
31 January 2000

Ž .Physics Letters A 265 2000 274–281
www.elsevier.nlrlocaterphysleta

Lie-transform averaging in nonlinear optical transmission systems
with strong and rapid periodic dispersion variations

Ildar Gabitov a,), Tobias Schafer b, Sergei K. Turitsyn c¨
a Los Alamos National Laboratory, MS-B284, Los Alamos, NM 87545, USA

b Institut fur Theoretische Physik I, Heinrich-Heine-UniÕersitaet Duesseldorf, 40225 Duesseldorf, Germany¨
c DiÕision of Electr. Eng. & Comp. Science, Aston UniÕersity, Birmingham B4 7ET, UK

Received 16 November 1999; accepted 17 December 1999
Communicated by A.R. Bishop

Abstract

Using Lie-transform techniques, we derive higher-order corrections to the path-averaged model governing evolution of
Ž .dispersion-managed solitons in the spectral domain. The result holds in the case of arbitrary including moderate and strong

dispersion. The general theory is illustrated by deriving the exact formulas q for a specific symmetric dispersion map.
q 2000 Published by Elsevier Science B.V. All rights reserved.

Development of ultrafast high-bit-rate optical
communication lines is in the focus of extensive
research because of the present growing demands on
the capacity of transmission systems. High capacity

Ž .communication system design has two objectives: i
long-haul transmission systems using low dispersion

Ž . Ž .fibers dispersion shifted fibers and ii upgrading
Žexisting fiber links based on highly dispersive in the

main fiber transparency window at 1.55 mm wave-
.length standard telecommunication fibers.

The main factor that limits the bit-rate is pulse-
broadening due to the chromatic dispersion of the
optical fiber. This broadening is characterized by the

Ž Ž .2 .y1dispersion length Z ; d= BR . Here, d isdis

the fiber chromatic dispersion and BR is the bitrate.
The dispersion length Z is the distance at whichdis
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the pulse-width approximately doubles due to disper-
sive broadening. This distance decreases as inverse
square of the bit-rate. Another important factor which
limits capacity of the fiber links is the nonlinearity of

Ž .the fiber refractive index Kerr nonlinearity nsn0
Žqa I where n is linear part of the refractive index,0

I is pulse intensity, and a is coefficient of the Kerr
.nonlinearity . The spectrum of an optical pulse with

characteristic power P will experience noticeable0

nonlinear distortion at distances greater than the
Ž .y1characteristic nonlinear length, Z s aP .nl 0

In traditional long-haul systems using low disper-
sion fibers the distance between optical amplifiers
required for compensating fiber losses is consider-
ably shorter than that of both the characteristic dis-
persion length Z and the characteristic nonlineardis

length Z . In other words, both dispersion and non-nl

linearity can be treated as perturbations on the scale
of the distance between amplifiers and, to first order,
only the fiber losses and periodic amplification are
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significant factors. These factors cause amplitude
oscillations, but the shape of the pulse remains ap-
proximately unchanged. At the large-scales, pulse
propagation in these communication systems is de-

Žscribed by the well-established guiding-center path-
. w xaverage theory 1–4 . The nonlinear Schrodinger¨
Ž .equation NLSE is the basis for path-averaged prop-

agation model.
For the well-known case of upgrading existing

optical links, based on standard mono-mode fiber
Ž .SMF , different physical scenarios and modeling

Žequations are valid. SMF has rather high approxi-
.mately ;17 psrnmPkm dispersion in the 1.55 mm

window of optical transparency. As a comparison,
the dispersion value for dispersion shifted fiber used
in long haul transmission links is ;1 psrnmPkm.
The negative impact of fiber chromatic dispersion on
the data stream for the same value of bitrate is
differs by more greater than order of magnitude for
these two values of dispersion. For increasing bit-
rates system performance degrades as quadratic func-
tion of the bitrate value. For multigigabit transmis-
sion at 1.55 mm, the corresponding dispersion length
in SMF is approximately equal to the amplification
distance in the existing networks. Consequently tra-

Ž .ditional guiding-center path-averaged soliton the-
ory can not be applied. The limitations caused by
fiber chromatic dispersion can be minimized by dis-
persion compensation, using pieces of fiber with
high dispersion of the opposite sign to the dispersion

w xof the original transmission fiber 5 . Dispersion
compensation is an attractive technique to enhance
the transmission capacity of fiber communication
lines. The master equation for dispersion-managed
systems is the perturbed NLSE with fast periodic
dispersion variations. Stable propagation of disper-

Ž .sion-managed DM soliton is possible in such sys-
w xtems 6–10 . The true DM soliton is a periodic

solution of the master equation that is entirely recov-
w xered after each compensation period 8–10 . In the

case of weak dispersion, the Lie transform is a
powerful method which can be used to average the

w xbasic equation directly 11 . For strong dispersion,
however, direct averaging is not possible due to the
large variations of the coefficient of dispersion. Dif-
ferent theoretical approaches have been developed to
describe path-averaged propagation of DM soliton:

w xmulti-scale analysis 12,13 ; different averaging

w xmethods 11,14,15 , including averaging in the spec-
w xtral domain 9,10,16,17 and an expansion of DM

soliton in the basis of the chirped Gauss–Hermite
w xfunctions 15,18 .

Due to the practical importance of the problem, it
is very useful to develop different analytical methods
to describe the properties of DM soliton. A variety of
complementary mathematical approaches can be ad-
vantageously exploited to find an optimal and eco-
nomical description of any specific practical applica-
tion. Note that the problem treated is not only of a
high practical interest, but it is also an interesting
fundamental mathematical problem. To determine
the limitations of the averaged models it is important
to further develop and extend averaging methods to
derive first-order corrections to the averaged equa-
tions. The averaging approaches considered to date
have much in common.

To make the averaging procedure possible, one
should first eliminate the large variations of the
coefficient of the dispersion. In other terms, it is
necessary to rewrite the master equation in a differ-
ent form before applying Lie techniques. This can be
done in two ways. One possibility is to make the lens
transform accounting for the dynamics of self-similar
pulse core. The lens transformation was introduced
for the first time for the description of light focusing

w xin cubic media 19 . For optical telecommunication
w xmodels it was independently applied in 20 . This

approach is appropriate for describing the single
w xoptical pulse dynamics. A second method 9,10 is to

apply a Fourier transform in order to remove rapid
variations from the basic equation, thus preparing the
equation for averaging. This approach, in addition to
single pulse dynamics, can be applied for the analy-
sis of pulse interactions for wavelength division mul-

Ž .tiplexing techniques WDM , when several data
streams with different carrier frequencies propagate
through the same fiber. Presently, the WDM tech-
nique is the main approach for optical fiber commu-
nications.

In this Letter, we extend the analysis of Ref.
w x9,10 and using Lie-transforms, we derive higher-
order corrections for the path-averaged model in the

w xfrequency domain 21 . We start our analysis from
the master equation

1 2 )iq q d z q qq q sRq . 1Ž . Ž .z t t2
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Ž .Here, d z measures dispersion variations, z is a
distance normalized with respect to the soliton pe-
riod found for the equivalent uniform-dispersion line
with the same average dispersion as in the system
under consideration. The right-hand-term, Rq, mod-
els fast pulse amplitude variations, due to the
lossesrgain, that could be present in addition to the
dispersion variations, we assume that z <1 is aa

fast scale for both dispersion and lossrgain varia-
tions.

When dispersion variations are moderate in size,
za

dz d z <1 , 2Ž . Ž .H
0

w xthen, the averaging method 11 , based on the Lie
Ž .transform, can be applied to 1 and the resulting

‘averaged’ system represents an almost ‘pure’ NLSE
Ž .with small second order in z correction, provideda

resonances are absent. These results confirm the
stability of solitons under small periodic amplitude
perturbations. When dispersion variations are strong,

za

dz d z G1 , 3Ž . Ž .H
0

w xthen the averaging method 11 can not be applied
Ž .directly to 1 . Nevertheless, by applying simpler

w xmeans, an averaged system was derived 9,10 for
Ž .the case 3 . This system, which, in general, is no

w xlonger a NLSE, was obtained 9,10 in the zeroth
Ž .order in z only, because the calculation of impor-a

Ž .tant higher order corrections in z could not bea

done by simple means.
We present a generalization of the averaging

method, based on the Lie transform, can be used for
Ž .the general case 3 as well. Our method makes it

possible to derive the averaged system to any order.
The problem of pulse propagation in an optical

transmission line composed of optical fibers with
Žalternating dispersion characteristics dispersion

.management is one important example of a system
Ž .modeled by 1 . Here

Rqs ig qq iG z q , 4Ž . Ž .
where g-0 is the damping constant. The amplifica-
tion necessary to compensate losses, is defined by
Ž .G z

N

G z sG d zynz , 5Ž . Ž . Ž .Ý0 a
ns0

i.e. a periodic sequence of d-functions. The small
parameter z is the amplifier spacing. For manya

practical cases, damping term and dispersion terms
are not small at all, while the nonlinear term, q2q) ,
can be treated as a small perturbation. Before apply-
ing the averaging method one needs to prepare the

Ž .system 1 by reducing it to the standard form with a
w xsmall right hand side 22

dxrdZse f x ,Z 6Ž . Ž .

in two steps. First, by performing the transformation

q t , z sa z w t , z , idardzsRa , 7Ž . Ž . Ž . Ž .

the large damping coefficient g and the d-function
Ž .amplification term from the system 1 are removed.

We then obtain a system with a variable nonlinearity
2Ž .coefficient a z

1 2 2 )iw q d z w qa z w w s0 . 8Ž . Ž . Ž .z t t2

Ž . 2Ž .The rapidly varying coefficients d z and a z can
be split into two parts

˜ 2 ˜² : ² :d z s d qd , a z s I z s I q I .Ž . Ž . Ž .
9Ž .

² : ² :Here, the mean values d , I and the periodic
˜ ˜function I are of order 1, while the variable part d of

the dispersion can be much greater than 1 for strong
dispersion variations. To eliminate this large coeffi-

Ž .cient from the model system 8 , we need to perform
the second step of applying a Fourier transform –
based reformulation:

`1
w t , z s dv u v , zŽ . Ž .H v2p y`

=
˜² :i Id12 2˜exp yiv ty v d q iv ,1 ² :2 2 I

10Ž .

where

zd
˜ ˜ ˜ ˜d sd™ d s dz d z qd , 11Ž . Ž .H1 1 10dz 0

Ž .and the integration constant over z d is fixed by10
˜the condition that the function d has zero mean. As1
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a result, we have an integro-differential equation in
the frequency domain for uv

duv 1 2² :i y d v u qJ s0 , 12Ž .v v2dz
with the integral term J given byv

`1
J v , z s dv dv dvŽ . Hv 1 2 32

y`2pŽ .
= d v qv yv yv F u u u) .Ž .1 2 3 v v v1 2 3

13Ž .
The kernel F depends on all frequencies and the
distance

F v ,v ;v ,v ; zŽ .1 2 3

˜² :i Id1˜s I z exp y bd q ib , 14Ž . Ž .1 ² :2 2 I

bsv 2 qv 2 yv 2 yv 2 . 15Ž .1 2 3

Note that u is not exactly the Fourier transform ofv
2 ˜w due to the presence of the terms v d and1

2 ˜² : ² : Ž .v Id r 2 I in 10 .1
ŽIn the second step whose aim is to eliminate the

˜ Ž ..d coefficient from 8 , we do not really need to use1
˜² : ² :the integration constants d and Id r 2 I in10 1

Ž .10 . We use these constants only for the purpose of
Ž .‘tuning up’ the kernel F in 14 , so that our final

w xaveraged system is consistent with the results of 23 .
Consistency means that our results must agree with

w xthose of 23 in the limit of moderate dispersion
Ž .variations. See below . Finally, by scaling the dis-

Ž . Ž .tance z: zsZrz one can reduce 12 to the form 6a

and prepare for the averaging method. To simplify
notations we keep the ‘old’ variable z as the dis-
tance. To do the averaging based on the Lie-trans-

Ž .form, we also have to rewrite 12 in the time-do-
main by taking the inverse Fourier transform

du i
) ² :w xsX u ,u ; z s d u q iJ , 16Ž .t tdz 2

where u is the inverse Fourier transform of uv

`1
w xu t , z s dv u v , z exp yiv t . 17Ž . Ž . Ž .H v2p y`

The term J is given by

JsF iE ,iE ;y iE ,y iE s i E qE qE ; zŽ .Ž .t t t t t t t1 2 3 1 2 3

= ) <u t u t u t , 18� 4Ž . Ž . Ž . Ž .t st1 2 3 i

Ž .where the operator F is obtained by taking 14 and
substituting v™ iE . The first derivative, iE , in thet t1

Ž .operator, F, acts on the first multiplier, u t , only,1

etc. . . . . After performing all differentiations, we set
t s t,is1,2,3. One can expand the exponential ex-i

Ž .pression 14 into a Taylor series over b. As a result,
one will have J as a differential series. Now we are
ready to do the averaging.

The basic idea of the averaging method is to
Ž .simplify a system, like 16 , by eliminating the ex-

plicit dependence on z and expressing the simplified
system in terms of a new variable Õ,

dÕ
)w xsY Õ ,Õ , 19Ž .

dz

Ž .where the right hand side rhs Y is yet to be
calculated. To reach this goal one uses a near-iden-
tity transformation: u™Õ, generalized for the case

w xof an infinite number of degrees of freedom 23,24
represented by Õ,Õ) and all its derivatives
Õ ,Õ) ,Õ ,Õ) , PPP . When this a transformation ist t t t t t

Ž . w xwritten in exponential form Lie-transform 25

1f=use ÕsÕqfq f=fq PPP , 20Ž .2

all calculations can be elegantly performed. The rhs
Ž .of 20 is obtained by a formal expansion of the

exponent ef= in a Taylor series over f= . The direc-
tional derivative f= is defined as

` E E
)f=s f qf , 21Ž .Ý nt nt

)E Õ E Õnt ntns0

where f sE nfrE t n, Õ sE nÕrE t n, and the func-nt nt

tional f depends on Õ,Õ) , all its t derivatives, and
the distance z. Before applying these general ideas to

Ž .our particular case 16 , we would like to point out
the first major difference between our problem of
strong dispersion variations and that of moderate

w xdispersion variations 23 . In a moderate case, the rhs
Ž .of 16 is nothing but a differential polynomial,

whereas in our case we have to deal with the differ-
ential series J. Luckily this complication does not
prohibit the use of the ‘old’ definitions of the Lie-
transform and of the directional derivative.
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Ž . Ž .By inserting 20 into 16 , one obtains in com-
pact form the general rule for transformations of X
Ž . Ž . w x16 into Y 19 under a Lie-transformations 23

E
f= yf= f= yf=Y=q e e se X= e , 22Ž .ž /E z

where according to the Campbell–Baker–Hausdorff
formula

ef= X= eyf=

` 1
w xs f , f , PPP f , X =Ýž /n!ns0

1
w x w xs Xq f , X q f , f , X q PPP = .ž /2!

23Ž .

Also

E 1
1f= yf= w x w xe e s f q f ,f q f , f ,fz z z2ž / žE z 3!

q PPP = . 24Ž ./
Ž . Ž .Eqs. 22 – 24 can be used to simplify greatly the

following calculations. By expanding both Y and f

into a series in the small parameter, z : YsY qYa 0 1
Ž n.qY q PPP , fsf qf qf q PPP ;Y ,f sO z ,2 1 2 3 n n a

Ž .and collecting common terms in 22 , one obtains
expressions for the unknowns Y and f . Note,n n

differentiation by z lowers the order of f by one:n
Ž ny1.Ef rE zsO z . At the zeroth order, one getsn a

Ef1
Y q sX , 25Ž .0 E z

Ž .where X 16 is of order 1. Note that all f ’s aren
Ž .periodic functions of z. So by averaging 25 one

gets

i
² : ² : ² :Y s X s d Õ q i J , 26Ž .0 t t2

² : ² : ) <J s F Õ t Õ t Õ t , 27� 4Ž . Ž . Ž . Ž .t st1 2 3 i

where the brackets denote averaging over the fast
scale, za

z1 a² :f s dz f z . 28Ž . Ž .H
z 0a

As a result

Ef1 ˜ ² :s iJs iJy i J , f sf q iJ , 29Ž .˜1 10 1E z

where

E
˜ ² :J sJ , J s0 . 30Ž .˜ ˜1 1E z

w ) xThe integration constant f Õ,Õ will be fixed in10

the next order. This concludes the zeroth order, Y ,0

calculations. Note that the zeroth order term Y was0
w x Ž .calculated in 9,10 by directly integrating 12 over

the amplifier spacing z .a

Before proceeding to the next order, we would
like to point out a few important properties of the
zeroth order system

dÕ
sY , 31Ž .0dz

which we would like to formulate in terms of Õ , thev

Ž .Fourier transform of Õ. System 31 conserves the
number of particles I and the momentum I ,1 2

` `
) )I s dv Õ Õ , I s dv v Õ Õ . 32Ž .H H1 v v 2 v v

y` y`

It is also a Hamiltonian system

dÕ dHv
i s , HsH qH , 33Ž .0 int

)dz d Õv

² : `d
2 )H s dv v Õ Õ , 34Ž .H0 v v2 y`

`1 1
H s dv dv dv dvHint 1 2 3 422 y`2pŽ .

= d v qv yv yv , 35Ž . Ž .1 2 3 4

² : ) )F v ,v ;v ,v Õ Õ Õ Õ . 36Ž . Ž .1 2 3 4 v v v v1 2 3 4

All these important properties are due to the fact that
² :Ž .the averaged kernel F v ,v ;v ,v , obtained1 2 3 4

Ž .by integrating expression 14 over the amplifier
spacing z , is symmetric with respect to two differ-a

ent types of permutations

v lv , v lv , 37Ž .1 2 3 4

² : ² :)F v ,v ;v ,v s F v ,v ;v ,v .Ž . Ž .3 4 1 2 1 2 3 4

38Ž .
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Ž .Due to 38 , the interaction term H can be rewrit-int

ten in a symmetric way

`1 1
H s dv dv dv dvHint 1 2 3 424 y`2pŽ .

= d v qv yv yv , 39Ž . Ž .1 2 3 4

) )² :F v ,v ;v ,v Õ Õ Õ Õ qc.c. . 40Ž . Ž .1 2 3 4 v v v v1 2 3 4

Ž .The fact that system 31 is Hamiltonian is not
surprising because the original, unaveraged system
Ž .8 is Hamiltonian as well. Path-averaged solitons of

Ž . Ž . Ž .the form Õ z,v sÕ v exp i k z is an extremum0

of the H for fixed E

d Hqk E s0. 41Ž . Ž .
The results we presented are valid for any dispersion

Žprofile including the case of large local dispersion
.variations over the period z .a

Next, we calculate the first order term Y in the1
Ž .averaged system 19

Ef 1 Ef2 1 ² :Y q s f , q f , X . 42Ž .1 1 1E z 2 E z

Ž .By averaging 42 , we obtain an expression for the
first order correction, Y ,1

1 Ef1² : ² : ² :Y s f , q f , X . 43Ž .1 1 12 E z

Ž .The only freedom we have in the expression 43 is
Ž Ž ..f see 29 . In the case of weak dispersion varia-10
w xtions 23 , we can easily find f , and it is possible10

to set Y to be zero. This is the major practical1

difference between the more general case of strong
dispersion variations and that of modest ones.

˜If dispersion variations are absent, then d s0,1
Ž .and the kernel F 14 is drastically simplified Fs

Ž .I z , its dependence on frequency is gone, and, by
Ž .taking the inverse Fourier transform, we reduce 33

to the NLSE. The primary model system for nonlin-
ear fiber optics, the NLSE, is a partial differential

w xequation due to the simple physical fact 26 that the
nonlinear part of the refractive index does not de-

Žpend on the signal frequency over reasonable fre-
.quency range. Notice that in the averaged system

Ž . Ž33 the effective nonlinear coefficient i.e. the ker-
.nel F does depend on the frequency due to strong

dispersion variations. There are various physical sys-

tems which have an inherent frequency-dependent
nonlinear response.

We would like to demonstrate that our results
w xcontain the known case 23 and, in the limit of

Ž .modest dispersion variations 2 , that one can elimi-
nate the first order correction. We do this in two

˜steps. Note, that due the fact that now d is also a1

small parameter of the order of z , all expressionsa

are changed drastically. First, we need to verify that
Ž .the first order correction 43 in our limiting case is

reduced, in fact, to second order,

Y sO z 2 . 44Ž .Ž .1 a

˜When d is a small parameter, we can expand F1
˜Ž .14 into a Taylor series in d keeping only the1

zeroth and the first orders:

˜² :i Id1 2˜Fs I 1y bd q ib qO z , 45Ž .Ž .1 až /² :2 2 I

² : ² : 2F s I qO z . 46Ž .Ž .a

From the definition of f , it follows that1

Ef1 2 )˜s iIÕ Õ qO z ,Ž .aE z

˜ 2 ) 2f sf q iI Õ Õ qO z , 47Ž .Ž .1 10 1 a

˜ ˜ ˜² :where dI rdzs I, I s0. By using expressions1 1
Ž . Ž . Ž .45 - 47 in the definition of Y 43 and taking1

Ž .f s0, we obtain the final result 44 . Finally, we10

should also check that the term, Y , does not gener-0
˜ate any first order z -input when d is a smalla 1
Ž .parameter. This follows directly from 46 and is

Ž .guaranteed by the special ‘tuning’ of the kernel 14
performed at the very beginning.

Let us now consider the general case of strong
˜dispersion management when d is not a small pa-1

rameter anymore. We apply a specific two-step dis-
persion map and calculate f explicitly for this map.1

Without loss of generality, we choose a symmetric
1˜ ˜Ž . Ž .map d z sd for 0FzF and d z syd for2

1 d˜ Ž .-zF1. This immediately yields d z sdzy12 4
1 3d 1˜ Ž .for 0FzF and d z sydzq for FzF1.12 4 2

To describe first order corrections to the averaged
model, one should calculate the oscillating part of

˜f sf q iJ . In order to carry out our calculations1 10 1
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Žexplicitly, we consider the special case the so-called
. Ž .lossless model I z sconst.s I . The equation for0

J̃ is1

˜E J1 ˜ ˜² : ² :sJsJy J , J s0 . 48Ž .1E z
In order to integrate this explicitly, we once again

Ž .make use of the Fourier transform of u t and writei

`1
Js dv dv dvH 1 2 33

y`2pŽ .
=F v ,v ,v ,v qv yv u u u)Ž .1 2 3 1 2 3 v v v1 2 3

=exp yit v qv yv .Ž .Ž .1 2 3

We shall look only at the parts depending on z.
˜² : ² :Since I s I and d s0, we find that0 1

˜F v ,v ,v ,v qv yv s I exp iBd ,Ž . Ž .1 2 3 1 2 3 0 1

Bsy v yv v yv . 49Ž . Ž . Ž .3 1 3 2

Let us determine the function F with the properties1̃
˜ ² : ² :E F rE zsFsFy F and F s0. Once F is˜ ˜ ˜1 1 1

˜found, we obtain J immediately from1

`1
)J̃ s dv dv dv F u u u˜H1 1 2 3 1 v v v3 1 2 3

y`2pŽ .
=exp yit v qv yv . 50Ž . Ž .Ž .1 2 3

˜Since d depends linearly of z, we can calculate all1

the integrations analytically. The results are:

² : iQ yiQF e ye sinQ Bd˜i Bd1² :s e s2 s , Qs ,
I iBd Q 40

F̃ sinQ
1sexp i Q 4 zy1 y , zF ,Ž . 2I Q0

F̃ sinQ
1sexp yi Q 4 zy3 y , zG . 51Ž . Ž .2I Q0

For F we obtain1̃

w xF exp i Q 4 zy1 sinQ exp yi QŽ .1̃
s y zy ,

I 4 i Q Q 4 i Q0

1zF , 52Ž .2

F̃ exp yi Q 4 zy3 sinQŽ .1
sy y z

I 4 i Q Q0

w x w x2exp i Q yexp yi Q
q ,

4 i Q
1zG l . 53Ž .2

These formulas contain first-order corrections to the
path-averaged model. Note that in contrast to the
case of a weak dispersion management discussed
above, we are now able to recognize that F is zero1̃

1 ˜at zs and therefore J is zero also.12

In summary, the equation describing in the lead-
Ž .ing-order slow evolution of Õ z isv

² :E Õ z d 1Ž .v 2i sv Õ yv 2E z 2 2pŽ .

=
q`

)² :dv dv F Õ Õ Õ .H 1 2 v v v qv yv1 2 1 2
y`

The solution of these integro-differential equa-
Ž .tions permits to calculate the function Õ z giving av

zero-order path-averaged description for the disper-
sion-managed pulse. The physical interpretation of
this averaging is rather transparent: we separate the
rapid quasi-linear phase oscillations induced by large
variations of the dispersion from the slow evolution
of the pulse shape caused by nonlinearity and aver-
age dispersion. For the lossless two-step map, the

sinQ² :kernel has a rather simple expression: F s I ,0 Q

Ž .Ž . w xwith 4Qsy vyv vyv d 13,16,17 . Using1 2

this procedure, we obtain the first-order correction to
Ž .the field Õ zv

i
u sÕ qv v 22pŽ .

=
q`

dv dvH 1 2
y`

=F̃ v ,v ,v qvŽ1 1 2 1 2

yv ,v Õ Õ Õ) , 54. Ž .v v v qv yv1 2 1 2

˜where F was derived above for the case of a1

two-step map.
In conclusion, we have developed Lie-transform

averaging for the NLSE with varying periodic coeffi-
cients. Using the Lie-transform, we have derived the
path-averaged equation and the first-order correc-
tions to the averaged model in the spectral domain

Ž .for the case of arbitrary including large local dis-
persion.
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