The wave front set of a distribution

The Fourier transform of a smooth compactly supported function u(z) decays faster than
any negative power of the dual variable &; that is for every number N there exists a constant
Cy such that

[a(e)] < Cn(1+ ). (1)

On the other hand, if the Fourier transform of a distribution with compact support satisfies
the estimate (1) then this distribution is actually induced by a smooth function. Therefore,
the estimate (1) can be viewed as a characteristic property for smoothness. The singular
support of a distribution tells us where the singularities of a distribution lie. The wave
front set gives more precise description of singularities; it tells us not only at what points
a singularity occur, but it also indicates the directions in the dual space from which the
singularities are coming; that is, in what directions the estimate (1) does not hold.

Let us start with some definitions. A set V' C R™\ {0} is called a conic set if, together
with any point £, it contains all the points t{ where ¢ > 0. A conic set is completely
determined by its intersection with the unit sphere S®~! in R™. By a conic neighborhood
of a point £ € R™ \ {0} we mean an open conic set that contains &.

Let u € £ be a distribution in R™ with compact support. Its Fourier transform is
a smooth function. We define the set ¥ (u) € R™ \ {0} by saying that £ € ¥(u) if there
exists a conic neighborhood V' of £ such that the estimate (1) holds in V for all N. It
follows immediately from the definition that ¥(u) is a closed conic set. Notice that the
distribution w is induced by a smooth function if and only if X(u) = 0.

Proposition 1. Let u € &'(R™) and ¢ € C°(R™). Then X(¢u) C X(u).

Proof. First, let ¢ € C5°. Let £ € X(u), and let V be a conic neighborhood of ¢ where
the estimate (1) holds. We take a smaller conic neighborhood, V' of ¢ the closure of which
lies in V', and we will prove the estimate (1) for the product ¢u in V”.

First, there exists a constant ¢ such that, for every n € V', the closed ball of radius
c|n|, centered at ), lies in V. In fact, the distance between VN S"~! and the complement
of V' is positive. Choose ¢ to be a positive number that is smaller that that distance. The
inequality |¢ —n| < c|n| implies [(¢/[n]) — (n/In])| < ¢; so (¢/|n]) € V', and ¢ € V” because
V' is conic.

The Fourier transform of ¢u equals the convolution of Fourier transforms,

utn) = 2" [ bl - Qa(O)ac @
The Fourier transform of v has an upper bound
()] < C(1+ [¢h™ (3)

for some number M. The integral in (2) can be broken into

L +1,= / +/ :
[{—n|<e|n] [—nl>c|n|
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In the first integral, € V, so
[a(Q)] < On(L+ K™Y <Oy + )Y

because |¢| > (1 — ¢)|n|. Therefore,

1< 1+ o)™ [ 1600)dn o

To estimate the integral I, we notice that |( — n| > ¢|n| implies

1
¢ =nl = [¢] = Inl = I¢| = ~I¢ =l

and, therefore,
c
—nl > ——|¢|. 5
C=nl> =l 9

The estimates (1) and (3) imply that, for any choice of NV,
Rl<C | -l (L )M
I¢=n[=¢ln]

The integrand in the last formula is bounded by
A+IC=n)™MA+[C—n)™M " A+ KhY < @+ )™ (@ + ¢y
when | — 1| > ¢|n| (see (5).) Therefore,
|Io] < Cao(1 + [n])~*.

The last estimate, together with (4), implies

bu(n)] < Cs(1+ )N,

This proves the Proposition in the case ¢ € C§°. If a function ¢ is not compactly supported
then one can find a function ¢’ € C§° that coincides with ¢ in a neighborhood of suppu.
Clearly, ¢u = ¢'u. Q.E.D.

Corrolary 2. Let u € D'(R™), and let ¢1,¢2 € C°(R™). Suppose that ¢2(z) # 0 when
x € supp(¢1). Then E(pi1u) C X(pou).

Proof. Let U be a neighborhood of supp(¢;) such that ¢o(x) # 0 when x € U, and let V
be a smaller neighborhood of supp(¢1):

supp(¢1) CV; V CU.
Let x(z) be a smooth function such that y(x) = 1 when z € V and x(z) = 0 when x ¢ U.

We define a function ()/a(2)
) x(x)/p2(x), ifxeU;
Wj)_{o, ifr g U.
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Clearly, ¥ (z) is a smooth, compactly supported function, and ¢; = 1 (pau).
Q.E.D.
Let 2 be an open set in R™, and let u € D(Q2). For a point x € 2, we define

Sa(u) = NS(6u); ¢ € CF(Q), ) # 0.

As an intersection of closed conic sets, ¥, (u) is a closed conic set.

Proposition 3. Let I' be a conic neighborhood of ¥, (u), u € D’'(2). Then there exists a
neighborhood U of x such that ¥(¢u) € ' for every function ¢(x) € C§°(U).

Proof. The set K = S" 1\ T is a closed subset of the unit sphere. For every point w € K
there exists a function ¢, € C§°(€2) such that ¢, (z) # 0 and a neighborhood of w does
not intersect with ¥(¢,u). These neighborhoods cover K. One can find a finite number
of them that still cover K. Therefore, there exists a finite number of functions ¢; C5°(2)
such that ¢;(z) # 0 and K N (N;X(¢ju)) = 0. Because I is a conic set, we conclude

ﬂjZ(quu) crl.

Let U be a neighborhood of x that all ¢;’s do not vanish in U. By Corrolary 2, ¥(¢u) C
Y(¢ju) for every function ¢ € C3°(U). Therefore, X(¢u) C I
Q.E.D.

One can interpret Proposition 3 in the following way: 3.(u) is the limit of ¥(¢u)
when supp(¢) — {z} and ¢(z) # 0. Now, we are ready to define the wave front set of a
distribution.

Definition. The wave front set of a distribution u € D(S2) is defined as

WF(u) = {(z,§) € @ x (R"\ {0}) : § € Xy (u)}.

It is a simple exercise to derive from the definition of the wave front set and from
Proposition 3 that the projection of W F(u) on € is exactly the singular support of u.
Example 4. Let P, € R" be the k-dimensional co-ordinate plane xy4y; = --- = =, = 0.
By z’ T will denote the collection (z1,...,xx), and x” is the collection of remaining co-
ordinates, so x = (2, z"). For a function u(z’) € C*°(Py), we will compute the wave front
set of the distribution u(z")d(x”). This distribution acts on a test function in the following
way

(u(@)3(z"), ) = / (@), 0)da.
The support of this distribution is {x = (2/,0) : 2’ € supp(u)}. Choose a point xzy = (x{,0)

from this set. Let ¢ be a compactly supported smooth function such that ¢(zg) # 0. The
Fourier transform of the distribution ¢u(z’)d(z”) equals

ﬂ&sv:/waan*fMG

Let I'y = {(¢',&") # 0 : & = 0}. On the whole cone T'y, the function F'(§) is constant
(the integral of u(z’)¢(z’,0).) For every neighborhood of zp, one can find a function ¢
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supported in that neighborhood such that the integral of u(x')¢(x’,0) does not vanish. So,
by Proposition 3, I'y C X, (ud(z”)). On the other hand, if & & I'y then |¢”| < C|¢'| for
every point £ = (¢, £") from a certain conic neighborhood T" of &y. Therefore, for every N,

[FEOI<COnA+IEN)™N <Cy(t+1eh)™"
when £ € T', and &) &€ X, (ud(z”)). We conclude that

WEF (u(2)o(z")) = {(2', 2", £") - 2’ € supp(u), & = 0}. (6)

Transformation of the wave front set under a diffeomorphism.

Let @ : Q — Q' be a diffeomorphism, and let v € D'(Q)'). The distribution v = ®*u
acts according to the formula

(v, ) = (u, [¥'(y)|( T (y)))

where ¥ = &1 and |¥’| is the absolute value of the Jacobian of W. In particular, if u is a
distribution with compact support then

(&) = (u, [ (y)|e W) = (u,a(y)| ¥ (y)]e” ) E)

where a(y) is a smooth compactly supported function that equals 1 identically on supp(u).
The support of a(y) can be made as close to supp(u) as one wishes.To simplify notations,
we set

b(y) = a(y)[¥'(y)!.
By the definition of the Fourier transform of a distribution,
0(&) = (@, FH (b(y)e” "))
—m [ [ a9 dyn @

Fix a point xy € 2. We will assume that the support of u lies in a ball of sufficiently small
radius centered at the point yg = ®(xg). We also assume that the support of b(y) also lies
in that ball. To make notations simpler, set x¢ = yo = 0.

Lemma 5. Let A(y) = ¥'(y) be the Jacobi matrix of ¥. Then

Sewc  |J @)W (8)

yeSUPP(u)

Proof. Let & be a point that does not belong to Uyesuppu(A*(y)) 'S (u). Then there
exists a conic neighborhood T" of £y and a conic neighborhood V' of ¥(u) such that
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At(Y))I NV = () when y € suppu. Let I be a smaller conic neighborhood of &y, I” C T.

We break the integral (7) into the sum

01(€) + 12(6) = (2m) " / e / "

It is easy to estimate v(§). The function u(n) decays rapidly outside of V', so

2r)"b(w) [ atm)emdy

is a smooth, compactly supported function. Therefore, after having made a substitution
x = WY(y), one would recognize v(£) as the Fourier transform of a smooth, compactly

supported function. Thus, v2(£) decays rapidly.
To estimate v1(£) we will use multiple partial integrations. Notice that

. U .
D=6 = (773‘ _ M&Q ciyn—"(y)-€)
P

= (n— At(y)f)jei(yn—\l’(y)-é)_

We introduce a first order differential operator
"(1)&);
L= = D
Z In At (y)¢E[?
The denominator in (9) does not vanish when £ € I' and n € V. One has
Letn=¥()-&) — oilyn—"(y)-&)

Let £ € I” and |£| > 1. Then

em [ [ by
=en [ [a e Odydy
where

(n — A*(y)E);
ZJ: Tl — At(y)e)?

The operator (L')* is a differential operator of order k in y.
Exercise. By induction, show that the coefficients of (L!)* are of the form

Z Pk+my€77)

|2(lc+m)

(10)

(11)



where Py, is a polynomial in (£, 7n) of degree k + m with smooth in y coefficients.
The cones ' and U(A?(y) ™1V do not intersect, and the closure of I” lies in T, so

n—A'(y)gl = Clnl,  |n— A'(y)¢] = Cl¢|

when £ € TV and n € V. If one assumes in addition that |£] > 1 then

In— At (y)¢] > C(1 + €] + |n]).

The last estimate, the result of the exercise, and (11) imply

i (€)] < Gy /V () |(1+ €] + [nl)~*dn

for any k. On the other hand,
[a(n)| < C(1+ )™

for some M because u is a distribution with compact support. By choosing k = N + M +
n + 1, one gets the desired estimate

i (6)] < C(1+|g)~N.

Q.E.D.

Now, we can formulate the theorem that says how the wave front set of a distribution
is transformed under a change of variables.
Theorem 6. Let 2 and Q' be open domains in R™, and let ® : Q — Q' be a diffeomor-
phism. The wave front set of the pull-back ®*u of a distribution u € D'(Q)') is given by
the following formula

WEF(@"u) = {(z,£) € @ x (R"\ {0}) : (2(2), (¥'(2))"¢) € WF(u)}. (12)

Before we prove theorem 6, let us discuss how to interpret it. The pull-back of a
one-form n =) n;dy; on Q' is

Py = Zﬁkdwk = Z Z %md%k;
k=1 J

k=1 j=1

SO
n

0P,
§p = ; x_kn]-

The last equation can be re-written in the matrix form as
£ = (¢'(z))". (13)
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A diffeomorphism ® :  — Q gives rise to a mapping ® : T* Q) — T*(9):

Sy, n) = (@7 (1), (¥ (27 ()" )n- (14)

This mapping is a diffeomorphism, and it maps the zero section ' x {0} onto the zero

A

section © x {0}. Theorem 6 says that WF(®*u) = ®(W F(u)). In other words, the wave
front set is a correctly defined set in the cotangent bundle over a domain. One should
think of Q x (R™\ {0}) as the space of non-zero covectors over ().

Proof of Theorem 6. We start from proving the inclusion
WF(®*u) C ®(WF(u)). (15)

Suppose that X
(y,m) = 71 ((2,€)) € WF(u).

By Proposition 3, there exists a conic neighborhood IV of  and a neighborhood V' of the
point y such that
Y(pu) NI =0 (16)

for every smooth function v that is supported in V. Let U = ®~1(V); this is a neighbor-
hood of the point x. The equation (16) implies

§ & (2'(2)")(B(Wu)),

and, therefore,

£ ¢ (2'(2)")(E(du)) (17)
for every point z’ from a sufficiently small neighborhood U’ of the point z. Let U=UnU’
and V = ®(U). Take any function ¢ € C§°(U) such that ¢(z) # 0. Let 1)(2) = ¢(®1(2)).
Then ¢p@*u = ®*(1hu), and by Lemma 5, £ & X(¢P*u) (see (17).) By the definition of the
wave front set, (z,£) € WF(®*u), so the inclusion (15) has been established.

To prove the opposite inclusion, we notice that the composition of d and ®—1 is the
identity mapping and (®~1)*®*u = u; so the inclusion (15) written for @1 is equivalent
to

WF(®*u) D (W F(u)).

Q.ED.

Example 7. Let M be a k-dimensional smooth submanifold in R™. For a function
u € C°(M) we define the distribution udy; € D'(R™):

(ubar, 6) /M u(2)$(x)dS

where dS is the area element in M that is induced by the Euclidean metric in R". Let
us compute WF(udps). First, a point (x,£) may lie in WF(udp) only if z € M and
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xo € supp(u). Theorem 6 allows us to use any co-ordinate system for computing the
wave front set. Let z € supp(u) C M. First, we take an orthogonal co-ordinate system
(Y1, --,Yn), with the origin at the point xy, with the first k co-ordinate axes lying in the
tangent plane T, (M) to M at the point z(, and the last n—k co-ordinate axes going along
its orthogonal complement. The transition from the old co-ordinate system (z1,...,z,)
to the new one is given by the composition of a shift and an orthogonal transformation.
A neighborhood of the point xy in M is given by equation

y=Fy,...,y), l=k+1,...,n,

with smooth functions F;. Notice that

VF(0)=0, I=k+1,...,n. (18)
In a neighborhood of the point zy in R™, we introduce co-ordinates (z1, ..., zy):
Yjs when j < k;
- : 19
& {yj—Fj(yl,...,yk), when j > k. (19)

Equations (18) imply that the Jacobi matrix (0z/0y)(0) is the identity matrix, so (19)
define a diffeomorphism in a neighborhood of xy. In that neighborhood of x(, the manifold
M is given by the equations zpy; = -+ = 2, = 0, and the distribution udy; acts on a
function that is supported in a neighborhood of zy by the formula

(u, dpr ) = /u(z')gb(z',O)m(z')dz'

where 2’ = (21,...,2%), 2" = (Zk+1,---,2n), and m(2")dz’ is the area element dS written

in the local co-ordinates z’ on M. From Example 4, we know that (xg,() € WF(udp)
when ¢’ = 0. If interpreted as a point in the cotangent space T (M), it annihilates the
tangent space T;,(M). A subspace in T (M) that annihilates T, (M) is called the normal
space to M at g, and it is denoted by N, (M ). In the original co-ordinates, it is given by

Neo(M) ={§ € R" : £ LT, (M)}
We conclude that

WE(uoy) = {(2,€) : @ € supp(u) C M, & € No(M) \ {0}}.



