PROBLEM SET 7

Problem 1

Let X(x) be a smooth vector field in $\overline{B^n} = \{x \in \mathbb{R}^n : |x| \leq 1\}$. Suppose that $X(x) \cdot x > 0$ for all $x \in S^{n-1} = \{x : |x| = 1\}$. Here \cdot is the dot-product. Prove that there exists $x \in B^n$ such that X(x) = 0.

Problem 2

Let S^{2n} be an even-dimensional sphere.

a) For a continuous vector field X(x) on S^{2n} , prove that X(x) = 0 for some point $x \in S^{2n}$.

b) For a continuous mapping $F: S^{2n} \to S^{2n}$, prove that there exists a point $x \in S^{2n}$ such that either X(x) = x or X(x) = -x.

Hint. For a), you can show that if $X(x) \neq 0$ everywhere then the identity mapping of S^{2n} is homotopic to the mapping $x \mapsto -x$. Prove that they are actually not homotopic.

From Hatcher's book: problems 1, 4, 9, 10, 11. p.p. 18-20

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX