PROBLEM SET 2

Problem 1

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a mapping given by the formulas

$$
\begin{aligned}
& y^{1}=\left(x^{1}\right)^{3}+x^{2} \\
& y^{2}=\left(x^{1}\right)^{3}-\left(x^{2}\right)^{3}
\end{aligned}
$$

a) Is F a homeomorphism?
b) Is F a diffeomorphism?

Problem 2.

Let S^{3} be thought of as

$$
\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}
$$

and let S^{2} be thought of as the complex plane \mathbb{C}, with ∞ added. Define a mapping $H: S^{3} \rightarrow S^{2}$ by the formula $H\left(z_{1}, z_{2}\right)=z_{1} / z_{2}$.
a) Show that H is smooth.
b) Find the rank of H at each point.
c) What is $H^{-1}(p)$ where $p \in S^{2}$?

From Spivak's book: problems 8, 9, 15(a), 33, 34, p.p. 53-62

