PROBLEM SET 7

Problem 1

Let $X(x)$ be a smooth vector field in $\overline{B^{n}}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$. Suppose that $X(x) \cdot x>0$ for all $x \in S^{n-1}=\{x:|x|=1\}$. Here \cdot is the dot-product. Prove that there exists $x \in B^{n}$ such that $X(x)=0$.

Problem 2

Let $S^{2 n}$ be an even-dimensional sphere.
a) For a continuous vector field $X(x)$ on $S^{2 n}$, prove that $X(x)=0$ for some point $x \in S^{2 n}$.
b) For a continuous mapping $F: S^{2 n} \rightarrow S^{2 n}$, prove that there exists a point $x \in S^{2 n}$ such that either $X(x)=x$ or $X(x)=-x$.
Hint. For a), you can show that if $X(x) \neq 0$ everywhere then the identity mapping of $S^{2 n}$ is homotopic to the mapping $x \mapsto-x$. Prove that they are actually not homotopic.

From Hatcher's book: problems 1, 4, 9, 10, 11. p.p. 18-20

