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Importance Sampling of Gordon–Mollenauer Soliton
Phase Noise in Optical Fibers
A. Tonello, S. Wabnitz, Member, IEEE, I. Gabitov, and R. Indik

Abstract—We develop an importance sampling method to per-
form the direct numerical computation of the probability density
function of the random optical soliton phase under the influence of
both amplifier spontaneous emission noise and nonlinear conver-
sion of amplitude to phase fluctuations owing to the Kerr effect, or
nonlinear phase noise.

Index Terms—Differential phase-shift keying (DPSK), nonlinear
optics, optical fiber communication, optical solitons.

AT PRESENT, there is a great interest in exploiting ad-
vanced modulation formats such as differential phase-shift

keying (DPSK) for improving the performance of long-haul
fiber-optics transmission systems [1]. As is well known, in
DPSK transmissions, the information is coded in the phase
difference and not in the amplitude modulation of the signal.
In particular, the format return-to-zero (RZ)-DPSK offers
the possibility of minimizing detrimental nonlinear effects
resulting from intensity variation in the signal, while keeping
the high signal-to-noise margins of the RZ modulation [2]. In a
long distance transmission using a PSK format, it is essential to
evaluate the statistical properties of the signal phase evolution
when a signal pulse propagates under the action of amplified
spontaneous emission (ASE) noise and fiber nonlinearity,
which result in a nonlinear or Gordon–Mollenauer phase noise
[1]–[3].

In order to arrive at a theoretical prediction of the system
bit-error rate (BER) for systems employing DPSK, it would be
necessary to evaluate the full probability density function (pdf)
of the signal phase difference between adjacent bits. [4]–[6].
In the presence of nonlinearity, this distribution cannot be ap-
proximated by a Gaussian in the low BER region
of interest for applications. This also means that the familiar
quality (or ) factor, as it is often estimated from a relatively
small number of numerical simulations, has in general no direct
link with the BER in the case of DPSK transmission systems.
On the other hand, the exhaustive numerical simulation of the
rare events leading to such small BERs from the statistics of the
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phase of signal pulses would imply the simulation of the propa-
gation of hundreds of billions of different pulses, which is not a
practical strategy even with present day advances in computing
power.

Indeed, several authors have recently revealed the inaccuracy
of the Gaussian approximation for the soliton phase (sp)-pdf and
obtained its approximate analytical expression [4]–[6]. The the-
oretical sp-pdf exhibits an asymmetry with respect to the mean
value that appears to be in qualitative agreement with the exper-
iments [1], [4]. One procedure to fill the gap between theoretical
methodologies and full numerical simulations is to apply biased
Monte Carlo (MC) algorithms to evoke rare events in a con-
trolled way. One possible solution is the multicanonical method
(MMC) [7] that has been applied for DPSK in [8]. MMC is a
powerful iterative method with the advantage of not requiring
any priori knowledge of the rare events responsible for the shape
of pdf tails. Another technique, falling in the category of biased
MC methods, is known as importance sampling (IS) [9]. The
main advantage of the IS method is that sampling of the rare
events from an importance distribution is based on physical in-
tuition (rather than a mechanical search as in MMC). Hence,
MMC and IS provide two complementary techniques to sample
the rare statistical events. The IS algorithm was earlier adapted
to the statistical analysis of the amplitude and timing jitter of op-
tical solitons in the presence of ASE noise and PMD [9], [10].
The basic idea of the IS method is to evoke the rare events that
lead to errors and subsequently weigh such events by means of
appropriate likelihood ratios (see e.g., [10]). The numerically
generated amplifier noise is the practical vehicle to guide such
biased statistics. Recently, the phase statistics of optical soliton
pulses was analyzed by means of a numerical method based on
both IS and soliton perturbation theory of the inverse scattering
transform (see [11]). In that paper, the practical consequences
on non-Gaussian statistics of the soliton phase on the BER of
DPSK systems were discussed.

In this work, we shall develop a different IS-based numer-
ical technique that is based on the so-called root-mean-square
method [12]. The important merit of our method is that it can
be applied to all practical cases of present installed fiber-optics
communication systems where nonsoliton modulation formats
(e.g., RZ or dispersion-managed soliton) are employed. More-
over, in this work, we analyze the role of signal-to-noise ratio
and nonlinear phase shift on the symmetry of the pulse phase
pdf, in excellent agreement with the predictions of the analyt-
ical theory [8], [9].

Our IS algorithm is based on the calculation of a signal-
dependent special function that biases the amplifier noise.
We modify the mean value of the Gaussian statistical process
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in order to excite rare and large deviations in the soliton
phase. Let us define the root-mean-square soliton phase as

with

(1)

Whenever one adds a complex noise field component to
the soliton pulse so that , the phase associated
with reads as , where

(2)

,
, and , , whereas the scalar product is

defined as .
Equation (1) directly links the noise perturbation to the cor-

responding perturbation of the soliton root-mean-square phase.
For a given amount of phase shift , the most likely noise is
the one of least energy: such constrained minimization problem
is solved in terms of the auxiliary function and the Lagrange
multiplier , where

(3)

By computing the relevant functional derivatives, one ob-
tains the following relation between the most likely biasing ASE
noise at a given amplifier site and the corresponding
soliton phase shift

(4)

with , ,
, and as

solution of (3).
As a result, the total ASE noise at a given amplifier site reads

as , where is a complex zero-average
(biased) Gaussian uncorrelated random process and is the
deterministic function given by (4). Finally, the likelihood factor
associated with such a biased ASE noise sequence is given by
the ratio [9], [10]. In the present
numerical simulations, we shall assume for simplicity that the
overall phase offset at the end of a link of amplifiers
is divided into equal contributions at each amplifier of index ,
of amplitude . For long distances, however,
this assumption may be incorrect (see [10] for the computation
of amplitude and timing jitter of solitons): the relative contribu-
tion of each amplifier span to the overall phase shift will then be
related to the specific properties (i.e., power, time width) of the
transmitted pulse. According to the discussion of [4], by using
a preliminary noiseless simulation, one can use the propagated
signal at a given amplifier site for numerically evaluating the
relative contribution of that span to the soliton phase shift.

To test our algorithm, we considered a soliton transmission
system with constant fiber dispersion of 0.2 ps km and with

Fig. 1. Filled marks: numerical sp-pdf at 3000 km versus analytical
theory (solid curve). Unbiased samples (triangles), biased samples (circles and
squares). Empty marks denote unreliable samples. Thin dashed curve: Gaussian
approximation. Amplifier noise figure is 5 dB and OSNR is 19.5 dB.

a self-phase modulation coefficient of 2 W km . Under these
conditions, one can transmit a first-order path-average soliton
with a peak power of 1 mW. With an amplifier spacing of 50 km
and distributed fiber losses of 0.2 dB/km, the input pulse should
be enhanced by a factor of 1.59 (see [2]) to keep the path av-
erage soliton peak power equal to 1 mW. The analytical ap-
proach of Mecozzi [4], which is valid in the limit of a very
large number of amplifiers, points out the key parameters that
control the behavior of the soliton phase statistics, that is the
optical signal-to-noise ratio (OSNR) and the nonlinear phase
shift (see [4]).

In order to validate our numerical method, let us compare our
results against the analytical predictions of [4] for different sets
of and . As we shall see, we could confirm that the non-
linear interaction of soliton and noise causes an asymmetrical
deviation of the sp-pdf from a reference Gaussian distribution:
such a deviation is a function of and . Indeed, for a fixed

, the symmetry of the sp-pdf increases (close to its Gaussian
approximation) as the OSNR grows larger. On the other hand,
for a fixed level of OSNR, the shape asymmetry of the sp-pdf is
more pronounced as grows larger, that is for longer propa-
gation distances.

We first numerically studied the soliton phase histogram by
using unbiased ASE noise samples at each amplifier site (not
shown here). We verified that the standard deviation of the ob-
served phase noise (0.31 rads after 3000 km) was in agreement
with the predictions of the soliton perturbation theory [2].

In order to display the tails of the sp-pdf, it is necessary to
use a log scale: in Fig. 1, we show the sp-pdf for a transmission
distance of 3000 km and 5 dB of amplifier noise figure. The thin
dashed curve is a fitting Gaussian function with the same mean
value and variance as the unbiased numerical results. In Fig. 1,
we use different symbols for unbiased and biased levels: trian-
gles for the nonbiased set of simulations, filled circles and filled
squares for two sets of biased simulations. Empty circles and
squares show the unreliable part of IS results (see also [9] and
[10]). Choosing the bias levels was the result of a trial and error
search for a tradeoff between numerical accuracy and computa-
tional efficiency. For a fixed bias level, the results are obtained
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Fig. 2. Circles: numerical sp-pdf at 3000 km versus analytical theory (solid
curve). Thin dashed curve: Gaussian approximation. Amplifier noise figure is
2 dB, OSNR is 22.5 dB.

by classifying the phase occurrences of 500 000 runs and with a
frequency sampling of 1024 points of fast Fourier transform (no
multiple IS is used). The thick solid line was obtained by using
the analytical sp-pdf of [4] (with dB). The remarkable
agreement between the numerical and the analytical pdfs clearly
shows that the soliton phase statistics is not Gaussian. Indeed,
the sp-pdf exhibits an asymmetry with respect to its mean value.

The analytical theory further predicts that the asymmetry of
the sp-pdf should be reduced if one increases the OSNR. In order
to verify this, we performed a simulation using lumped ampli-
fiers with a “virtual” noise figure reduced down to 2 dB.1 This in-
creases the OSNR by 3 dB while keeping a constant. Our
results are shown in Fig. 2: as can be seen, in this case, the asym-
metry of the sp-pdf is reduced. At the same time, of course, the
sp-pdf variance is also less pronounced as it is proportional to
the amplifier’s noise figure. Note that if one increases the OSNR
by using a higher soliton peak power instead of a lower ampli-
fier noise, the asymmetry may be still significant, owing to the
comparatively larger value of . This point is illustrated by
Fig. 3, where we increased the soliton peak power to 2.5 mW by
means of changing the fiber dispersion to 0.5 ps nm, while
keeping a 5-dB noise figure.

In summary, we developed a numerical method in the class of
the IS algorithms to perform a direct computation of the random
optical soliton phase statistical distribution under the action of
Gordon–Mollenauer or nonlinear phase noise. We confirmed the
validity of our method by comparing its results with an ana-
lytic approximation, and we have shown that the sp-pdf departs
from a simple Gaussian as the propagation distance grows larger
(for a fixed level of OSNR). We envisage that the computational
method developed here will be an important tool to evaluate the

1Although for lumped optical amplifiers the quantum limit to their noise
figure is 3 dB, in practice when adopting a distributed amplification scheme
such as Raman amplification, one may represent the situation though an
equivalent lumped amplifier with a noise figure below 3 dB.

Fig. 3. Same as in Fig. 2, with 5-dB amplifier noise figure and 23.4-dB OSNR.

performance of fiber-optics telecommunication systems when-
ever they are limited by nonlinear phase noise, in situations
where no analytical theory is available such as for dispersion and
nonlinearity (e.g., with distributed Raman amplification) man-
aged transmissions.
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