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as a parametric solution of (10). Hence from (9), taking the plus sign before «,
ay = Tm® 4+ 13mn — 30n2. ’

Then from (8), as=13m?—22mn —26n2. Finally from (5), 7'
as = — 8m? -+ 39mn — 16n?, by = — 13m? + 24mn — 26n2.

The negative sign before a only interchanges @; and a@; with sign changed. If
we denote the quadratic form am?+bmn—-cn? by the notation [a, b, ¢], we write
the solution of the system (3) as

a = [7, 13, —30], az = [13, —22, —26], a3 =[-8, 39, —16]

by = [-17,13, —16], by = [8, —13, —30], by = [—13, 24, —26].
By Theorem 3, the system (2) has then the following parametric solution:

A4, = [-1, 62, —30], 4, = [7, 38, —50], Az =[5, —8, —22),

A= [19, —32, —42], As = [—19, 36, —62], By = [—9, 66, —42],

By = [5, 42, —62], By = [—21, 38, —22], By = [9, —14, — 50],

Bs = [21, —36, —30].
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PROJECTING m ONTO c

RoBERT WHITLEY, New Mexico State University

Itis a well-known result, due to Phillips, that the Banach space m, of bounded
sequences with the sup norm, cannot be projected continuously onto the sub-
space ¢y of sequences converging to zero [1, page 33, Corollary 4]. A typical
use of this fact is found in [2]. We give a simple proof using an idea inherent
in [4] and, as was pointed out by the referee, in [3]. Our method may also be
used to simplify the proof of the result in [4].

LEMMA [5, page 77]. Let I be a countable set. Then there is a family { U,:ain 4 }
of subsets of I such that (1) U, is infinite, (2) UN\Us is finite for a b and (3) the
index set A 1s uncountable.

Proof. Arthur Kruse has given the following elegant proof: Take I to be the
rationals in (0, 1), 4 the irrationals in (0, 1) and, for a in 4, let U, be a sequence
of rationals in (0, 1) converging to a.

Recall that a subset of the conjugate space X* of a Banach space X is total
if the only vector annihilated by all members of the subset is the zero vector.
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For brevity we say that a Banach space X has (property) B if X* contains a
countable total subset. It is easy to see that B is preserved under isomorphism,
that a subspace of a space with B has B and that the space m has B.

TuEOREM. There is no continuous projection of m onto co.

Proof. Suppose that there is a continuous projection of m onto c,. Then
m=co®R, where R is a closed subspace of m. Since m/¢, is isomorphic to R
we see that m/c, has B. The proof consists of showing that m /¢, does not have B.

We think of m as B(I), the bounded functions on a countable set I. Let
{ Us:ain 4 } be a family of subsets of I as in the lemma and let f, be the coset
in m/c, which contains the characteristic function of the set U,.

Let g be in (m/¢,)*. We will show that the set { fatB(fs) ?50} is countable;
it suffices to show that the set C(n) = { s lg(fa)l == 1/n} is countable for each
natural number #. Choosef, * + +,fmin C(n) and let b;=sgn(g(f)) =g(f:)/ Ig(ff) [ .
The vector x= Eb; f: is of norm one (note that as a coset x contains vectors
whose norm may be greater than one), and so ” g” = lg(x)l =m/n; thus C(n) is
finite for each 7.

We conclude by noting that if {h,} is a countable subset of (m/co)* then
our argument shows that there are only countably many f, with %:(f.) nonzero
for some 7. Hence we can find a vector f, which is mapped into zero by all the A,
and so the set {4} is not total.
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INTERIORITY AND THE TONELLI CONDITIONS
W. V. CaLpweLL, Flint College, Univ. of Michigan

In 1937, S. Stoilow proved that if f is a complex-valued function of a complex
variable which has the properties: (i) point inverses are totally disconnected,
and (ii) f maps interior points of its domain of definition into interior points of
the image, then f is topologically equivalent to an analytic function. This result
stimulated interest in light interior functions (i.e. functions satisfying (i) and
(ii)) and in establishing conditions which insure that a function satisfying these
conditions will be light and interior. Titus and Young proved that if f&C’ and
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