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Nonlinearity management in a dispersion-managed system
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We propose using a nonlinear phase-shift interferometric converter (NPSIC), a new device, for lumped com-

pensation for nonlinearity in optical fibers.

The NPSIC is a nonlinear analog of the Mach—Zehnder inter-
ferometer and provides a way to control the sign of the nonlinear phase shift.

We investigate a potential use

of the NPSIC for compensation for nonlinearity to develop a dispersion-managed system that is closer to an
ideal linear system. More importantly, the NPSIC can be used to essentially improve single-channel capacity

in the nonlinear regime.
OCIS codes:

The recent invention' and testing®® of the dispersion-
management technique demonstrated the effective-
ness of this approach for high-speed communications.
Optical pulse dynamics in fiber links with dispersion
management is governed by the nonlinear Schrodinger
equation with periodic coefficients:

iu, + d@uy + o(2)|ulPu=0, (1)

where z is the propagation distance, u is an optical
pulse amplitude, d(z) = —Y282(z), B2(z) is a first-order
group-velocity dispersion, o(z) = (27n2)/[AoAetr(2)] is
the nonlinear coefficient, no is the nonlinear refrac-
tive index, Ao = 1.55 um is the carrier wavelength,
and the effective area of the fiber, A, in general,
depends on z.

On short scales, the dispersion-managed (DM)
system is practically linear. Linear transmission in
an optical fiber is limited by a nonlinear distance,
z < zp1 = (olugl?) ™!, that is determined by Kerr non-
linearity o and characteristic pulse power |ug|2. The
characteristic power cannot be chosen to be too small
if an appropriate value of the signal-to-noise ratio is to
be maintained. It is natural to attempt to extend the
scale of the applicability of the linear regime. This
extension can be achieved through the use of a new
optical fiber with lower Kerr nonlinearity.>” Another
obvious approach is nonlinearity management, which
was considered in Ref. 8. However, the semiconductor
material waveguides with negative Kerr nonlinearity
that were proposed as an element for compensation
for nonlinear phase shift are not currently practical.
In this Letter we consider lumped compensation of
the nonlinearity, the analog of lumped compensation
for the chromatic dispersion by means of chirped fiber
gratings. We suggest the use of a nonlinear phase
shift interferometric converter (NPSIC), as presented
in Fig. 1. The NPSIC consists of silica-based Fiber 1,
highly nonlinear Fiber 2 (which can be chalcogenide
glass based, with a Kerr coefficient ~400 times, or
even much more than, that of silica; see, e.g., Ref. 9),
a linear amplifier, A, with amplitude amplification
coefficient G, and direction Couplers 1 and 2. It is
assumed that an optical terminator is installed at the
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end of Fiber 2 after Coupler 2 to prevent beam re-
flection from the end of Fiber 2. The incident
light, with amplitude Guy, is split by direction Cou-
pler 1 into two beams with amplitudes a;Guy, and
asGuy exp(im/2)(a; > 0,a3 > 0), corresponding to
Fibers 1 and 2, respectively. We assume that total
power is conserved, a;2 + a22 = 1, but a subsequent
consideration can be easily generalized so that the di-
rectional couplers’ and the fibers’ losses are included.
The extra phase 7/2 in the second fiber is due to
light splitting in the directional coupler (see, e.g.,
Ref. 10). The optical lengths /; and Iy in Fibers 1
and 2 between Couplers 1 and 2 are chosen so that
they provide a zero phase difference at the input
of Coupler 2, neg 111 — Rer,2l2 = 0, where neg, ;1 and
negr, 2 are effective linear refraction indices in Fibers 1
and 2, respectively. We assume that /; and [, are
small enough that we can neglect the influence of
dispersion in both fibers and the nonlinear phase shift
in Fiber 1. Thus the amplitudes of optical beams
at the input of Coupler 2 are given by a1Guy and
asGug exp(im/2 + i¢dn), where nonlinear phase shift
bl = onnas?G2lupl?ly and o, correspond to the
value of o in highly nonlinear Fiber 2. Assuming
that the propagation constants are the same for sym-
metric and antisymmetric modes of the coupler, we
can write the coupled-wave equation that describes
mode evolution in directional couplers as®®

(w1); = ikug, (u2); = ikuq, (2)

where

u1(z0) = a1Guy, us(20) = asGug exp(im/2 + idn1),

Ulout = ul(zout) s 3)
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Fig. 1. Schematic of the NPSIC.
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2o and z,,¢ are the coordinates of Coupler 2 input and
output, respectively; uiou; is the optical beam ampli-
tude in Fiber 1 at the exit of the Coupler 2 and « is a
coupling coefficient that is assumed to be real in the
lossless model. The solution of Egs. (2) and (3) shows
that the NPSIC converts ug into output signal u14y¢:

Utout = Guolar cos ¢, — ag exp(in)sin ¢.], (4)

where ¢, = k(zout — 20). We assume that ¢, =
ohn1@22G?ug|?ls << 1 and expand exp(i¢n1) in Eq. (4).
Neglecting the O(¢n2) terms results in

1 0hn1 @22 G2ugl?ly sin ¢c>, 5)

Ulout = ulm(l - .
ai cos ¢, — ag sin ¢,

where w), = Guo(a; cos ¢, — ag sin ¢.) is the out-
put amplitude, u#ioyt, of the linear system. Thus, by
changing NPSIC parameters a1, ¢., [, and G, one can
control the sign and magnitude of the nonlinear phase
shift. NPSIC can be considered as a nonlinear ver-
sion of the Mach—Zehnder interferometer. As a typi-
cal example, we take G = /50, a; = 1/3, and ¢, =
0.2, which results in uiout = #0(1.0 — i600hn1|uol%ls).
Thus, to compensate completely for a nonlinear phase
shift o|ug|?L; in the L; = 40 km line of a silica fiber,
we need to use a NPSIC with l; = 1.6 m of a highly non-
linear fiber, provided that o, = 400 (for this value of
ohnl the nonlinear absorption is negligible in currently
available chalcogenide glasses®).

This estimate is true if the power, |u|?, is constant
throughout the propagation. In practice, the power is
not constant because of the fiber’s chromatic disper-
sion and losses. Therefore, nonlinearity compensators
must be distributed along the fiber with a separation
distance less than the dispersion length, zgisp = 2/d,
and loss length z),ss. Here 7 is a typical pulse width.
It is shown below that the effective length of the non-
linearity is increased as zegr n1 ~ N 2201, where N is the
number of lumped NPSICs on the dispersion-map pe-
riod. However, we demonstrate that for short pulses
corresponding to strong dispersion management this
approach is efficient only at a relatively large value
of N. Nevertheless, this method displays good perfor-
mance in the nonlinear regime, as, for example, insert-
ing only two compensating elements on the period of
the dispersion map could increase the bit rate per chan-
nel by a factor of 2.

Consider a DM system with stepwise periodic dis-
persion variation: d(z) =do + d(2), d(z) = d; for 0 <
z + mL < L4 (standard monomode fiber) and d(z) = d»
for Ly <z + mL < Ly + Ly (dispersion-compensating
fiber). Here dg is the path-averaged dispersion, d;
and dg are the amplitudes of dispersion variation sub-
ject to a condition d1L; + deLy =0, L =Ly + Lo is a
dispersion-compensation period, and m is an arbitrary
integer number. o(z) = oy for 0 < z + mL < L; and
o(z) = o9 for Ly < z + mL < Ly + Ly, corresponding
to standard monomode and dispersion-compensating
fiber. We suppose that the NPSIC units are located
inside and at the ends of a dispersion-compensated
fiber at points z, = mL + Ly + nLs/N,n=0,...,N,

zo=mL+Li<z1<...<zy=(m + 1)L. At these
points the value of u(¢, z) experiences a jump according
to Eq. (5):

u(t> Z)|z=zm,n+0 = (u - izeff,n|u|2u)|z=zm,n—0, (6)

where z,, = mL + L; + nLy/N; zp,, — 0 and
Zm,n t 0 are the coordinate values just before and
after the jump, respectively; parameters ai, ¢, [,
and G are chosen to provide uy, = u(t, 2)|,=.,,,—0 and
onna23G3ly sin ¢, = zegr, = (01L1 + 02L3)/N for n =
1,...,N —1and Zeff,0 = Zeff, N = (o1L1 + U'QLQ)/(ZN)
Here the term —(o1L; + o2Ls) provides the compen-
sation for the nonlinear phase shift in both standard
monomode and dispersion-compensating fibers.

Assuming that the nonlinearity is small, zn1 >> zgigp,
zn1 >> L, where L is a dispersion-map period, one can
express u in the Fourier domain as a product of an
exact solution of the linear part of Eq. (1), correspond-
ing to mean-free dispersion d(z), on a slow function
Po,2): @w,2) = Po,z)exp[-iw? [; dz)dz']"
where i(w, z) = [~ u(t, 2)exp(iot)dt. ¢ is a slow
function of z on a scale L, which allows us to integrate
Eq. (1) over the period L, neglecting the slow depen-
dence of ¢ on z, and by taking into account the jumps
in Eq. (6) we get

iv[w,m + 1)L] — iy(w, mL) — Lo?dof(w, mL)

L1
(27)?

[ o1, L2, mL) (03, mL)

X Kit(A)d(w1 + wg — o — w3)dwidwsdws =0, (7)

2 2 2 2

where s = d1L1, A = w1? + wy? — w? — w3?, and
Kit(A) = K1(A) + Ko(A). A kernel K1(A) is equal to
the usual kernel of the path-averaged equation’

Ki(A) = oy, sin x/x,

x=5sA/2, o =o01L1 + o3Ls, (8)

and K2(A) accounts for the jumps in Eq. (6):
Ko(A) = —oz[sin x cot(x/N)]/N . 9)

Suppose that the FWHM 7 of (0, ¢) is subject to the
condition s/(2N72) << 1. Then, K(A) can be rewrit-
ten as

Kit(A) = or(sin x/x) [x2/(8N?) + O(x*/NH]. (10)

Thus, comparing Eq. (10) with kernel (8) of the usual
path-averaged equation, we get an extra small factor
(sA/2N)?/3 ~ L?/(Nzgisp)?, provided that N is big
enough to ensure the condition L/Nzgisp << 1. For
short pulses N should be a large number for the
system to approach the linear regime (where the
nonlinear integral term is absent). Figure 2 shows
the dependence of the FWHM 7., obtained after
propagation of the initial zero-chirp Gaussian pulse
with 7i,; = 10 ps over a typical transoceanic distance
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Fig. 2. FWHM r,,; after pulse propagation over 10* km
versus a number N + 1 of NPSIC units.
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Fig. 3. Power distributions: 1, initial Gaussian pulse;
2, result of pulse propagation over 10* km in a DM system
with no NPSIC; 3, result of pulse propagation in a DM
system with two NPSIC units for each period L; 4, MDM
soliton.

10* km on the number of NPSIC units, N + 1. This
dependence is obtained by numerical integration of
nonlinear Schrodinger equation (1). The pulse is
launched into the DM fiber at z = L;/2 with peak
power |ul? = 2 mW. The DM system parameters
are do = 0, di = 10.0 ps?/km, ds = —50.8 ps?/km,
L;=40km, Ly = —dL1/d2, o1 = 0.0013 (km mW)_l,
o9 = 0.00405 (km mW)~1. It can be seen that the
system can be considered approximately linear for
N = 30, in which case the nonlinear correction to 7out
is less than 5%.

A strong variation of 7., in Fig. 2 for small N is
due to the attraction of the initial Gaussian pulse to
soliton solution §(w, mL) = Jy(w)exp(imLA) of path-
averaged equation (7). Here A is a soliton propagation
constant. We refer to this soliton solution as the modi-
fied DM soliton (MDM soliton) by analogy with the DM
soliton, which corresponds to the usual path-average
equation (without nonlinearity management). With-
out nonlinearity compensation, Ky(A) = 0, we
recover the usual DM soliton of the path-av-
eraged equation,'* where the DM soliton width
7pm depends on s only for dy — 0 (see, e.g., Ref. 12).
For the above-mentioned system parameters, 7py =
21 ps. Any shorter pulses in this case experience
strong distortion because of the nonlinearity. Curve
2 in Fig. 3 shows the pulse-power distribution after
10-km propagation of the initial Gaussian pulse, with
Tini = 10 ps (curve 1). Using NPSIC units, we can con-
trol Ko(A) and thus change mypym of the MDM soliton.
Curve 3 shows the pulse-power distribution after
10*-km propagation. The transmission system con-
sists of two NPSICs for each DM period L, located at

the ends of the dispersion-compensating fiber, with
Zetf,0 = Zefr,1 = [(01L1 + o09Lo)/2, where f = 3/2.
One can see that curve 3 is close to both the initial
Gaussian pulse (curve 1) and the MDM soliton (curve
4). The MDM soliton was obtained by numerical
iteration of Eq. (7), with ¢(w, mL) = Jy(w)exp(imL)),
A = 0.00028 km~!. The numerical iteration scheme
is similar to the one used in Ref. 13 for the usual
path-averaged equation. By changing factor f, one
can control 7ypm of the MDM soliton. Note that, for
f > 1, which corresponds to a negative average non-
linearity of the total system, the numerical iteration
scheme finally diverges, indicating that the MDM
soliton is a rather long-lived quasi-stable structure,
which, however, serves as an attractor of the pulse
dynamics on a scale of ~10% km.

The use of NPSIC elements would allow one to
construct a nearly linear fiber transmission system.
However, this system requires many NPSIC elements.
On the other hand, the use of NPSIC elements of-
fers the better advantages to fiber links operating
in the nonlinear regime. In particular, only a few
elements per dispersion-map period could dramati-
cally reduce the pulse width and potentially increase
the bit rate.
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