PROBLEM SET 4

Problem 1

Let $U \subset \mathbb{R}^{n}$ be an open domain, and let $F: U \rightarrow \mathbb{R}^{n}$ be a C^{1} mapping.

1) Let $x, y \in U$. Suppose that the whole segment $\{(1-t) x+t y: 0 \leq t \leq 1\}$ lies in U. Prove that

$$
F(y)-F(x)=\int_{0}^{1} F^{\prime}((1-t) x+t y)(y-x) d t
$$

Here F^{\prime} is the Jacobi matrix of F.
2) Let $x \in U$ and ϵ is small enough that the closed ball $\overline{B(x, \epsilon)}$ centered at x and of radius ϵ lies in U. Suppose that $\operatorname{det} F^{\prime}(x) \neq 0$. For $y \in \overline{B(x, \epsilon)}$, define

$$
R(y)=F^{\prime}(x)^{-1}(F(y)-F(x))-(y-x)
$$

Prove that for every $\eta>0$ there exists $\epsilon>0$ such that

$$
\|R(y)-R(z)\| \leq \eta\|y-z\|
$$

if $y, z \in \overline{B(x, \epsilon)}$.
3) Let $w \in \mathbb{R}^{n}$. Show that $F(y)=w$ if and only if $S_{w}(y)=y$ where

$$
S_{w}(y)=x+F^{\prime}(x)^{-1}(w-F(x))-R(y)
$$

4) Prove that there exist $\delta>0$ and $\epsilon>0$ such that S_{w} is a contraction in $\overline{B(x, \epsilon)}$ if $\|w-F(x)\| \leq \delta$.
5) Prove the Inverse Function Theorem:

Let U be a domain in \mathbb{R}^{n}, and let $F: U \rightarrow \mathbb{R}^{n}$ be a C^{1} mapping. Let $x \in U$, and suppose that $\operatorname{det} F^{\prime}(x) \neq 0$. Then there exist $\delta>0$ and $\epsilon>0$ such that for every $w \in B(F(x), \delta)$ there exists $y \in B(x, \epsilon)$ that solves the equation $F(y)=w$. This solution is unique, and the mapping

$$
F^{-1}: B(F(x), \delta) \rightarrow B(x, \epsilon)
$$

is differentiable. Moreover,

$$
\left(F^{-1}\right)^{\prime}(w)=\left(F^{\prime}\left(F^{-1}(w)\right)\right)^{-1}
$$

and, therefore, F^{-1} belongs to C^{1}.
From Spivak's book: problems 1, 3, 4, 13, 16, 17 p.p. 169-178

