PROBLEM SET 11

Problem 1

Let \(f(x) \in L^1(\mathbb{R}^n) \) and \(g(x) \in L^1(\mathbb{R}^n) \). Prove that \(H(f + g)(x) \leq Hf(x) + Hg(x) \) for every point \(x \in \mathbb{R}^n \). Here \(Hf \) is the Hardy–Littlewood maximal function of \(f \).

Problem 2

Let \(f(x) \in L^1(\mathbb{R}^n) \), let \(a > 0 \), and let \(f_a(x) = f(ax) \). Prove that \(Hf_a(0) = Hf(0) \).

Problem 3

Let \(\psi(r) \) be a non-negative, non-increasing, right continuous function on \([0, \infty)\) such that \(\lim_{r \to \infty} \psi(r) = 0 \), and let \(f(x) \in L^1_{\text{loc}}(\mathbb{R}^n) \). Assume that either \(f(x) \geq 0 \) or \(f(x)\psi(|x|) \in L^1(\mathbb{R}^n) \). Prove that

\[
\int_{\mathbb{R}^n} f(x)\psi(|x|)dx = v_n \int_{(0,\infty)} r^{n-1}A_r f(0)d(-\psi(r)).
\]

The integral on the right in (1) is the Lebesgue–Stieltjes integral, \(v_n \) is the volume of the unit ball in \(\mathbb{R}^n \), and \(A_r f(0) \) is the average of \(f(x) \) over the ball of radius \(r \) centered at 0.

Hint. You may find it useful that both sides of (1) remain unchanged if one replaces the function \(f(x) \) by a radially-symmetric function \(f_av(|x|) \), which is the average of \(f(x) \) over the sphere of radius \(|x|\).

Solution. 1. First, let us prove (1) in the case when the function \(f \) is radially symmetric, \(f = f(|x|) \). I will use spherical co-ordinates; by \(d\omega \) I denote the measure on the unit sphere in \(\mathbb{R}^n \) that is induced by the Lebesgue measure. Then

\[
\int_{\mathbb{R}^n} f(x)\psi(|x|)dx = \omega_{n-1} \int_{(0,\infty)} r^{n-1}\psi(r)f(r)dr
\]

where \(\omega_{n-1} \) is the area of the unit sphere in \(\mathbb{R}^n \). Then,

\[
A_r f(0) = \frac{1}{v_n r^n} \int_{B(r,0)} f(|x|)dx = \frac{\omega_{n-1}}{v_n r^n} \int_{[0,r]} \rho^{n-1} f(\rho)d\rho,
\]

so the right hand side of (1) equals

\[
\omega_{n-1} \int_{(0,\infty)} \left(\int_{[0,r]} \rho^{n-1} f(\rho)d\rho \right)d(-\psi(r)).
\]

Typeset by \texttt{AMSTeX}
To see that the integral (1B) equals the right hand side of (1A), we take the set
\[D = \{(\rho, r) \in [0, \infty)^2 : \rho \leq r \} \]
and consider the integral
\[\omega_{n-1} \int_D \rho^{n-1} f(\rho) d\rho \times d(-\psi(r)). \]
If \(f \geq 0 \) then, by Tonelli’s theorem, it equals (1B), and it also equals
\[\omega_{n-1} \int_{(0, \infty)} \rho^{n-1} f(\rho) \left(\int_{|\rho, \infty|} d(-\psi(r)) \right) d\rho = \omega_{n-1} \int_{(0, \infty)} \rho^{n-1} \psi(\rho) f(\rho) d\rho. \]
Here, I used the fact that \(\lim_{r \to \infty} \psi(r) = 0 \). The last integral coincides with the right hand side of (1A). In the case when \(f(x) \psi(|x|) \in L^1(\mathbb{R}^n) \), we apply Tonelli’s theorem to \(|f(x)| \) to see that the function \(\rho^{n-1} f(\rho) \) belongs to \(L^1(D, d\rho \times d(-\psi(r))) \); then we apply Fubini’s theorem.

2. Now, let us treat the general case. In spherical co-ordinates, the function \(f \) can be written as \(f(r, \omega) \); here \(\omega \) is a point on the unit sphere, \(S^{n-1} \), in \(\mathbb{R}^n \). By Fubini–Tonelli’s theorem, the function \(f_r(\omega) = f(r, \omega) \) is measurable as a function of \(\omega \) for almost all values of \(r \), and, if \(f(x) \psi(|x|) \in L^1(\mathbb{R}^n) \), then \(f_r \in L^1(S^{n-1}, d\omega) \) for almost all values of \(r \). We define a function
\[f_{av}(r) = \frac{1}{\omega_{n-1}} \int_{S^{n-1}} f(r, \omega) d\omega. \]
This is the average value of the function \(f \) over a sphere of radius \(r \). Then \(f_{av}(|x|) \) is a radially symmetric function. Clearly \(f_{av} \geq 0 \) if \(f \geq 0 \). In the case \(f(x) \psi(|x|) \in L^1(\mathbb{R}^n) \), we notice that
\[|f_{av}(r)| \leq \frac{1}{\omega_{n-1}} \int_{S^{n-1}} |f(r, \omega)| d\omega, \]
and
\[\int |f_{av}(|x|) \psi(|x|)| dx \leq \int_0^{\infty} \int_{S^{n-1}} |f(r, \omega)| \psi(r) d\omega dr = \int |f(|x|) \psi(|x|)| dx. \]
Therefore, the function \(f_{av}(|x|) \psi(|x|) \) belongs to \(L^1(\mathbb{R}^n) \).

I claim that both sides of (1) do not change if one replaces \(f(x) \) by \(f_{av}(|x|) \). Let us start from the expression on the right in (1). One applies the Fubini–Tonelli theorem to get
\[A_r f(0) = \frac{1}{v_n r^n} \int_0^r \rho^{n-1} d\rho \int_{S^{n-1}} f(\rho, \omega) d\omega = \frac{\omega_{n-1}}{v_n r^n} \int_0^r f_{av}(\rho) \rho^{n-1} d\rho = A_r f_{av}(0). \]
The same argument leads to
\[\int_{\mathbb{R}^n} f(x) \psi(|x|) dx = \int_0^{\infty} \psi(r) r^{n-1} dr \int_{S^{n-1}} f(r, \omega) d\omega = \omega_{n-1} \int_0^\infty f_{av}(r) \psi(r) r^{n-1} dr = \int_{\mathbb{R}^n} f_{av}(|x|) \psi(|x|) dx. \]
We have seen that neither side of (1) changes if a function \(f(x) \) is replaced by \(f_{av}(|x|) \), so the general case follows from the case of \(f(x) \) being a radially symmetric function.
Problem 4

Let \(\psi(r) \) be a function from problem 3. In addition, we assume that

\[
\int_{\mathbb{R}^n} \psi(|x|)dx = \omega_{n-1} \int_0^\infty r^{n-1} \psi(r) dr = 1;
\]

here \(\omega_{n-1} \) is the area of the unit sphere in \(\mathbb{R}^n \). Let \(f(x) \in L^1(\mathbb{R}^n) \). Prove that

\[
\lim_{\delta \to 0} \delta^{-n} \int_{\mathbb{R}^n} f(x - y) \psi(|y|/\delta) dy = \lim_{\delta \to 0} \int_{\mathbb{R}^n} f(x - \delta z) \psi(|z|) dz = f(x)
\]

for almost all \(x \).

Hint. Theorem 3.18 is a special case of problem 4; the corresponding function \(\psi \) equals the constant \(1/\nu_n \) for \(0 \leq r < 1 \), and it vanishes for \(r \geq 1 \).

Solution. 1. Let us prove the statement in the case when the function \(f(x) \) is continuous and bounded. Fix a point \(x \), fix a number \(\epsilon > 0 \), and let \(|f(y) - f(x)| < \epsilon/2 \) when \(|y - x| < \eta \). Here \(\eta \) is a positive number, the existence of which is guaranteed by continuity of \(f(x) \). We break the integral

\[
I = \delta^{-n} \int_{\mathbb{R}^n} f(x - y) \psi(|y|/\delta) dy - f(x) = \delta^{-n} \int_{\mathbb{R}^n} [f(x - y) - f(x)] \psi(|y|/\delta) dy
\]

into the sum

\[
I_1 + I_2 = \delta^{-n} \int_{|y| < \eta} [f(x - y) - f(x)] \psi(|y|/\delta) dy + \delta^{-n} \int_{|y| \geq \eta} [f(x - y) - f(x)] \psi(|y|/\delta) dy.
\]

One has

\[
|I_1| < \frac{\epsilon}{2} \delta^{-n} \int_{|y| < \eta} \psi(|y|/\delta) dy \leq \frac{\epsilon}{2} \delta^{-n} \int_{\mathbb{R}^n} \psi(|y|/\delta) dy = \frac{\epsilon}{2}.
\]

To estimate the second integral, \(I_2 \), let us assume that \(|f(z)| \leq M \) (the function \(f(x) \) is bounded!) Then

\[
|I_2| \leq 2M \delta^{-n} \int_{|y| \geq \eta} \psi(|y|/\delta) dy = 2M \int_{|y| \geq \eta / \delta} \psi(|y|) dy.
\]

The function \(\psi(x) \) belongs to \(L^1(\mathbb{R}^n) \), so the last integral converges to 0 when \(\delta \to 0 \) (the number \(\eta \) is fixed;) therefore it can be made smaller than \(\epsilon/4M \) is \(\delta \) if small enough. Then \(|I| < \epsilon \).

2. For a positive number \(\eta \), we find a bounded, continuous function \(h(x) \) such that the \(L^1 \) norm of the difference \(g(x) = f(x) - h(x) \) is smaller than \(\eta \). We introduce the notations

\[
f_\delta(x) = \delta^{-n} \int_{\mathbb{R}^n} f(x - y) \psi(|y|/\delta) dy = \int_{\mathbb{R}^n} f(x - \delta z) \psi(|z|) dz;
\]

\(g_\delta \) and \(h_\delta \) are similar integrals. One has

\[
|f_\delta(x) - f(x)| \leq |h_\delta(x) - h(x)| + |g_\delta(x)| + |g(x)|,
\]
and

\[(2) \limsup_{\delta \to 0} |f_\delta(x) - f(x)| \leq \limsup_{\delta \to 0} |g_\delta(x)| + \limsup_{\delta \to 0} |g(x)|.\]

For a positive number \(\epsilon\), we will estimate the measure of the set of all points \(x\) for which the right hand side of (2) is bigger than \(\epsilon\). By Chebyshev’s inequality,

\[m(\{x : |g(x)| > \epsilon/2\}) \leq \frac{2\eta}{\epsilon}.\]

We apply the result of problem 3 to the function \(g_{x,\delta}(z) = g(x - \delta z)\):

\[\int_{\mathbb{R}^n} g(x - \delta z) \psi(|z|) dz = v_n \int_{[0, \infty)} r^n A_r g_{x,\delta}(0) d(-\psi(r)).\]

It follows from the result of problem 2 that

\[|A_r g_{x,\delta}(0)| \leq H g_{x,\delta}(0) = H g(x);\]

here \(H\) denotes the Hardy–Littlewood maximal function. Therefore,

\[|g_\delta(x)| \leq H g(x) v_n \int_{[0, \infty)} r^n d(-\psi(r)) = H g(x) \omega_{n-1} \int_0^\infty r^{n-1} \psi(r) dr = H g(x).\]

By the maximal theorem,

\[m(\{x : |g_\delta(x)| > \epsilon/2\}) < \frac{C \eta}{\epsilon} \]

where \(C\) is an absolute constant. Finally,

\[m(\{x : \limsup_{\delta \to 0} |f_\delta(x) - f(x)| > \epsilon\}) < \frac{(C + 2) \eta}{\epsilon}.\]

The last inequality is valid for every \(\eta > 0\). The result follows from that.

From Folland’s book: 22–25, p. 100