PROBLEM SET 1

Problem 1

Let $A: V_{1} \rightarrow V_{2}$ and $B: V_{2} \rightarrow V_{3}$ be linear mappings of finite index. Prove that the mapping $B A: V_{1} \rightarrow V_{3}$ is of finite index, and

$$
\operatorname{ind}(A B)=\operatorname{ind}(A)+\operatorname{ind}(B)
$$

Problem 2
Let

$$
0 \xrightarrow{A_{0}} V_{1} \xrightarrow{A_{1}} V_{2} \xrightarrow{A_{2}} \cdots \xrightarrow{A_{n-1}} V_{n} \xrightarrow{A_{n}} 0
$$

be a sequence of linear mapping between finite dimensional linear spaces (the first one and the last one are zero-dimensional spaces) such that $R\left(A_{j}\right) \subset N\left(A_{j+1}\right)$, $j=0, \ldots, n-1$. Prove that

$$
\sum_{j=1}^{n}(-1)^{j} \operatorname{dim}\left(N\left(A_{j}\right) / R\left(A_{j-1}\right)\right)=\sum_{j=1}^{n}(-1)^{j} \operatorname{dim}\left(V_{j}\right)
$$

Problem 3

Let A be a symmetric $n \times n$ matrix with real entries. Let

$$
\lambda_{1}(A) \leq \lambda_{2}(A) \leq \cdots \leq \lambda_{n}(A)
$$

be all eigenvalues of A; every eigenvalue is counted as many times as its multiplicity is.
a) Prove that

$$
\lambda_{n}(A)=\max \{(A x, x):\|x\|=1\}
$$

where x is an n-tuple, $(x, y)=\sum x_{j} y_{j}$, and $\|x\|^{2}=(x, x)$.
b) Prove that $\lambda_{n}(A)$ is a convex function on the space Symm_{n} of $n \times n$ symmetric matrices with real entries.
c) Prove that

$$
\left\{A \in \operatorname{Symm}_{n}: \sum_{j=1}^{n} \lambda_{j}(A)=0\right\}
$$

is a linear subspace in Symm_{n}.
d) Prove that the set

$$
\left\{A \in \operatorname{Symm}_{n}: \sum_{j=1}^{n} \lambda_{j}(A)^{2} \leq 1\right\}
$$

is convex and find all its extreme points.

