TAKE-HOME EXAM. DUE ON NOVEMBER 30

Problem 1

Let R > 0, and let B_R be the space of all C^{∞} functions on \mathbb{R} such that

$$||f||_R = \sum_{k=0}^{\infty} \frac{R^k}{k!} \sup_x |f^{(k)}(x)| < \infty.$$

- a) Show that every function $f \in B_R$ extends to a bounded, holomorphic function in the strip $\{z \in \mathbb{C} : |\text{Im}z| < R\}$.
- b) Prove that B_R is a Banach algebra (multiplication is the usual multiplication of functions).
- c) Show that $\sin x \in B_R$ for all R > 0 and find the spectrum of $\sin x$ in B_R (the answer will depend on R).
- d) Let 0 < R' < R. Show that d/dx is a bounded operator from B_R to $B_{R'}$.

Problem 2

Let E be a Banach space, $B_n, B, A \in \mathcal{L}(E)$. Suppose that the operator A has finite rank.

- a) Prove that if $B_n \to B$ in the strong topology then $B_n A \to BA$ in the norm topology.
- b) Does the convergence of B_n to B in the strong topology imply the convergence of AB_n to AB in the norm topology? Give a proof or a counterexample.

Problem 3

Let A be a bounded operator in a Banach space E. Prove that if for every $x \in E$ there exists a non-trivial polynomial $p_x(t)$ such that $p_x(A)x = 0$ then there exists a non-trivial polynomial p(t) such that p(A) = 0.

Problem 4

Let L and R be the left shift and right shift operators in $l^2(\mathbb{Z}_+)$.

- a) Find the spectrum of L + R.
- b) Prove that 2 belongs to the spectrum of $L + R^k$ for every integer $k \ge 1$.

Problem 5

Let K(x,y) be a continuous function on $[0,1]^2$. Let $A: L^2([0,1]) \to L^2([0,1])$ be an operator given by the formula

$$Au(x) = \int_0^x K(x, y)u(y)dy.$$

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}\mathrm{T}_{E}X$

a) Prove that there exists a constant C such that

$$||A^k|| \le \frac{C^k}{k!}$$

for all integer $k \geq 0$.

b) Find the spectrum of A.