PROBLEM SET 5

Problem 1

Let Ω be a bounded domain in \mathbb{R}^{n}, and let

$$
d=\sup _{x, y \in \Omega}|x-y|
$$

be the diameter of Ω. Let $K(z) \in L^{1}\left(B_{d}\right)$ where B_{d} is the ball of radius d in \mathbb{R}^{n} centered at the origin. Define an operator

$$
A u(x)=\int_{\Omega} K(x-y) u(y) d y
$$

a) Show that A is a bounded operator in $L^{2}(\Omega)$ and

$$
\|A\| \leq \int_{B_{d}}|K(z)| d z
$$

(Hint. You may consider $(A u, v)$ with $\|u\|=\|v\|=1$.)
b) Prove that A is a compact operator in $L^{2}(\Omega)$.

Problem 2

For a bounded domain Ω in the complex plane, we denote by $A(\Omega)$ the Banach space of functions that are analytic in Ω and continuous in $\bar{\Omega}$; the norm in $A(\Omega)$ is $\|u\|=\max |u(x)|$. Let Ω and Ω_{1} be bounded domains in \mathbb{C} such that $\bar{\Omega}_{1} \subset \Omega$.
a) Prove that the operator $d / d z$ that maps a function to its derivative is a compact operator from $A(\Omega)$ to $A\left(\Omega_{1}\right)$.
b) Let

$$
A=\sum_{k=0}^{n} a_{k}(z) \frac{d^{k}}{d z^{k}}
$$

be a differential operator with coefficients $a_{k}(z) \in A(\Omega)$. Prove that A is a compact operator from $A(\Omega)$ to $A\left(\Omega_{1}\right)$.

Problem 3

Let A be a bounded operator in a Hilbert space H. Prove that A is compact if and only if the operator $A^{*} A$ is compact.

Problem 4

Let a_{j}, l_{j}, and $w_{j}, j=1,2, \ldots$ be sequences of positive numbers such that $\left\{a_{j}\right\}$ decreases, $w_{j}<a_{j+1}$ and the series $\sum\left(a_{j}+l_{j}\right)$ converges. Let $b_{1}=0$ and

$$
b_{k}=a_{1}+2 a_{2}+\cdots+2 a_{k-1}+a_{k}+2 l_{1}+\cdots+2 l_{k-1}
$$

for $k>1$. Define closed sets in \mathbb{R}^{2} :

$$
R_{k}=\left(\left[b_{k}-a_{k}, b_{k}+a_{k}\right] \times\left[-a_{k}, a_{k}\right]\right) \cup\left(\left[b_{k}+a_{k}, b_{k}+a_{k}+2 l_{k}\right] \times\left[-w_{k}, w_{k}\right]\right)
$$

Let Ω be the interior of the union of all R_{k}. Let $\chi(t)$ be a smooth function on $[0, \infty)$ such that $\chi(t)=1$ when $t<1 / 2$ and $\chi(t)=0$ when $t \geq 1$. Let $u_{k}(x, y)$ be a sequence of functions in Ω that is defined in the following way

$$
u_{k}(x, y)= \begin{cases}0, & \text { if } x<b_{k}-a_{k}-l_{k-1} \text { or } x>b_{k}+a_{k}+l_{k} \\ \chi\left(\left(b_{k}-a_{k}-x\right) / l_{k-1}\right), & \text { if } b_{k}-a_{k}-l_{k-1} \leq x \leq b_{k}-a_{k} \\ 1, & \text { if } b_{k}-a_{k}<x<b_{k}+a_{k} \\ \chi\left(\left(x-b_{k}-a_{k}\right) / l_{k}\right), & \text { if } b_{k}+a_{k} \leq x \leq b_{k}+a_{k}+l_{k}\end{cases}
$$

a) Show that

$$
\begin{equation*}
\frac{\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x}{\int_{\Omega}\left|u_{k}\right|^{2} d x} \leq \frac{C}{a_{k}^{2}}\left(\frac{w_{k}}{l_{k}}+\frac{w_{k-1}}{l_{k-1}}\right) \tag{1}
\end{equation*}
$$

where C is a constant.
b) Prove that if the sequence that appears on the right in (1) is bounded (ex.: $\left.a_{k}=l_{k}=1 / k^{2}, w_{k}=1 / 5 k^{7}\right)$ then the embedding of $H^{1}(\Omega)$ to $L^{2}(\Omega)$ is not compact.

