PROBLEM SET 3

Problem 1

Let $2 \leq p<\infty$. Prove that there exists a constant $C>0$ such that

$$
\frac{|z|^{p}+|w|^{p}}{2}-\left|\frac{z+w}{2}\right|^{p} \geq C|z-w|^{p}
$$

for any complex numbers z and w. Use this inequality to prove that the unit ball in an L^{p} space, $2 \leq p<\infty$, is uniformly convex.

Problem 2

Let E be a Banach space. Suppose that the identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

holds for every $x, y \in E$. Prove that the formula

$$
(x, y)=\frac{\|x+y\|^{2}-\|x-y\|^{2}}{4}+i \frac{\|x+i y\|^{2}-\|x-i y\|^{2}}{4}
$$

defines a scalar product in E, and $\|x\|^{2}=(x, x)$.

Problem 3

Let P be a projection operator in a Hilbert space H. This means that $P \in \mathcal{B}(H)$ and $P^{2}=P$. Suppose that $\|P\|=1$. Prove that P is an orthogonal projection.

Problem 3

Let $\mathbb{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ be the unit disk in the complex plane. We endow it with the two-dimensional Lebesgue measure $d x d y$; here $z=x+i y$. Show that the functions $f_{k}(z)=z^{k-1}, k=1,2, \ldots$, form an orthogonal system in $L^{2}(D)$. Let \mathcal{L} be the closure of the span of the functions f_{k}. Find a formula for the orthogonal projection P onto \mathcal{L} :

$$
P f(\zeta)=\int_{\mathbb{D}} K(\zeta, z) f(z) d x d y
$$

Try to find as explicit expression for $K(\zeta, z)$ as possible.

Let A be a bounded operator in a Hilbert space H. The numerical range of A is the set

$$
W(A)=\{(A x, x):\|x\|=1\}
$$

Problem 4

Let $a(x)$ be a (complex-valued) continuous function on the interval $[0,1]$. Let M_{a} be the operator in $L^{2}([0,1])$ of multiplying by $a(x): M_{a} f(x)=a(x) f(x)$. Prove that the closure of $W\left(M_{a}\right)$ is the convex hull of the range of the function $a(x)$. What can you say about the set $W\left(M_{a}\right)$? (Hint: you may find the notion of an extremal point of a convex set useful.) What will change if one takes $a(x) \in L^{\infty}([0,1])$, not necessarily continuous?

Problem 5

Let S_{r} be the right shift operator in the space l^{2} of sequences $x=\left\{x_{n}\right\}, n=$ $1,2, \ldots$:

$$
\left(S_{r} x\right)_{n}= \begin{cases}x_{n-1}, & \text { if } n>1 \\ 0, & \text { if } n=1\end{cases}
$$

Prove that

$$
W\left(S_{r}\right)=\{\zeta \in \mathbb{C}:|\zeta|<1\} .
$$

