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1. INTRODUCTION

A decade ago, in the early stages of high-speed optical
communication, the debate over linear or nonlinear (soli-
ton) supported optical transmission was heated. At the
time, the existing fiber communication infrastructure was
based on linear transmission. The theoretical’ and ex-
perimental (see, for example, Refs. 2—4) results for non-
linear transmission showed that the performance of these
systems could be better than that for linear systems.
However, the performance improvement was not dra-
matic enough to merit a complete overhaul of the existing
linear systems. With the invention® and recent
testing®® of a new type of nonlinear supported transmis-
sion, dispersion management, there remains little doubt
about the effectiveness of communications based on non-
linear principles.

With today’s increasing demand for higher bandwidth,
the next challenge in optical communication is dealing
with randomness of optical systems. It is crucial to take
into account fiber system randomness when describing
the evolution of the short pulses needed for higher-bit-
rate communication. The straightforward approach of
refining production technology is expensive and does not
offer an absolute cure. As a result, this subject has been
the focus of many recent experimental and theoretical
investigations,'®"!? with the eventual goal being im-
proved system performance in the presence of random-
ness. This problem is nontrivial even for linear systems
and is not well understood in nonlinear systems.

Disorder in single-mode fibers arises in many different
ways and has a negative effect. For example, amplifier
noise, ' and random fiber birefringence (polarization
mode dispersion)!’2° lead to random shifts in the pulse
position (timing jitter) and pulse broadening. Both ef-
fects eventually cause destruction of bit patterns and lead
to an increase of the bit error rate, the most important pa-
rameter describing performance in fiber communications
systems.?! The description of data-stream degradation
requires the use of statistical methods and opens a new
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field that may be called statistical physics of fiber-optic
communication.

In the present paper, we consider the effects caused by
the randomness of the fiber chromatic dispersion. Re-
cent high-precision measurements of this dispersion
demonstrated the significance of the dispersion
randomness.???®  Chromatic dispersion is an important
characteristic of a medium and can significantly degrade
the integrity of wave packets. In practice, chromatic dis-
persion is not uniformly distributed and often exhibits
random variations in space. This disorder can be treated
as multiplicative noise in corresponding mathematical
models. This multiplicative noise is conservative, as the
wave energy remains constant during propagation
through the medium. The overall chromatic dispersion
in optical fibers comes from two sources. The first source
is the medium itself. The second source is due to specific
geometry of the waveguide profile. Material dispersion
in the optical fiber is a relatively stable parameter, uni-
formly distributed along the fiber. However, the wave-
guide dispersion is not nearly as stable. Existing tech-
nology does not provide accurate control of the waveguide
geometry in modern fibers, in which dependence of the
dispersion coefficient on the wavelength is complex. As a
result, the magnitudes of random variations of fiber chro-
matic dispersion are typically the same as, or in some
cases even greater than, that of the mean dispersion?>?3
in fibers operating near the =zero-dispersion point
(dispersion-shifted fibers).

The natural problems stemming from randomness in
chromatic dispersion are pulse degradation and bit-
pattern deterioration. We focus on the pulse degradation
due to propagation through an optical fiber with a Gauss-
ian white-noise component in its chromatic dispersion.
The problem of degradation might be overcome by perfect-
ing the processes of fiber pulling from a silica preform and
cabling, and by compensating for the effects of random-
ness. This compensation can be active or passive. Ac-
tive compensation assumes individual preshaping of a
pulse or sequence of pulses to minimize the pulse change
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during transmission through a specific fiber link.?* This
technique has great potential for ultrashort-pulse deliv-
ery over short distances. Nonuniversality of the active
approach is its major drawback. The idea of a passive
approach is to modify the line itself by inserting addi-
tional system components. Passive compensation offers
a greater degree of flexibility, as it works for a variety of
signal formats and pulse shapes.

In this paper, we propose a passive strategy, the pin-
ning method, which prevents pulse degradation. Pinning
is the periodic/quasi-periodic compensation of the random
part of the accumulated fiber dispersion. Pinning is ca-
pable of significantly reducing the pulse deterioration (re-
ducing bit error rate) caused by the disorder. Further-
more, the method may even provide statistically steady
propagation of the pulse along the fiber.

The material in this paper, which is an extended ver-
sion of the short letter,?’ is organized as follows. The
problem is formulated in Section 2. There we introduce
the nonlinear Schrodinger model with fluctuating disper-
sion. The dispersion coefficient consists of deterministic
and random parts. We consider two models for the deter-
ministic part: (A) a constant positive dispersion; (B) a
piecewise constant dispersion with positive residual value
(dispersion management). Both natural and pinned ran-
domness are considered. In Subsection 2.A we give the
statistical framework for description of the single-pulse
evolution. Subsection 2.B defines a synthetic modifica-
tion of the natural disorder (passive compensation of ac-
cumulated random dispersion by the pinning method).
Section 3 discusses the weak nonlinearity limit. The
path-averaged approach describing slow-pulse dynamics
is introduced. It is shown that the natural disorder leads
to inevitable destruction of the pulse integrity. In this
case the signal envelope is a strongly fluctuating object,
which prevents the introduction of a deterministic equa-
tion describing the dynamics of the signal envelope. In
the case of pinning, however, the dynamics of the signal
envelope are shown to be described by a deterministic
path-averaged equation. Subsection 3.A is devoted to the
numerical demonstration that the averaged equation does
have a steady solitonlike solution for both models A and
B. The probability distribution functions (PDFs) of the
pulse width and amplitude described in Subsection 2.A
are studied numerically in Section 4. A decrease in the
rate of the pulse degradation in the pinned case is ob-
served. The dependence of the degradation on the pin-
ning length and on the disorder strength is investigated.
The final section contains our conclusions.

2. FORMULATION OF THE PROBLEM

In the short-wavelength regime, a universal description of
the signal envelope in the reference frame moving with
the packet group velocity is given by the nonlinear Schro-
dinger equation (NLS) for the complex scalar field,
¥ (z; t) (see, for example, Ref. 21),

—idp = d(2)d2y + 2429 (1)

All parameters and coefficients of Eq. (1) are presented in
dimensionless units that transform to real-world fiber
units according to the following rules. The envelope ¢ of
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the electric field is in the form E = Re[ /P, exp(ict/\)],
where P is the peak pulse power, \ is operating wave-
length, ¢ is velocity of light, and E is measured electric
field. The propagation variable is z = x(aPy/2), where x
is distance along the fiber and « is the Kerr nonlinearity
coefficient. The Kerr coefficient can be expressed in
terms of other fiber parameters, @ = 27y /(NS .g), where
ny is the nonlinear component of fiber refractive index
and S is an effective core area of the fiber. The spatial
coordinate is ¢ = 7/7y, where 7is in the reference frame
of the group velocity and 7, is the characteristic pulse
width. The dispersion coefficient is d = 28,/(aPy72),
where B, is the second-order dispersion parameter.
Typical parameters for the dispersion-shifted fiber are
N =1550nm, 7= T7ps, x =50km, Py, =4mW, B,
= 2ps¥km, and « = 10 W ! km 1.

Variations in the medium (fiber) enter Eq. (1) through
the dispersion coefficient

d(z) = dae(z) + &(2), (2)

which is decomposed into deterministic, d4.4(z), and ran-
dom (disorder), &(z), parts. Here z is the position along
the fiber and ¢ is the retarded time. The initial profile
¥ (0;¢t) is localized in ¢.

We consider two different models of deterministic dis-
persion. Both models are standard in fiber-optics com-
munications.

Model A is the case of constant dispersion, dg.; = dj.
In the absence of noise [&z) = 0], (z;t)
= a explizd,/b*)sech(t/b), where a?b? = d, (a is the peak
amplitude, and b is the pulse width), is an exact single-
soliton solution of Eq. (1). The existence of the
soliton?®?7 is the result of a dynamic equilibrium between
dispersion and nonlinearity: the two spatial scales, of
nonlinearity zy;, = 1/a? and of dispersion z,; = b%/d,, co-
incide.

Model B is the case of dispersion management (DM),
dget = do = dpy.> Here dispersion is piecewise constant:
positive and negative spans alternate with period zpy;.
There is no exact solution known for the pure (no noise)
model B, but theoretical evidence, confirmed by extensive
numerical studies and experimental results, indicates the
existence of a breathing solution (DM soliton) with a
nearly Gaussian shape.?®3!  The localized solution here
is again due to the interplay of dispersion and nonlinear-
ity. In the presence of a periodic dispersion map, how-
ever, the (DM) soliton acquires an important characteris-
tic, quadratic phase (chirp). In contrast to conventional
soliton solutions, DM solitons can exist for zero (or even
negative) values of the average dispersion.3%3

Approximate scale characteristics of the dispersion
noise present in real fibers can be extracted from experi-
mental results.?>?® These results show that the typical
distance of noticeable change in the dispersion value,
Zyar, 18 shorter than ~1-2 km. (The resolution of the ex-
perimental method is 1-2 km, whereas one expects that
the typical scale of the variations is actually one to two
orders of magnitude shorter, ~10—-100 m, which is the
size of the production facility.) For constant-dispersion
fibers (model A), the amplifier spacing is ~50—60 km, and
for dispersion-managed fibers (model B), the period of a
typical dispersion map is also ~50—60 km. These scales
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are much longer than that of the dispersion variation.
Therefore, according to the central limit theorem,?* the
natural ¢ at the larger scales can be treated as a homoge-
neous Gaussian random process with zero mean, de-
scribed by the quantity, D = [dz(&(z)&(z')). The noise
intensity, D, is defined as zvard?,ar, where d,, is the typi-
cal amplitude of the fluctuating part of the dispersion
variations. Therefore the pair correlation function of ¢ is
given by

(é(z1)€&(29)) = D6(21 — 29). (3)

(Here and below, (@) stands for the disorder average of
the quantity @.) Previously, the stability of a pulse in the
presence of the natural noise was studied for both models
(A and B) numerically and by means of a variational
approach.®®>37  The unambiguous conclusion of these
studies was that a localized pulse does not survive propa-
gation, i.e., it is destroyed. The numerical study of the
natural noise, Eq. (3), explained below in Section 4, con-
firms the early observations. In Appendix A we also pro-
vide a rigorous proof that steady propagation is not pos-
sible in the case of model A and nonpositive residual
dispersion d, (the average pulse width grows monotoni-
cally with distance). We also discuss in Appendix A rig-
orous constraints on averages, characterizing dynamical
evolution of an initially localized pulse in various regimes
studied.

A. Statistical Approach: Probability Distribution
Functions and Averages

We present the statistical framework necessary for de-
scribing single-pulse propagation through a noisy me-
dium. If the pulse is distinguishable from the radiative
background, its temporal profile can be characterized by a
finite number of degrees of freedom. This number may
change with propagation in z, as is the case when one of
the solitons vanishes. The pulse separation from the
background radiation is obvious in the weak-disorder case
of model A. Indeed, the soliton solution is known exactly
in the no-noise limit of model A. In the presence of weak
noise, the pulse evolution can be described in the frame-
work of the adiabatic approximation. This approxima-
tion is characterized by the slow evolution of four modes:
width, phase, position, and phase velocity of the pulse.
At least two of the modes, position and width, are general,
in that they can be used to describe pulse evolution in a
regime far from that of weak noise. In the strong-noise
regime, it is also sensible to characterize the pulse by its
amplitude, which evolves independently of the width.
This contrasts with the adiabatic case, in which width
and amplitude are strongly related. Since we consider
only symmetric single pulses, the pulse position is not a
relevant parameter of interest. Therefore in this paper
we consider only two parameters, the width and the am-
plitude of the pulse.

In this context, the key objects of statistical analysis
are the probability distribution functions (PDFs) of the
pulse width, b, and amplitude, a, where statistics are col-
lected over the ensemble of the dispersion map realiza-
tions described by Eqs. (3) (natural disorder) and (4) (dis-
order synthetically constrained by pinning). In general,
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one expects that these PDFs will evolve with z. Analysis
of the linear case, including evolution of the PDFs, is
given in Appendix B.

The adiabatic (weak noise) limit (D < 1) for model A
was described recently in Ref. 38. Here the solution de-
scription by the adiabatic approximation is actually deter-
ministic: in the leading order the PDF's are 6 functions,
with the width of the pulse being the inverse of its ampli-
tude. The dependence of the (averaged) amplitude on z
(at dy = 1) is given by a(z) = (1 + 8Dz/3) V5. The ef-
fect of noise is realized through the shedding of radiation
by the pulse.

In the general case (D not necessarily small) for natu-
ral (unpinned) noise, the average value of the pulse am-
plitude decreases. Furthermore, the PDFs of the pulse
parameters widen and are no longer narrow functions of
their arguments. These statistics of degradation and
broadening of the pulse are studied numerically in Sec-
tion 4.

However, in the pinned version of model B (see the next
subsection for the definition of pinning) with the pinning
length being shorter than the correlation scale of the
pulse degradation (defined in Section 3), the PDF's of the
pulse amplitude and width approach a stationary limit.
This is described in Section 4, where a numerical study of
the PDFs is presented.

B. Pinning Method

In the case of strong noise, a natural step would be to de-
velop an artificial constraint capable of reducing or com-
pletely preventing pulse destruction and broadening. We
demonstrate that such a constraint does indeed exist and
can be readily implemented in real fibers. The necessary
constraint is that the accumulated dispersion, [§dy&(y),
is set to zero, or pinned, either periodically or quasiperi-
odically with a period of the order of (or less than) that of
the pulse degradation length, z,.

We describe the theoretical basis for the pinning
method in this subsection (the degradation length of a
pulse in the natural-disorder case, z,, is defined in Sec-
tion 3). In the case of pinning, §is replaced by ¢, , which
is no longer a delta function, and is instead characterized
by the pair-correlation function

1

(&,()é)(2)) = D| 8(z — y) — , (4)

Livn =4

where y and z belong to the same segment bounded by an
adjacent pair of pinning points, ie., [; <y, z <[4,
where j is the pinning-point label. Otherwise, correla-
tions vanish, i.e., (¢,(y)é,(z)) = 0. The pinned process,
Eq. (4), can be constructed from the natural one, Eq. (3),
by

1 liv1
£(2) = &e) - ——— f wey), 5

li+1 - li l;
This nonuniform noise satisfies the pinning restriction
) 5‘:“§p( y)dy = 0 on each and every dynamical realiza-
tié)n.

The pinning of noise according to Eq. (4) suggests a
new strategy for the production of new optical fiber
cables: controlling the integral dispersion of a fiber piece



Chertkov et al.

before its connection to other pieces. The control is
achieved, first, by accurate measurement of the fiber’s
dispersion profile (the method of Ref. 22 is ideal for the
purpose), second, by the identification of zeros for
[3dz"&(z"), and finally, by the cutting of the fiber at one of
the zeros.

There also exists another pinning strategy, point pin-
ning, which is the local insertion of short compensating
pieces. It is described by

L
Ep(2) = E(2) = 2 8(z - lpﬁ dz'é(z').  (6)
J j—1

Point pinning can be used for the improvement of system
performance in already installed fiber lines. All the re-
sults reported in this paper were obtained with the first
pinning strategy. Nevertheless, they apply equally to
point pinning. Moreover, from the point of view of the
adiabatic analysis of Ref. 38, for z > 1 both the models
with the equidistantly positioned pinning points (/;,,
— I; =1 for any i) have the same “continuous” limit
(I —0), described by  (£,(2)€,(2")) = -DI?%8"(z
- z')/12.

The pinning method has some predecessors, both theo-
retical and experimental. Ohhira and coauthors®® have
considered propagation of a pulse through a fiber with
piecewise constant dispersion. The dispersion of a single
span (each of the same length) was taken to be a random
Gaussian number with nonzero mean. It was shown,
mainly by numerical means, that the propagation im-
proves if the spans are ordered in an alternating descen-
dant manner. (The span with the largest positive value
should be followed by the one with the largest negative
one, with the next pair chosen according to the same prin-
ciple from the bank of remaining spans.) The approach
of Ref. 39 did not account for the short correlated disorder
(reported later in Ref. 22). The functional disorder (¢is a
random function of z) in dispersion (of a general kind con-
sidered in our paper) is reduced in Ref. 39 to fluctuations
of a single parameter (accumulated dispersion of a fiber
span). The improvement of propagation achieved in Ref.
39 by reordering the sequence of fiber spans is therefore a
very special way to enforce the pinning of accumulated
dispersion.

In an experimental simulation of long-haul data trans-
mission, Mollenauer and coauthors® put a number of fiber
spans together, each span consisting of a combination of
different fibers in order to design a specific dispersion pro-
file. The whole system was looped to simulate transmis-
sion over sizable distances. The measurement of the val-
ues of accumulated dispersion of each span, which were
presumed to be the same initially, showed the presence of
irregularity. It was shown that the insertion of an extra
piece of fiber into each span, compensating for the irregu-
larity, improves the transmission. Randomness (or aver-
aging) was not an issue in Ref. 9: a deterministic process
(i.e., one complex fiber) was studied. Therefore the ob-
servation of Ref. 9 is an ancestor (“deterministic” one)
of the accumulated dispersion pinning discussed in our

paper.
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3. WEAK NONLINEARITY: PATH-
AVERAGED INTEGRAL EQUATION

The large dynamical variation of certain system param-
eters about a mean value creates the temptation to per-
form an averaging procedure with respect to these oscil-
lations. In the context of the NLS, with a dispersion
coefficient that varies periodically with z, such a method
is known under the name of path averaging.?® In this
section we investigate the possibility of generalizing this
method to the case of random variations in dispersion.

The assumption of quasi linearity is the core of the
path-averaging approach. This assumption suggests the
following substitution:

—i( wt

+ wz[ fO[S(Z’) + dget(z') — do]dZ'J)

Yz, t) = fx dw exp

—0

¢u(2).

(7
If the nonlinearity is neglected, ¢, experiences only dis-
persive broadening governed by d,. One assumes that
the nonlinearity is weak. (The fluctuations in dispersion
are strong.) Then the fast part of the ¢ dynamics is al-
ready accounted for in the oscillating kernel of Eq. (7),
and the slow spatial dynamics (in z), due to d, and weak
nonlinearity, are described by the evolution of ¢,. Sub-
stitution of Eq. (7) into Eq. (1) results in

_iazqsw + d0w2¢m

= zf S(w1 + w3 — w3 — w)dwdwydwsddsds

x exp{ —iAfZ[az') T daa(z’) — doldz' |,
0
8)

where
A=wl+t ok ) 0 ¢ = bo, =123

9

A common, but not always justified, approach is to as-

sume that ¢, is a self-averaging quantity at large z [z

should be essentially larger than the typical scale of

variations in d(z)]. A way to check this hypothesis is to

study the integral of the kernel in Eq. (8):

F(4; 2)

z—ljzdzl exp{ —iAfZl[g(zr) + dge(z') — doldz'}.
0 0

(10)
If the fluctuations of F due to randomness are suppressed
as z — o, and F becomes an essentially deterministic ob-
ject, then ¢ is a self-averaged object, which at large z can
be replaced by its average, ¢ = (¢). In this case the av-
eraged field, ¢ = ¢, satisfies the deterministic equation

%0

—id, @, + dow’e, = 2f S(w] + wg — w3 — )

—

X dwldwzdng:(A, Z)(PI(P2¢3
11)
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If the noise is unpinned, F does not pass the self-
averaging test. Indeed, in the case of model A one ob-

tains
2 A%Dz,
<.7:(A; Z)> = E 1- exp| — 9 , (12)
, 1 4 A%Dz
(FA; 2)%) = —A4D222 1 - gexp — 5
1
+ gexp(—2A2D2) , (13)

and at z — %, (F2) # (F)2. The argument for model B
is similar. Therefore one concludes that the determinis-
tic path-averaged approach is not applicable to natural-
noise cases. However, a useful lesson can still be drawn
from this grim conclusion: the nonlinear kernel decays
with z (because all of its positive integer moments decay).
Thus the residual dispersion dominates, and as a result
the pulse broadens and degrades. The physical reason
for the degradation is the loss of correlations: even
though the random noise returns to zero regularly with
increasing z (the number of zero crossings for the noise
grows linearly with z), its integral, which is actually the
object in the kernel, does not. As shown in Appendix C,
the number of returns to zero for the integral of the (natu-
ral) random process grows as ~\z, slower than linear.
Thus for increasing z there are fewer chances (per unit
length) of observing a value of [§dz'&(z’) close to zero.
Therefore Egs. (12) and (13) also provide useful informa-
tion: the length of the pulse destruction, which is the
scale of the kernel decay in Eq. (11), is

z;=bYD, (14)

where b is the pulse width.

Note that effect of pulse deterioration in fiber links
due to random variations of fiber chromatic dispersion
increases rapidly at higher bit rates (BR~571), z ¢
~ (D x BRY !, and might therefore cause serious limi-
tations for high-speed fiber communications. For the
case of the fiber sample measured in the paper,?? such
deterioration becomes noticeable at the distance ~100 km
for the pulse width 74 ~ 2 ps.

A way to reduce the decay of the kernel is to implement
one of the previously mentioned pinning strategies. If we
force [¢to return to zero periodically or quasi periodically,
Fis self-averaged as z — , and in the case of the strictly
periodic pinning with period [ it approaches

A%Dz(l — 2)

F(A; z) — <exp[ — 2

+iszz’[ddet(z'>doJ}> . as)
0

z>l

A2DI \/ w
f del A) = Erfi
(for model A) = exp 2 22D T

JVA2D1
4

(16)
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Substituting the result of Eq. (16) into Eq. (11), one ar-
rives at the desired generalization of the path-averaged
equation valid only if pinning is applied.

The next subsection is devoted to the analysis of the
path-averaged equation, justified if pinning is applied and
also if the following asymptotic hierarchy of scales (spell-
ing the weakness of nonlinearity) is obeyed, zy;, ~ 1/a?
> z¢, L

A. Numerical Solution of the Path-Averaged Equation
In this subsection we show numerically that the path-
averaged equation (11) has a stationary solution of a soli-
ton kind. To solve Eq. (11), we use a generalization of the
numerical method for solving nonlinear integral equa-
tions that was recently suggested by one of the authors*®
(initially for the pure DM problem). The main obstacle
in a numerical evaluation of the path-averaged equation
(11) is the nonlocality of the nonlinear term [right-hand
side of Eq. (11)]. We denote here this term by R(w).
Numerical computation of R(w) generally requires N op-
erations per iteration, where N is a number of grid points
in w or ¢ space. There exists, however, a much more effi-
cient numerical algorithm for calculation of R(w). The
only assumption is the existence of a Fourier transform:
F(A; z) = 127 [dsF(s)exp(isA), where s is an auxiliary
variable. One derives

1
R(w) = —f dsj:(s)exp(—isw2)j S(wy + wy — ws
T

— w)dwldwzdwgcp(ls)q:(;)@(;) s (17)

where ¢®(w) = o(w)expisw?). In the t-space represen-
tation this expression takes the form

F 1R (w)) = 2J dsG® (P ©e)(1)), (18)

where W(¢) = | ¢©(£)|20(¢) and G is an integral
operator corresponding to the multiplication operator
G (VE(w)) = exp(—isa®)¥)(w) in w space. Equations
(17) and (18) suggest the following four-step numerical
procedure to calculate R(w):

(i) the backward Fourier transform of ¢ (w)
= ¢(w)explisw?) for every value of s;

(i) a calculation of ¥)(¢) from ¢'®(¢);

(iii) the forward Fourier transform of ¥)(¢);

(iv) a  numerical integration (summation) of
exp(—isw®) V) (w) over s for every value of .

If fast Fourier transforms are used for steps (i) and (iii),
the number of operations required increases as N log, N.
The total number of operations for one iteration is
~2MN logy(N), where M is the number of grid points for
integration over s. We used the following typical values
for our numerical solution of Eq. (11): N = 4096; M
= 800. One iteration of the (i)—(iv) scheme on an Alpha
500-MHz workstation requires ~10 s for double precision
versus 40 h (40962 operations) for the brute-force scheme.

The results of calculations are presented in two figures,
one for model A and one for model B. (The parameters
are dg = 1 in model A, and d, = 0.15, dpy = 0.1, and
zpm = 1 in model B.) Only the case of periodic pinning is
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Constant dispersion + disorder
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Fig. 1. Kernels and stationary solution shapes for the path-averaged equation: constant-dispersion case (model A). The upper row
shows the shape of the kernel (16) for various pinning lengths. The lower row shows the corresponding stationary solutions (log scale)

for the path-averaged equation. The pictures in the left column are for noise strength D = 0.1, and those on the right are for
D = 25.

Dispersion Management+disorder
1
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Fig. 2. Kernels and stationary solution shapes for the path-averaged equation: dispersion-management case (model B). The upper
row shows the shape of the kernel for various pinning lengths. The lower row shows the corresponding stationary solutions (log scale)

for the path-averaged equation. The pictures in the left column are for noise strength D = 0.1, and those on the right are for
D = 25.

considered. Different colors correspond to different pin- Simulations in both cases were carried out for two values
ning lengths. The black curves stand for the pure case of of the noise strength, D = 0.1 and D = 2.5. The upper
a NLS soliton and a DM soliton, respectively (no noise). plots in each set of figures (case A and case B) show pro-
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files of the kernel of the path-averaged equation as a func-
tion of A. The lower figures in each set are the stationary
solutions to the path-averaged equation, the statistical
analogs of no-noise solitary waves.

As the pinning period is decreased, the pulse width also
decreases, as the pulse shape approaches that of an ideal
soliton for model A. The pulse broadening is more in-
tense for higher values of the noise strength (compare the
left and right columns of pictures D = 0.1 and D = 2.5.)

One observes similar patterns in the case of dispersion
management, with an additional feature. As noise is in-
creased, the width of the central peak, as well as that for
the sideband peaks, increases.

4. DIRECT NUMERICAL SIMULATIONS

We performed numerical investigations of both models
A and B with ¢ and ¢ = §, in the intermediate case,
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for model A, and it is a Gaussian pulse close to the respec-
tive DM soliton for model B. (See also Refs. 28 and 30.)
The Fourier split-step scheme with 2% temporal Fourier
modes and periodic boundary conditions is implemented
on the domain ¢ € [—180,180]. The spatial step is
Zgep = 0.01, and the numerical convergence is checked by
varying the size of the temporal domain and number of
the Fourier harmonics. Parameters for the initial signal
were chosen to be dy = 1, @ = 1 in model A, and d,
= 015, dDM = 01, ZDM — 1, and | ¢(O, t)|
= 0.79 exp(—t%2.6) in model B. The setup in model B is
borrowed from Ref. 31 and corresponds to experimentally
available DM fibers. Gaussian zero-mean noise corre-
lated at z,,, = 0.1 with amplitude d,, = 1 approximates
the &-correlated uniform noise with D = d2, z,,, = 0.1.
We consider both natural noise, Eq. (3), and pinned
noise, Eq. (4). Pinning strategies of two types are consid-
ered: strictly periodic, /;; — I; = [, where [ is fixed, and

znL ~ Z¢. The initial (z = 0) pulse is an exact soliton quasi periodic, /;,; — [; = I(1 + 7), where 7 is a random
4rp=o1 ! B4 =05 %[ D=0.1, z=95 [— uniform
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Fig. 3. Statistical description of the effect of pinning on optical pulse dynamics:
subfigure is a comparison of a pinned and unpinned random-dispersion profile.
pulse amplitude and width, measured at distance z = 95 for noise strength D = 0.1, for various pinning lengths.

constant-dispersion case (model A). The upper-left
The upper center and right subfigures are PDFs for
The left and center

subfigures in the middle row show the dependence of the average amplitude and width on the distance z for various pinning lengths and

noise strength D = 0.1.

The right subfigure of the middle row and the left subfigure of the bottom row represent PDFs of the pulse
amplitude and width measured at distance z = 95 for noise strength D = 2.5 for various pinning lengths.

The center and right sub-

figures of the bottom row show the dependence of the average amplitude and width on the distance z for various pinning lengths and

noise strength D = 2.5.
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Fig. 4. Statistical description of the effect of pinning on the optical pulse dynamics: dispersion-management case (model B). The
upper-left subfigure is a comparison of pinned and unpinned dispersion maps with randomness. The upper center and right subfigures
are PDF's for pulse amplitude and width, measured at distance z = 95 for noise strength D = 0.1, for various pinning lengths. The left
and center subfigures in the middle row show the dependence of the average amplitude and width on the distance z for various pinning
lengths and noise strength D = 0.1. The right subfigure of the middle row and the left subfigure of the bottom row represent PDF's of
the pulse amplitude and width measured at distance z = 95 for noise strength D = 2.5 for various pinning lengths. The center and
right subfigures of the bottom row show the dependence of the average amplitude and width on the distance z for various pinning lengths
and noise strength D = 2.5.

o
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number uniformly distributed between *=1/2. The aver-
aged (or otherwise strict) pinning period for the pinned L o .
case is taken to be 1. 5. or 10. The simulations ran until significant reduction in the rate of pulse broadening com-
z = 95. Statistics v:felze collected for 10* realizations. pared with the natural case. The individual configura-

Each set of two figures (Figs. 1 and 3, and 2 and 4), for tions that degrade (through pulse splitting, etc.) in the

model A and model B, respectively, includes the following: n.atu'ral case malnt.aln.pulse .1ntegr ity when each type of
pinning compensation is applied. The dependence on the

pinning period is monotonic: the peak amplitude of the
pulse decays faster as the pinning period increases. The
difference between the periodic and respective quasi-
periodic cases is minor, with a slightly better confinement
observed for the quasi-periodic case.

The destruction of the pulse is accompanied by the
emission of continuous radiation by the soliton. The ra-

For model A, all types of pinned noise demonstrate a

(1) the comparative plot of a single realization of disper-
sion for different types of pinning compensation;

(2) PDF's for pulse amplitude and pulse width (full width
at half-maximum amplitude) at the end of the run (z
= 95);

(3) dependence of the average pulse amplitude and width
on z, taken over 1000 realizations.

Solid black, red, green, and blue represent natural diation is clearly seen in the movie made for individual
noise, and pinned noise with pinning periods/ = 1, 5, 10, runs (the movie is available at http:/cnls.lanl.gov/
respectively. The quasi-periodic curves are dashed and “chertkov/Fiber). Once the radiation reaches the bound-
of the same color as the respective periodic ones. Numer- aries of the numerical box, it reflects and starts to inter-
ics for two values of D are shown: D = 0.1 and D fere with the still-localized solution (at z = 20). The lat-

= 2.5. ter (which is an effect of periodic, not vanishing, boundary
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conditions used in numerics) shows up in the change of
the averaged-width behavior at larger distances, z ~ 20.

The effect of the pinned noise is more dramatic in the
case of model B. For the case of pinning compensation
with the averaged period / = 1 (and also less) at D
= 0.1, one observes a tendency toward statistically
steady behavior: the average pulse width does not decay
(in contrast to a decay in the uniform case), and the PDF
of the pulse width and amplitude does not change shape
with z. Notice, however, that for the case with the same
pinning period [ = 1 but greater D = 2.5, a minor, but
still observable degradation of pulse occurred. This is
consistent with the statement concerning the efficiency of
the pinning made in Section 3: the greater D is, the
lower the critical pinning period. There is no visible
emission of radiation by the localized solution for any case
of model B. We have also checked that temporal and spa-
tial averages (e.g., for the PDF's of the pulse width and
amplitude) coincide in the steady case of [ = 1, D = 0.1.
Notice, however, that the size of the stationary PDF's sup-
port is wider than the respective average oscillations due
to the periodic deterministic part of the dispersion (i.e.,
the process is not self-averaged, as it would be in the case
of a weak noise, D < 1). The dependence on the type of
compensation (for [ > 1, D = 0.1, and all the cases con-
sidered for D = 2.5) is monotonic, and the difference be-
tween the random and quasi-random cases is again mi-
nor. We conclude that the dramatic reduction in pulse
decay due to pinning is the result of minor changes in the
dispersion profile.

5. CONCLUSIONS

We demonstrated that randomness of chromatic disper-
sion, quantified experimentally in real fibers by Mol-
lenauer and his coauthors,?>?® causes pulse degradation
in optical fibers. This effect is proportional to the
strength of disorder and inversely proportional to the
fourth power of the pulse width. Therefore the noise in
dispersion presents a potential source of serious limita-
tion for the next generation of high-speed communica-
tions. This is a new example of the negative effect of fi-
ber randomness on high-speed data transmission, in
addition to the well known effect of polarization mode dis-
persion.

We proposed and developed the theoretical background
of the pinning method, which prevents pulse deterioration
and is capable of improving performance of high-speed op-
tical fiber links. These theoretical findings were verified
by direct numerical simulations. The pinning method
consists of periodic compensation of accumulated fiber
dispersion by insertion of an additional piece of fiber with
a well controlled length and dispersion value. All compo-
nents required for implementation of this method, includ-
ing measurements of accumulated dispersion of a fiber
span, are standard and well established in optical fiber
communications. The pinning method can be imple-
mented both for the upgrading of existing links and for
the production of new optical cables. The pinning
method is effective in optical fibers with and without dis-
persion management.
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APPENDIX A: DIFFUSION OF OPTICAL
PULSE WIDTH AND EXISTENCE OF
STATISTICAL STEADY STATE FOR
NONLINEAR SCHRODINGER EQUATION
WITH RANDOM DISPERSION

In this appendix, we consider model A (dy¢ = dp) with
natural noise (3). We prove that steady propagation of
an optical pulse is not possible for nonpositive residual
dispersion d,. Moreover, we show that, for either arbi-
trary initial condition ¢|,_, and d, = 0 or for an initial
condition with no phase modulation and d, < 0, the z de-
pendence of a statistically averaged root-mean-square
pulse width (T2ys) = (/2| ¢|2dt)/P grows with z. (Here,
the time-averaged optical power P = [| ¢|2d¢ is an inte-
gral of motion: P, = 0). We note that (Tyg) is a grow-
ing function of z even for a small positive d; thus varia-
tions in dispersion result in diffusion of the optical pulse
width.

Consider the following integrated (over ¢) object, A
= [t?| ¢|%dt. Integrating Eq. (1) by parts and applying
vanishing boundary conditions at infinity, one derives

A, =(do+ B, B = f2it( Y — vryde. (AD

In a similar way, differentiating B with respect to z, one
gets

B, = 8[(dy + &(2))]1X — 4Y, (A2)

where X = [| ,|%d¢, Y = [| ¢|*dt. Note that Eq. (A2)
coincides for &(z) = constant with the so-called virial
theorem for the 1 + 1 NLS (see, e.g., Refs. 41-46). As-
suming that the probability distribution function (PDF)
for ¢ is z independent, one derives (B,) = 0. Then the
statistical average of Eq. (A2) results in

2do(X) + 2(¢X) — (Y) = 0. (A3)

One checks that (£X) is zero for the short-correlated pro-
cess (3). (A more accurate statement would be that the
average vanishes with z,,, — 0, where z,,, is correlation
length of a physical, short, but finite correlated &) Tak-
ing into account that X and Y are positive, one finds that
a statistical steady state is forbidden for nonpositive av-
erage dispersion d, < 0. Notice that the necessary con-
dition for the steady state,

2do(X) = (Y), (A4)
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is satisfied exactly for the one-soliton solution of the no-
noise NLS,??7 where the dispersion d, and the nonlin-
earity continuously balance each other. In this case the
averages in Eq. (A4) are replaced by X and Y, respectively.
Therefore the lack of a statistically steady state for d,
< 0 corresponds to the nonexistence of the soliton solu-
tion of the defocusing (d, < 0) NLS.2627 Moreover, the
relation (A4) tells us that in some averaged (integral)
sense a one-pulse solution of Eq. (1), ¢, has to be close to a
single-soliton solution of the no-noise NLS, if the one-
pulse solution is a statistically steady state. A quantum-
mechanical interpretation of the NLS, where d(X/P is a
kinetic energy and —2Y/P is a potential energy, suggests
that Eq. (A4) can also be called an averaged virial theo-
rem.

Equations (Al) and (A2) allow us to relate the deriva-
tive of A, to X and Y-

A, = [&(z) + do]B(0) + 8[&(2) + do]JO[S(Z’)

+ do]X(z")dz" — 4[&(2) + do]sz(z’)dz’.
0

(Ab)

Averaging Eq. (A5), one finds that various averages from
the right-hand side of Eq. (A5), containing one multiplier
¢, vanish due to the casuality constraint. (This is valid
only for the § correlated limit, Eq. (3), of a physical pro-
cess with the correlation scale, z,,, going to zero.) The
average of the only term on the right-hand side of Eq. (A5)
containing the product of two (also taken at different z) ¢
is given by 4D(X(z)). One derives the following inter-
esting constraint on the averaged pulse width squared:

(A), = do(B(0)) + 8d§fZ(X(z’))dz' + 4D(X(2))
0

- 4d0f(Y(z')>dz'. (A6)
0

If dy = 0 (the case of dispersion-shifted fiber), (A),
= 4D(X(z)), and, due to the positivity of X, one con-
cludes that (A) grows with z. X does not depend on z in
the linear case (see, also, Appendix B), and the growth of
(A) with z is linear (i.e., the pulse width experiences dif-
fusive growth caused by random variations of dispersion
coefficient). Nonlinearity is responsible for nontrivial de-
pendence of (X) on z and therefore for modification of the
(still) diffusive law. Estimating X, P, and D by p2/b, p?b,
and d2, 2, (Where d,, and z.,, stand for amplitude and
length of the dispersion variations), respectively, one de-
rives

B = ((Trus(2)?) — Trus(0)*)/Trys(0)? ~ d%arzvarZ/g:;?)

Then the minimal requirement for small information loss,
B < 1, becomes b = 6 ps for z ~ 10* km and the typical
values of the dispersion variation length and amplitude,
Zyar ~ 100m, dy, ~ 1ps?km, corresponding to the
aforementioned experiments.* It suggests that con-
struction of high-bit-error-rate lines based on the
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dispersion-shifted fiber requires essential improvement of
fiber-production technology (and/or implementation of the
pinning method).

APPENDIX B: LINEAR PROBLEM

This appendix is devoted to the exact analysis of the lin-
ear stochastic problem

—id,p = d(2)dy. (B1)
A general solution of Eq. (B1) has the form

+oo +oo dt’
P(t; z) = f dkf —exp|ik(t — t')
o e 2
- ik2J d(z")dz' |4 (t'; 0). (B2)
0
Considering the Gaussian initial pulse, ¢ (¢; 0)

= agexp[—(t/by)® + iNg + it2uo], where aq, by, \o, and
mo are the initial amplitude, width, phase, and chirp of
the pulse, one derives

Y (t; z) = agexp(ilg)

1- ib(z)#o

X exp| —t2 .
b2+ 4(i + bgﬂo)f d(z")dz’
0

X

z -1
1+ 4Gi/b2 + #)f d(z’)dz’} . (B3
0

Equation (B3) shows that the Gaussian shape of the pulse
does not change during propagation. Therefore the dy-
namics can be explained in terms of the following four pa-
rameters only:

a(z) = a abs[

z —-1/2
1+ 4(i/b2 + “)f d(z’)dz’} ] (B4)
0

-1/2

AMz) = g + arg[ 1+ 4(i/b3 + “)J d(z")dz’ ,
0

(B5)
b(z)
z 2 16 z 2
= b2l1 + 4//,0f d(z")dz'| + —2{f d(z’)dz/} ,
0 bo 0
(B6)
bomo + 4(1 + b‘éu%)f d(z")dz’
0
m(z) = 5

byl 1+ 4,L0f d(z"dz'| + 16
0

z 2°
fd(z’)dz’}
0

(B7)

Reduction from the field variable ¢ (¢; z) to the four func-
tions of z makes it easy to calculate the PDF's, which de-
scribe the transition probabilities from z = 0 to z = [.
We present here PDF's of the width, amplitude, and chirp
calculated for the case of model A and natural noise (3),
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Plalll; ag, bo, po) = V2aj(a}*mDI{ul + [(agla))* — 1)(ud + 1) 2

XE exp

(ofl + (—1)*\1 + [(ag/an* — 1][1 + U u2bH)H[4(ud + bS] + dol)?

k=1;2 2Dl
(B8)
P(bi|l; ag, bo, o) = by(32DI[ by + (b7/b5 — 1)(1 + bgug)]) ™2
S (b1 + (1P + (662 — 1)(1 + Ubjud)[4(1 + biud)] ' + dol)?
=12 P 2DI ’
(B9)
1+ bgus
Pluill; ag, by, mo) = { o + (= 1)*|(128u}wDl) !
Rz | (1 + bEu)? — 4biu?
11+ bhpolpo — 2m) — (—1FV(1 + bEud)? — 4biu? ’
X exp —dol| (. (B10)
2Dl 8u (1 + baud)
APPENDIX C: ON THE DISTRIBUTION OF and thus
RETURNS TO THE ORIGIN FOR THE 3
CONTINUOUS RANDOM WALK B N
f(x, u) = exp —. (C6)
The question that we are going to answer is the following: D

What is the probability that the “integral” random walker,
h(z) = [{dz'&(z'), with &(z) being the natural process
described by Eq. (3), will return to the origin at position Z
for the first time, given it started from the origin at
z = 0?7 Similar accounts can be found in many places in
the random-walk literature. See, for example, Ref. 47.
(Z and h, here, play the role of time and displacement, re-
spectively, in traditional random-walk theory.)

The probability distribution for the Brownian walker is

a simple Gaussian:
1 h?
exp . (C1)

VamDz 4Dz

Our quantity to be determined is simply the first-passage
distance (time, in the random-walk theory) distribution,
f(h, z), the probability that the walker visits point 2 at
distance z for the first time, given it started from kA, = 0
atzop = 0. We have, from the theory of recurrent events,

p(h, z) =

p(h,z) = J dz'f(h, z2")p(0,z — 2'). (C2)
0

Equation (C2) is solved by taking the Laplace transform,
which for a function g(z) is defined by

S(u) = fwdz exp(—uz)g(z), Re(u)>0. (C3)
0

Applying this to Eq. (C2), one obtains

plx, u) = flx, w)p(0,u). (C4)
The Laplace transform of Eq. (C1) is just
1 ux?
D(x, u) = exp| —\/ |, (C5)
V4Du D

After performing the inverse transform, the result is the
so-called Smirnov density:

h? h?
h =/ t>0. C7
fh, 2) 47Dz exp( 4Dz)’ ©

This density is normalized, [;dzf(h, z) = 1. However, it
exhibits an essential singularity at z — 0*. At large
times, z — oo,

|A|
2\ 7D

If one looks for the first-passage distance distribution of
returns, one obtains f(0,z) = 0. This means that once
the Brownian walker takes off from the origin, the num-
ber of paths that will return is vanishingly small com-
pared with the total number of paths. This result does
not allow us to count the returning paths to the origin
within this normalization of the continuum process.
These observations are also suggested by the fact that the
average z to reach point A4 from the origin is o°:

fzdz h 2 \/]7“221/2 "
 dee e 2 = = Ny 27 el

h2 hZ 1/4
ERE

2D 4D
which diverges as \Z [®(x) is the error function]. The
alternative solution is to analyze this question based on
lattice walks or to introduce a proper regularization. On
a lattice walk the first-passage distance probability is de-
fined as the probability that the walker starting from the
origin will reach site s, on the nth step, F,(s). We have
E;:OF 'i(s) = R,(s) as the probability that site s is reached

fh, z) = 2732, (C8)

| o
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(at all) during the first n steps. The conditional mean
first-passage distance for a walk of finite duration n is the
average distance to reach site s for the first time during
the first n steps normalized to the walks that will even-
tually reach site s during the first n steps:

B ij(S)
mls) = Jzo Ro(s)

In one dimension the generating function for the first-
passage probabilities F;(s) is given by*7

1-1- &, s=0
F(s; €) = (1— Jl——gz)s'
T , s #0

The (unconditional) mean first-passage time is given by

(C10)

(C11)

) (C12)
Eo1

- 9
7.(s) = >, jFi(s) = —F(s; )
io1 3

which diverges just as in the case of the continuum
Brownian walk. However, the conditional (conditional
upon arriving) first-passage distance defined above will be

given by
2
_\/;5
T
Tu(s) = .
2
27ls| —\/r—L, s #0
T
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