. (13.16)

If one is interested in a one-sided test, one can use the t statistic for testing
β = 0, which is

t =
r√
1−r2

n−2

. (13.17)

This is an especially convenient form of the test. In this situation the relation
between F and t is that F = t2.

There is another way of looking at the test of the null hypothesis β = β0.
That is to change variables to reduce it to this special case. Let the mean of
Ỹi = Yi − β0xi be given by µ̃i = α + β̃xi, where β̃ = β − β0. Then in these
new variables the null hypothesis is β̃ = 0. Calculate the sample correlation
coefficient r̃ with the new variables Ỹi. The test statistic is

t =
r̃√

(1− r̃2)/(n− 2)
. (13.18)

An algebraic calculation shows that this is the same as the test for β = β0 given
above.

This reduction to the special case β̃ = 0 is theoretically important. It shows
that it is sufficient to deal with the case when the null hypothesis is defined by
a homogeneous equation. This is convenient from the point of view of linear
algebra.

13.2 Correlation

In the correlation model the data points are random pairs Xi, Yi. The model is
that the mean and variance of Xi are µX and σ2

X and the mean and variance
of Yi are µY and σ2

Y . The covariance of Xi and Yi is

cov(Xi, Yi) = ρσXσY . (13.19)

Here ρ is the population correlation coefficient.
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Given the data (Xi, Yi), the estimates of µX and µY are the usual sample
means X̄ and Ȳ . The estimates of σ2

X and σ2
Y are

s2
X =

∑n
i=1(Xi − X̄)2

n− 1
(13.20)

and

s2
Y =

∑n
i=1(Yi − Ȳ )2

n− 1
. (13.21)

The estimator of ρ is the sample correlation coefficient r given by

r =
∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ )2

. (13.22)

Notice that up to now everything is symmetric between the two variables. Ob-
serve also that the correlation analysis does not specify a line in the data plane.

We can condition on the event that Xi has some value xi. The conditional
expectation is

E[Yi | Xi = xi] = µY + ρ
σY
σX

(xi − µX). (13.23)

This can also be written

E[Yi | Xi = xi] = α+ βxi, (13.24)

where α and β are determined by

β = ρ
σY
σX

(13.25)

and
µY = α+ βµX . (13.26)

This is a regression model. The regression line for this model would have

β̂ = r
sY
sX

(13.27)

and
Ȳ = α̂+ β̂x̄. (13.28)

If the null hypothesis in the correlation model is ρ = 0, then the correspond-
ing null hypothesis in the regression model is β = 0. So it is no surprise that
the test statistic for this situation is also based on

t =
r√
1−r2

n−2

(13.29)

or on F = t2.
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We can also condition on the event that Yi has some value yi. The conditional
expectation is

E[Xi | Yi = yi] = µX + ρ
σX
σY

(yi − µY ). (13.30)

This can also be written

E[Xi | Yi = yi] = α′ + β′yi, (13.31)

where α′ and β′ are determined by

β′ = ρ
σX
σY

(13.32)

and
µX = α′ + β′µY . (13.33)

This is a different regression model. The regression line for this model would
have

β̂′ = r
sY
sX

(13.34)

and
X̄ = α̂′ + β̂′ȳ. (13.35)

Notice that the regression lines with the two kinds of conditioning differ,
except for the case of perfect correlation r = 1. For instance, take r very small,
and plot the x variables horizontally and the y variables vertically. Then the
line is almost horizontal in the first model (conditioning on Xi = xi) and the
line is almost vertical in the second model (conditioning on Yi = yi).

13.3 Principal component analysis

There is one circumstance in which it is reasonable to draw a line through the
data in a correlation experiment. This is when the units of measurement in the
two variables is the same.

The population covariance matrix is the matrix
[

σ2
X ρσXσY

ρσXσY σ2
Y

]
. (13.36)

If the units are the same, then the eigenvalues and eigenvectors of this symmetric
matrix are meaningful. The eigenvalues are real, and the eigenvectors define two
axes, orthogonal directions in the plane. There are two lines in these directions
that pass through the mean point (µX , µY ). The eigenvalues are not equal,
except for the case when ρ = 0 and σ2

X = σ2
Y . The line corresponding to the

largest eigenvalue is the principal axis.
The sample estimators for this case make up a matrix

[
s2
X rsXsY

rsXsY s2
Y

]
. (13.37)
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The eigenvalues are real, and the eigenvectors define two axes, orthogonal direc-
tions in the plane. One can draw two lines in these directions that pass through
the mean point (X̄, Ȳ ). The eigenvalues are not equal, except for the case when
r = 0 and s2

X = s2
Y . The line corresponding to the largest eigenvalue is the

principal axis.
What does this principal axis mean in terms of the data? Make the trans-

formation to new variables by a rotation

(Zi − Z̄) = cos(θ)(Xi − X̄) + sin(θ)(Yi − Ȳ ) (13.38)

and
(Wi − W̄ ) = − sin(θ)(Xi − X̄) + cos(θ)(Yi − Ȳ ). (13.39)

Let r′ be the correlation of the new variables. Then
[

s2
Z r′sZsW

r′sZsW s2
W

]
=
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
s2
X rsXsY

rsXsY s2
Y

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

(13.40)
If the λ and µ are the eigenvalues of the original covariance matrix, and the two
columns of the matrix on the right are the corresponding eigenvectors, then we
have

[
s2
X rsXsY

rsXsY s2
Y

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
λ 0
0 µ

]
.

(13.41)
Hence
[

s2
Z r′sZsW

r′sZsW s2
W

]
=
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
λ 0
0 µ

]
=
[
λ 0
0 µ

]
.

(13.42)
Thus the new variables are uncorrelated, and their variances are the eigenvalues.
The new variable that has larger variance is the one measured on the principal
axis.

The formula for the θ that gives eigenvectors and hence makes the matrix
diagonal is given by the following formula. Let

tan(χ) =
sY
sX

(13.43)

be the slope determined by the two standard deviations. Since they have the
same units, this is dimensionless. Then the condition is that

tan(2θ) = r tan(2χ). (13.44)

One can take χ between 0 and π/2. Then 2χ is between 0 and π. There are two
solutions for 2θ between 0 and 2π that differ by π. So there are two solutions
for θ between 0 and π that differ by π/2. These give the two axes corresponding
to the two eigenvectors.

The relation between the slope k = tan(θ) of such an axis and the slope
m = tan(χ) may also be expressed algebraically. In fact the double angle
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formula for the tangent function shows that the identity tan(2θ) = r tan(2χ)
may be written in the form

1
k
− k =

1
r

(
1
m
−m

)
. (13.45)

This is quite nonlinear. So changing the standard deviation in one direction by
a constant factor does not change the slope of the principal axis by the same
factor. This shows once again how crucial it is that the two axes have the same
units.

This formula for the axes is useful computationally but not particularly nice.
The formula for the corresponding eigenvalues is also awkward. However it is
easy to see what the answer is in certain extreme cases.

When r = 0, the axes are along the directions of the x and y coordinate
axes. The eigenvalues are s2

X and s2
Y , and so the principal axis is the one with

the largest variance.
When r = ±1 the eigenvalues are s2

X + s2
Y and 0. The principal axis is the

one with slope ±sY /sX .
Perhaps the most interesting case is when s2

X = s2
Y . In that case the eigen-

values are this common value times 1± r. The corresponding axes have slopes
±1. The principal axis is the one with slope equal to the sign of r.

Sometimes people want to do a principal component analysis when the units
on the two axes are not the same. This does not make sense. It is not clear what
the dimensions of the rotated variables would be. One way to make the problem
dramatic is to look at the case when the correlation is zero. Then which axis
has the larger variance? It depends entirely on the units. You can change the
units on one axis and not on the other. This will change what you think of as
the principal axis.

One obvious idea for taking care of the case of unequal units is to normalize
the data by dividing (Xi − X̄) by sX and dividing (Yi − Ȳ ) by sY . This gives
dimensionless variables. The resulting covariance matrix is

[
1 r
r 1

]
. (13.46)

As we have seen, the eigenvalues are 1± r. The corresponding axes have slopes
±1. The principal axis is the one with slope equal to the sign of r. So there is
no new information in the principal component analysis aside from the value of
r. In this situation one would do just as well to simply report this value.
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Chapter 14

Linear models: Estimation

14.1 Estimation

We consider a very general situation. The model is random variables Y1, . . . , Yn.
These are independent normal random variables, each with variance σ2. The
covariance is thus Cov(Yi, Yj) = σ2Iij . That is, the covariance matrix is σ2

times the identity matrix I.
The mean vector µ in R(n) is unknown. Also σ2 is unknown. However the

mean µ is known to be in a subspace L of dimension k. The problem is to use
the observation vector Y in R(n) to estimate the vector µ and the number σ2.

The solution is simple. One uses the projection Ŷ of Y onto L as the estimate
of the vector µ in L. The estimator of σ2 is

σ̂2 =
|Y − Ŷ |2
n− k . (14.1)

Say the subspace L consists of all vectors of the form Y = Xβ, where X is a
fixed matrix in M(n, k), and the parameter β varies over R(k). Then one can
try to estimate the parameter vector β. The appropriate estimator is

β̂ = (X ′X)−1X ′Y. (14.2)

Then the estimator of µ is

µ̂ = Ŷ = Xβ̂ = X(X ′X)−1X ′Y. (14.3)

We can also work out the covariance of the estimator β̂. We use the following
lemma.

Lemma 14.1 If the random vector Y has covariance matrix C, and A is a fixed
matrix, then the covariance of the random vector AY is ACA′.

Proof: Suppose Cov(Yp, Yq) = Cpq. Then

Cov(
∑
p

AipYp,
∑
q

AjqYq) =
∑
p

∑
q

AipCpqAjq =
∑
p

∑
q

AipCpqA
′
qj . (14.4)
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Theorem 14.1 Suppose that Y has covariance matrix σ2I. Then the covari-
ance matrix of the estimator

β̂ = (X ′X)−1XY (14.5)

is
σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1. (14.6)

14.2 Regression

The regression model is

µ(x) =
k∑

j=1

βjfj(x). (14.7)

This expresses the expected value as a linear combination of functions fj(x) with
coefficients βj . It is assumed that the functions are known but the coefficients
are unknown.

An actual observation has errors. So if we take values x1, . . . , xn, the obser-
vations are

Yi =
k∑

j=1

βjfj(xi) + Ei. (14.8)

The mean of Yi is µ(xi). The errors Ei have mean zero and variance σ2 and are
independent.

We can write this in matrix form by defining the matrix

Xij = fj(xi). (14.9)

This matrix depends on the points xi that are chosen for observation. Sometimes
the matrix X is called the design matrix. It is assumed to be known. We assume
that it has zero null space.

Then the model takes the form

Yi =
k∑

j=1

Xijβj + Ei. (14.10)

Here the assumption is that the errors Ei have mean zero and variance σ2 and
are independent.

The statistical problem is to look at the Yi and use these to estimate the
parameters βj . We can see what to do if we write the problem in matrix form

Y = Xβ + E. (14.11)

The solution is to take the estimate β̂ that gives the orthogonal projection
Ŷ = Xβ̂ onto the range of X. This is given by

β̂ = (X ′X)−1X ′Y. (14.12)
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The vector Ŷ that is the actual orthogonal projection is called the vector of
predicted values.

The estimate of variance is then given by

σ̂2 =
|Y − Ŷ |2
n− k . (14.13)

Example: The simplest case is when k = 2 and the model is Yi = α+β(xi−
x̄)+Ei. The matrix X has two columns. The first column consists of ones. The
second column consists of the xi − x̄ values. Subtracting the mean value of the
xi points is convenient, since then the two columns of X are orthogonal. With
this choice the matrix

X ′X =
[
n 0
0
∑
i(xi − x̄)2

]
. (14.14)

Then
[
α̂
β̂

]
= (X ′X)−1

[ ∑
i Yi∑

i Yi(xi − x̄)

]
=
[

Ȳ∑
i(xi − x̄)Yi/

∑
i(xi − x̄)2

]
. (14.15)

Thus the regression line is

Ŷi = α̂+ β̂(xi − x̄). (14.16)

Here α̂ = Ȳ . For greater symmetry we use the identity
∑
i(xi− x̄)Yi =

∑
i(xi−

x̄)(Yi − Ȳ ) and write

β̂ =
∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
. (14.17)

The estimator of variance is

σ̂2 =
∑n
i=1(Yi − Ŷi)2

n− 2
. (14.18)

14.3 Analysis of variance: one way

The model is
Yij = µj + Eij (14.19)

for j = 1 to c and i = 1 to nj . The parameters are the µj . So there are a total
of c parameters. Note for later comparison that we could write µj = µ + bj ,
where µ is the mean of the µj , and where

∑c
j=1 bj = 0.

The idea is that there are c populations, corresponding to c different treat-
ments. Untreated, the populations would have the same mean. But the treat-
ments may make a difference. The task is to estimate the effect of the treat-
ments. The fact that the populations are similar except for the effect of the
treatments is reflected in the assumption that all the errors Eij have the same
variance σ2.
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We take a sample of size nj from the jth population. These are the Yij
for i = 1, . . . , nj . All these numbers together form a vector space of dimension
n1 + · · ·+nc. The subspace L consists of the vectors that do not depend on the
i index. This is a subspace of dimension c. Thus the orthogonal projection onto
L is obtained by averaging over the i index. Thus the estimator of µj is the
sample mean of the sample from population j. This sample mean is denoted
Ȳ·j . Thus

µ̂j = Ȳ·j . (14.20)

Since the σ2 is the same for all the populations, we pool them together for the
purpose of estimating σ2. The estimator of σ2 is thus

σ̂2 =

∑c
j=1

∑nj
i=1(Yij − Y·j)2

n− c . (14.21)

14.4 Analysis of variance: two way

The model is
Yij = µ+ ai + bj + Eij (14.22)

for i = 1 to r and j = 1 to c. The parameters are the scalar µ and the vectors
ai and bj . We assume that

∑r
i=1 ai = 0 and

∑c
j=1 bj = 0. So there are a total

of r + c− 1 independent parameters.
The idea is that there are r experimental blocks, with the c members of

each block to be as similar as possible. These members are subject to c dif-
ferent treatments. Untreated, the each block would have its own mean µ + ai,
independent of the treatment. But the treatments may make a difference. The
task is to estimate the effect of the blocks and the effect of the treatments. The
fact that the populations are similar except for the effect of the treatments is
reflected in the assumption that all the errors Eij have the same variance σ2.

The experimental numbers are the Yij for i = 1, . . . , r and j = 1, . . . , c. They
may be summarized in the form of a data matrix. These matrices form a vector
space of dimension rc. The subspace L consists of the matrices of the form
µ+ ai + bj as above. It has dimension r+ c− 1. Thus the estimator of µ is the
overall mean Ȳ . The estimator of ai is Ȳi· − Ȳ . The estimator of bj is Ȳ·j − Ȳ .
Thus the orthogonal projection of a data matrix with components Yij onto L is

Ŷij = Ȳ + (Ȳi· − Ȳ ) + (Ȳ·j − Ȳ ). (14.23)

This can also be written in the equivalent form

Ŷij = Ȳi· + Ȳ·j − Ȳ . (14.24)

Since the σ2 is the same for all the populations, we pool them together for the
purpose of estimating σ2. The estimator of σ2 is thus

σ̂2 =

∑r
i=1

∑c
j=1(Yij − Ȳi· − Ȳ·j + Ȳ )2

rc− (r + c− 1)
. (14.25)

Notice that the denominator may also be written in the simple form (r−1)(c−1).
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14.5 Problems

1. Say that one is interested in finding the least squares estimates of the
coefficients in the polynomial regression function ŷ = a0 + a1P1(x) +
a2P2(x) + · · · + arPr(x). The polynomial Pj(x) is of degree j. However,
furthermore assume that the polynomials are such that for the points
x1, . . . , xn the values of the polynomials form r orthogonal vectors. Show
that the estimators âj have a particularly simple form.

2. Prove that in two-way analysis of variance the estimator σ̂2 is an unbiased
estimator of σ2.
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Chapter 15

Linear models: Hypothesis
testing

15.1 Hypothesis testing

We consider a very general situation. The model is random variables Y1, . . . , Yn.
These are independent normal random variables, each with variance σ2. The
covariance is thus Cov(Yi, Yj) = σ2Iij . That is, the covariance matrix is σ2

times the identity matrix I.
The mean vector µ in R(n) is unknown. Also σ2 is unknown. However the

mean µ is known to be in a subspace L of dimension k.
In the hypothesis testing context the null hypothesis is that the unknown

mean vector µ is in a yet smaller subspace L0 of dimension ` < k. The alterna-
tive hypothesis is that the unknown mean is not in this subspace. The problem
is to use the observation vector Y in R(n) to make an appropriate decision in
favor of the null hypothesis or the alternative hypothesis.

The projection Ŷ of Y onto L is the estimate of the vector µ in L. If the
null hypothesis were known to be true, then it would be appropriate to use the
projection ˆ̂

Y of Y onto L0 as the estimate of the vector µ in L0. Now consider
the sum of squares identity

|Y − ˆ̂
Y |2 = |Y − Ŷ |2 + |Ŷ − ˆ̂

Y |2. (15.1)

The two terms on the right are independent. The second term on the right is
a obvious indicator of a possible failure of the null hypothesis. The first term
on the right enters into an estimate of the variance that is appropriate under
either hypothesis. Under the null hypothesis, the second term on the right is σ2

times a χ2
k−` random variable. The first term on the right is σ2 times a χ2

n−k
random variable. Thus under the null hypothesis

M =
|Ŷ − ˆ̂

Y |2
k − ` (15.2)

115



116 CHAPTER 15. LINEAR MODELS: HYPOTHESIS TESTING

estimates σ2. In any case,

σ̂2 =
|Y − Ŷ |2
n− k (15.3)

also estimates σ2. Thus under the null hypothesis

F =
M

σ̂2
(15.4)

estimates 1. Of course, under the alternative hypothesis M will tend to be a lot
larger than σ2, and F will be much larger than one. This is the basis for the
test.

15.2 Chi-squared and F

Recall that a chi-squared random variable is one of the form

χ2
n = Z2

1 + · · ·+ Z2
n, (15.5)

where the Zi are independent standard normal random variables. A χ2
n random

variable has mean n and variance 2n. Its standard deviation is thus
√

2n.
Therefore a χ2

n/n random variable has mean 1 and standard deviation
√

2/n.
If n = 1 this is Z2, and we know that 95 percent of the probability is in the
interval from 0 to 4. On the other hand, if n is reasonably large, say n = 32,
then the central limit theory is a fair approximation. The standard deviation is
1/4, and we would expect approximately 95 percent of the probability to be in
the interval from 0 to 3/2.

The F statistic is a ratio

F =
χ2
k−`/(k − `)

χ2
n−k/(n− k)

. (15.6)

It is easy to guess what a cutoff for F at the five percent level might be. We
reason on the basis of the null hypothesis. If n − k is reasonably large, say 20
or so, then the denominator will be almost constant and fairly close to one. Its
effect will be to make F tend to be a bit larger. So we then mainly have to
worry about the numerator. If k − ` is one, then this is just the square of a
normal random variable, so the cutoff for F is somewhat larger than 22 = 4.
On the other hand, as k− ` itself gets larger, the numerator also is more nearly
constant. If k− ` = 32, then the cutoff should be somewhat larger than 3/2. Of
course these are only rough guesses of the F distribution, so it is best to consult
the tables. But if you have an even moderately large sample and an F value of
10, you would want to reject the null hypothesis.

15.3 Regression

The regression model is

Yi =
k∑

j=1

Xijβj + Ei. (15.7)
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Here the assumption is that the errors Ei have mean zero and variance σ2 and
are independent. The space L is the span of the k columns of X.

The null hypothesis is that only the first ` of the parameters βj are non-zero.
Thus βj = 0 for j = ` + 1, . . . , k. The space L0 is thus the span of the first `
columns of X.

Let Ŷ and ˆ̂
Y be the projections of the data vector Y onto L and onto L0.

Then the test uses the F statistic based on the corresponding sums of squares.
Example: The simplest case is when k = 2 and the model is

Yi = α+ β(xi − x̄) + Ei. (15.8)

The matrix X has two columns. The first column consists of ones. The second
column consists of the xi − x̄ values. With this choice the two columns are
orthogonal. Thus the regression line is

Ŷi = α̂+ β̂(xi − x̄). (15.9)

Thus α̂ = Ȳ and

β̂ =
∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
. (15.10)

The estimator of variance is

σ̂2 =
∑n
i=1(Yi − Ŷi)2

n− 2
. (15.11)

Under the null hypothesis β = 0. Then the regression line is simply

ˆ̂
Y i = α̂ = Ȳ . (15.12)

The difference is
Ŷ − ˆ̂

Y = β̂(xi − x̄). (15.13)

The numerator is thus

M = β̂2
n∑

i=1

(xi − x̄)2. (15.14)

So the test statistic is

F =
M

σ̂2
=
β̂2
∑n
i=1(xi − x̄)2

σ̂2
. (15.15)

15.4 Analysis of variance: one way

The model is
Yij = µj + Eij (15.16)

for j = 1 to c and i = 1 to nj . The parameters are the µj . So there are a total
of c parameters.
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The idea is that there are c populations, corresponding to c different treat-
ments. Untreated, the populations would have the same mean. But the treat-
ments may make a difference. The task is to see whether this is so. Thus the
null hypothesis is that all the means µj are the same.

We take a sample of size nj from the jth population. These are the Yij
for i = 1, . . . , nj . All these numbers together form a vector space of dimension
n = n1 + · · ·+nc. The subspace L consists of the vectors that do not depend on
the i index. This is a subspace of dimension c. Thus the orthogonal projection
onto L is obtained by averaging over the i index. The estimator of µj is the
sample mean of the sample from population j. This sample mean is denoted
Ȳ·j . Thus

µ̂j = Ȳ·j . (15.17)

Since the σ2 is the same for all the populations, we pool them together for the
purpose of estimating σ2. The estimator of σ2 is thus

σ̂2 =

∑c
j=1

∑nj
i=1(Yij − Y·j)2

n− c . (15.18)

Under the null hypothesis the mean is in the subspace L0 of vectors that
have constant entries. The estimator ˆ̂

Y = Ȳ , the overall sample mean. This is
a projection onto a one dimensional subspace. So the numerator in the F test
is

M =

∑c
j=1

∑nj
i=1(Y·j − Ȳ )2

c− 1
. (15.19)

As usual, the test statistic is F = M/σ̂2.

15.5 Analysis of variance: two way

The model is
Yij = µ+ ai + bj + Eij (15.20)

for i = 1 to r and j = 1 to c. The parameters are the scalar µ and the vectors
ai and bj . We assume that

∑r
i=1 ai = 0 and

∑c
j=1 = 0. So there are a total of

r + c− 1 independent parameters.
The idea is that there are r experimental blocks, with the c members of each

block to be as similar as possible. These members are subject to c different
treatments. Untreated, the each block would have its own mean µ + ai, inde-
pendent of the treatment. But the treatments may make a difference. The task
is to see whether this is so.

The experimental numbers are the Yij for i = 1, . . . , r and j = 1, . . . , c. They
may be summarized in the form of a data matrix. These matrices form a vector
space of dimension rc. The subspace L consists of the matrices of the form
µ+ ai + bj as above. It has dimension r + c− 1. The orthogonal projection of
a data matrix with components Yij onto L is

Ŷij = Ȳi· + Ȳ·j − Ȳ . (15.21)
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Since the σ2 is the same for all the populations, we pool them together for the
purpose of estimating σ2. The estimator of σ2 is

σ̂2 =

∑r
i=1

∑c
j=1(Yij − Yi· − Y·j + Ȳ )2

(r − 1)(c− 1)
. (15.22)

Under the null hypothesis the treatments make no difference. Thus the
bj = 0. The subspace L0 consists of all matrices that do not depend on the j
index. This is a subspace of dimension r. The projection onto L0 of Yij is

ˆ̂
Y ij = Ȳi·. (15.23)

The estimator in the numerator of the F test is

M =

∑r
i=1

∑c
j=1(Ŷij − ˆ̂

Y ij)2

(r + c− 1)− r =

∑r
i=1

∑c
j=1(Ȳ·j − Ȳ )2

c− 1
. (15.24)

The test statistic is F = M/σ̂2.

15.6 One way versus two way

In the two way analysis of variance the model is that µj = µ + ai + bj , where
the ai and the bj each sum to zero. Each observation has variance σ2. The
estimate of the block effect ai is Ȳi· − Ȳ··. These estimates range over a space
of dimension r − 1. The estimate of the treatment effect bj is Ȳ·j − Ȳ··. These
estimates range over a space of dimension c − 1. The estimate of the mean
(the fit) is Ȳi· + Ȳ·j − Ȳ··. The estimate of the each error (the residual) is thus
Yij−Ȳi·−Ȳ·j+Ȳ··. These estimates range over a space of dimension (r−1)(c−1).

In the two way analysis of variance the null hypothesis is that the bj = 0.
Under this hypothesis the estimate of the mean is Ȳi·. The test is based on
the difference of the two estimates of the mean, that is, on the treatment effect
Ȳ·j − Ȳ··.

The numerator in the F test is thus

M2 =

∑r
i=1

∑c
j=1(Ȳ·j − Ȳ··)2

c− 1
. (15.25)

The denominator is

σ̂2
2 =

∑r
i=1

∑c
j=1(Yij − Ȳi· − Ȳ·j + Ȳ··)2

(r − 1)(c− 1)
. (15.26)

Compare all this with the one way analysis of variance with c treatment
groups, each of the same size r. The model is that µj = µ + bj , where the bj
sum to zero. Each observation has variance σ2. The estimate of the treatment
effect bj is Ȳ·j − Ȳ··. These estimates range over a space of dimension c − 1.
The estimate of the mean (the fit) is Ȳ·j . The estimate of the each error (the
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residual) is thus Yij − Ȳ·j . These estimates range over a space of dimension
rc− c = (r − 1)c.

In the one way analysis of variance the null hypothesis is that the bj = 0.
Under this hypothesis the estimate of the mean is Ȳ··. The test is based on
the difference of the two estimates of the mean, that is, on the treatment effect
Ȳ·j − Ȳ··.

The numerator in the F test is thus

M1 =

∑r
i=1

∑c
j=1(Ȳ·j − Ȳ··)2

c− 1
. (15.27)

Notice that M1 = M2. The same statistic for the numerator is used in both
models. The denominator is

σ̂2
1 =

∑r
i=1

∑c
j=1(Yij − Ȳ·j)2

(r − 1)c
. (15.28)

The relation between these two denominators is clarified by looking at a sum
of squares identity. The error in the one way model Yij − Ȳ·j is the sum of the
error in the two way model Yij − Ȳi· − Ȳ·j + Ȳ·· with the block effect in the two
way model Yi· − Ȳ··. Furthermore, these two vectors are orthogonal. So the
sums of squares are related by
r∑

i=1

c∑

j=1

(Ȳij − Ȳ·j)2 =
r∑

i=1

c∑

j=1

(Yij − Ȳi·− Ȳ·j + Ȳ··)2 +
r∑

i=1

c∑

j=1

(Ȳi·− Ȳ··)2. (15.29)

If the true model is the two way model, with the block effects ai 6= 0, then it
is clearly wrong to use the one way model. It would be using the wrong estimate
of the error, by confusing the block effects with the random error.

On the other hand, if the true model is the one way model, then the harm
that is done by using the two way model is more subtle. Even if the estimate of
variance is different, it is still an unbiased estimate of σ2. The only difference
is that there are (r − 1)(c − 1) independent summands that contribute to the
estimate, instead of the (r − 1)c in the other analysis. This is comparable to
losing one column of data in the estimate of the variance. The effect of this on
the test is explored in the problems.

15.7 Problems

1. Consider a regression model Yi = α + βx+ γx2. Describe the hypothesis
test where the null hypothesis is γ = 0.

2. Say that a statistician had a situation where the appropriate model was the
one-way analysis of variance. However all nj = r, and the rather confused
statistician instead used the test for the two-way analysis of variance. How
do the two tests differ in this situation? Has the statistician made a major
blunder? Discuss. In particular, compare the power of the two tests.



Appendix A

Linear algebra review

A.1 Vector spaces

Let M(n, k) be the space of all n by k matrices. Thus such a matrix has n
rows and k columns. If A is in M(n, k), then its entries Aij are defined for
i = 1, . . . , n and j = 1, . . . , k and are real numbers.

Matrices inM(n, k) may be combined by the vector space operations. These
are addition of matrices and multiplication of a matrix by a scalar (a real num-
ber). Thus if A and B each belong to M(n, k), and if c is a scalar, then so do
A+B and cA. They are defined by

(A+B)ij = Aij +Bij (A.1)

and

(cA)ij = cAij . (A.2)

In particular, we may repeat these operations and form a linear combination
like cA+ dB. There are even more general linear combinations. We also define
−B to be (−1)B and A−B = A+ (−1)B. Thus negation and subtraction are
also defined by the vector space operations.

Among the matrices in A(m,n) there is a special matrix, the zero matrix.
This will be denoted 0.

Consider a subset L of M(n, k) that contains 0. It is called a subspace if
whenever A and B are in the subset, then also A+B and cA are in the subset.
It follows that if matrices belong to a subspace, then linear combinations of
these matrices belong to the subspace.

There is an important special case of matrices: column vectors. We let R(n)
be the space M(n, 1) of n by 1 matrices. Sometimes we will think of a column
vector in R(n) as a vector of data values or as a vector of predicted data values.
On other occasions we will think of a column vector in R(k) as a vector of
parameter values.
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Suppose that A is a matrix inM(n, k). Then the set of solutions b to Ab = 0
is a subspace of R(k), called the null space of A. Also, the set of all vectors
z = Ab is a subspace of R(n), called the range (or column space) of A.

A.2 Matrix multiplication

If A is a n by k matrix and B is a k by m matrix, then AB is a n by m matrix
defined by

(AB)ij =
k∑
p=1

AipBpj . (A.3)

Notices that the matrices do not have to have the same size, but when we
multiply a matrix A inM(n, k) by a matrix B inM(k,m), it is important that
the number of columns of A is equal to the number of rows of B.

For each n there is a square matrix in M(n, n) called the identity matrix
and denoted by I. It has the values Iij = for i = j and Iij = 0 for i 6= j. If
A is in M(n, k), then we have the identities IA = A and AI = A, where the I
matrix on the left is n by n, while the I matrix on the right is k by k.

Suppose that A is a matrix in M(n, k) and b is a column vector in R(k).
Then ŷ = Ab is a column vector in R(n). This can be thought of as a transfor-
mation that takes the parameter vector b and produces a predicted data vector
ŷ.

Say that A is a square matrix in M(k, k). If there is another matrix A−1

with AA−1 = A−1A = I, where I is the k by k identity matrix, then A is said
to be invertible, and A−1 is its inverse. If B is another invertible square matrix
inM(k, k), then (AB)−1 = B−1A−1. Note the reversal in order. Also note that
(A−1)−1 = A.

If A is a square matrix in M(k, k), then the trace of A is the number

tr(A) =
k∑

i=1

Aii. (A.4)

That is, the trace of A is the sum of the diagonal entries of A. Consider square
matrices A,B in M(k, k). While in general it is not true that AB = BA, it is
always true that tr(AB) = tr(BA).

A.3 The transpose

If A is a matrix inM(n, k), then its transpose is a matrix A′ inM(k, n) defined
by

A′ij = Aji. (A.5)

If A is in M(n, k) and B is in M(k,m), then we have seen that the matrix
product AB is in M(n,m). It is not hard to see that (AB)′ is in M(m,n) and
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(AB)′ = B′A′. Note the reversal in order. Furthermore, it is always true that
A′′ = A.

The matrix A′A is a square matrix that is symmetric, that is, equal to its
transpose. It is not difficult to show that A has trivial null space precisely in
the case when A′A is invertible. [Proof: Suppose A′A is invertible. If Ab = 0,
then A′Ab = 0, and so b = 0. Thus A has trivial null space. For the converse,
suppose that A has trivial null space. If A′Ab = 0, then b′A′Ab = 0, and so
(Ab)′(Ab) = 0, which implies that Ab = 0. It follows that A′A has trivial null
space. Since A′A is square, this implies A′A is invertible.]

There are also some useful facts for square matrices. We always have tr(A) =
tr(A′). For an invertible matrix we have (A′)−1 = (A−1)′.

Once we have the notion of transpose, we have the important notion of inner
product. This is also called the scalar product or dot product. If A is inM(n, k)
and B is in M(n, k), then the inner product A ·B is defined by

A ·B = tr(A′B). (A.6)

Notice that A · B = B · A, since tr(A′B) = tr((A′B)′) = tr(B′A′′) = tr(B′A).
It is also useful to have the formula for A ·B in terms of the matrix entries:

A ·B =
k∑

i=1

n∑

j=1

AjiBji. (A.7)

If A is a matrix inM(n, k), then we define its norm (or Euclidean length to
be

‖A‖ =
√
A ·A =

√√√√
k∑

i=1

n∑

j=1

A2
ji. (A.8)

(Note: There are other notions of norm for matrices, but this is the natural
notion of norm in the context of this inner product.)

If a and b are column vectors in R(n), then again we have the notion of
inner product. However then we may write a · b = a′b, the matrix product of
a row on the left with a column on the right. Since this gives a 1 by 1 matrix,
we may think of it as a number, and we do not have to bother to do a sum to
compute the trace. The formula in terms of the entries of the vectors is:

a · b =
n∑

j=1

ajbj . (A.9)

The norm is

‖a‖ =
√
a · a =

√√√√
n∑

j=1

a2
ji. (A.10)
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A.4 The theorem of Pythagoras

In this section we shall deal with column vectors in R(n). However all the same
ideas work for matrices in M(n, k), since everything is defined in terms of the
vector space operations and the inner product.

We say that vectors a, b are orthogonal or perpendicular if a · b = 0.

Theorem A.1 Theorem of Pythagoras. If a · b = 0, then

‖a+ b‖2 = ‖a‖2 + ‖b‖2. (A.11)

Proof: This is easy:

‖a+ b‖2 = (a+ b) · (a+ b) = a · a+ 2a · b+ b · b = ‖a‖2 + 0 + ‖b‖2. (A.12)

In statistics the theorem of Pythagoras is called a sum of squares identity.
In components it says that if

n∑

i=1

aibi = 0. (A.13)

then
n∑

i=1

(ai + bi)2 =
n∑

i=1

a2
i +

n∑

i=1

b2i . (A.14)

Whenever you have orthogonality, then you have a sum of squares identity.

A.5 The projection theorem

We treat the case of column vectors in R(n). Again everything would work the
same for the space of matricesM(n, k). The following result is fundamental. It
is called the projection theorem.

Theorem A.2 Let L be a subspace of R(n). Let y be a vector in R(n). Then
there exists a unique vector ŷ in L such that y− ŷ is orthogonal to every vector
in L.

The vector ŷ described in the theorem is the orthogonal projection of y onto
L. Since y = ŷ + (y − ŷ), whenever we have an orthogonal projection we also
have a sum of squares identity.

Theorem A.3 Let L be a subspace of R(n). Let y be a vector in R(n). Let ŷ
be the orthogonal projection of y onto L. Then

‖y‖2 = ‖ŷ‖2 + ‖y − ŷ‖2. (A.15)
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Example: Let L consist of the constant vectors inR(n). Then the orthogonal
projection of y onto R(n) is the vector such that each entry is the sample mean
ȳ. The corresponding sum of squares identity is

n∑

i=1

y2
i = n(ȳ)2 +

n∑

i=1

(yi − ȳ)2. (A.16)

Furthermore, we have the following characterization of the orthogonal pro-
jection of y onto L as the vector in L that is closest to y. For this reason, the
orthogonal projection is also called the least squares vector.

Theorem A.4 Let L be a subspace of R(n). Let y be a vector in R(n). Let ŷ
be the orthogonal projection of y onto L. Let z be another vector in L. Then

‖y − ŷ‖2 ≤ ‖y − z‖2. (A.17)

There is an equality only when z = ŷ.

In components this inequality says that ŷ is in the subspace and

n∑

i=1

(yi − ŷi)2 ≤
n∑

i=1

(yi − zi)2. (A.18)

for all z in the subspace. Thus the sum of squares is least when z = ŷ.
A very important special case consists of the situation when L consists of

all vector of the form z = Ab, where A is a fixed matrix inM(n, k) and b varies
over R(k). Thus L is the range of A. It is also convenient to assume that the
null space of A is trivial. Then the b vectors parameterize L, in the sense that
A sets up a one-to-one correspondence between the b vectors in R(k) and the
subspace L that is the range of A.

Theorem A.5 Fix A in M(n, k) with trivial null space. Let L be the range
of A. Let y be a vector in R(n). Then the orthogonal projection of y onto L
satisfies the equation ŷ = Ab̂, where b̂ is a solution of

(A′A)b̂ = A′y. (A.19)

This equation may be solved in the form

b̂ = (A′A)−1A′y. (A.20)

Thus
ŷ = A(A′A)−1A′y. (A.21)

Proof: The condition that ŷ = Ab̂ is the orthogonal projection is that y−ŷ =
y −Ab̂ is perpendicular to every vector Ab in L. This says that

Ab · (y −Ab̂) = 0 (A.22)
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for all b in R(k). This equation may also be written as

(Ab)′(y −Ab̂) = 0 (A.23)

or
bA′(y −Ab̂) = 0 (A.24)

or
b(A′y −A′Ab̂) = 0. (A.25)

However this is true for all b precisely when A′y −AAb̂ = 0.
The only bad thing about this theorem is that one has to invert the matrix

A′A. The most convenient case is when A has orthogonal columns, which is the
same as saying that A′A is a diagonal matrix. Then the inversion is easy.

A.6 Problems

1. Consider the matrix

X =




1 1
1 2
1 3
1 4
1 5
1 6



. (A.26)

The column space L of X is a two-dimensional subspace of R6. Consider
the vector

y =




11
−9
−8
−7
−6
−5



. (A.27)

Find the matrix X ′X and its inverse. Find the projection ŷ = Xb onto
the column space of X. Find the parameter vector b in R2.

2. In the preceding problem, verify the theorem of Pythagoras for ŷ and y−ŷ.

3. Consider the matrix

Z =




1 −5
1 −3
1 −1
1 1
1 3
1 5



. (A.28)

Show that the column space of Z is the same L. However Z has orthog-
onal columns. Consider the same vector y. Find the matrix Z ′Z and its
inverse. Find the projection ŷ = Zc onto the column space of Z. Find the
parameter vector c in R2.


