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Twin families of bisolitons in dispersion-managed
systems
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We calculate bisoliton solutions by using a slowly varying stroboscopic equation. The system is characterized
in terms of a single dimensionless parameter. We find two branches of solutions and describe the structure
of the tails for the lower-branch solutions. © 2007 Optical Society of America
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Bisolitons in optical fiber lines with dispersion man-
agement were first discovered by using computer
modeling1 and later were discovered experimentally.2

The former were in-phase and the latter were anti-
phase bisolitons, which can be viewed as two-
component soliton molecules. In numerical simula-
tions, they are stable over long propagation distances
and, if perturbed, oscillate about equilibrium. Follow-
ing the experimental work we investigate the struc-
ture of antiphase bisolitons, assuming that fiber
losses are completely compensated and propagation
of pulses through optical fiber in a dispersion-
managed system is governed by the nonlinear
Schrödinger equation

iuz + d�z�utt + ��u�2u = 0, �1�

where u=u�t ,z� is the slowly varying envelope of the
electromagnetic field inside the fiber. We consider a
simple case of a piecewise constant dispersion func-
tion d�z�, where a fiber span of length zdm/2 with nor-
mal dispersion alternates with equal-length spans of
anomalous dispersion fiber. The function d�z� can be
represented as a sum of an oscillating part d̃�z� and a
residual dispersion d0 such that d�z�=d0+ d̃�z�. Here
�d̃�z��=0; d̃�z�=d1 if 0�z�zdm/2, and d̃�z�=−d1 if
zdm/2�z�zdm. In this system, the characteristic
length of the nonlinearity is znl�1/�P, where P is the
peak power of the bisoliton, while the characteristic
length of the residual dispersion is zd0

��2 /d0, where
� is the pulse width. The spectrum û of the solution to
Eq. (1) can be represented as

û = q��,z�exp�− i�2�
zdm/4

z

d̃�z��dz�	 , �2�

provided that zdm�znl,zd0
. The exponential term

captures the fast (in z) phase, and q�� ,z� captures
the slow amplitude dynamics of the spectral compo-
nents. As has been shown,3 the evolution of the spec-

tral components at leading order can be described by
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iqz��� − d0�2q��� + �R�q���,�� = 0,

where

R�q���,�� =
1

�2��2 � sin�s�/2�

s�/2
q��1�q��2�q*��3�

� ���1 + �2 − �3 − ��d�1d�2d�3. �3�

Here s
zdmd1 /2 is dispersion map strength and �

�1

2+�2
2−�3

2−�2. Higher-order corrections to this
equation were considered in Ref. 4 to take into ac-
count the effect of dispersion map geometry on in-
phase bisolitons. We determine a shape of a bisoliton
solution following earlier work by Lushnikov.5 If a
solitary wave solution with phase period 	−1 has the
form q���=A���ei	z, then amplitude A��� evolves ac-
cording to the following integral equation:

− 	A − d0�2A + �R�A���,�� = 0. �4�

Rescaling variables t=�0�, �=
 /�0, and A���=a��
�,
where �0=s1/2 and a=2��s	 /��1/2, results in a dimen-
sionless equation

− �1 + d̄0
2���
� + R̄���
�,
� = 0,

where

R̄���
�,
� =� sin��̄/2�

�̄/2
��
1���
2��*�
3�

� ��
1 + 
2 − 
3 − 
�d
1d
2d
3, �5�

which depends on a single parameter d0̄=d0 / �s	�.
Here �̄=
1

2+
2
2−
3

2−
2.
We study the structure of antiphase bisolitons as a

function of d0̄. To solve this integral equation we use

the following iterative procedure:
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�n+1�
� = Podd�Qn
3/2

R̄��n�
�,
�

1 + d0̄
2 	. �6�

Here Podd�f�x��= �f�x�− f�−x�� /2 is a projection operator
onto the set of odd functions and F̂−1 is an inverse
Fourier transform. A modified Petviashvili stabilizing
factor6 Qn,

Qn 
�F̂−1��n�
�
/F̂−1� R̄��n�
�,
�

1 + d0̄
2 ��
�=0.5

,

allows the scheme to avoid trivial solutions �=0. The
most costly part of this iterative procedure is evalua-
tion of R̄, which involves a triple integral. To expedite
evaluation of these integrals we used the procedure
described by Lushnikov.5 It should be noted that the
bisoliton solution of Eq. (5) represents the unchirped
pulse shape at the middle of each span with positive
dispersion.

We begin by studying the solutions for the param-
eter d0̄=0.067 (a realistic value for communication
systems7), choosing �0 as a sum of two shifted real-
valued Gaussian functions with opposite signs. The
iteration procedure converges to the fixed point as
the Petviashvili factor Qn approaches 1. The iteration
is stopped when �Qn−1 � �10−5. The value of d0̄ was
then varied in small increments. We use the solution
found for the nearby d0̄ as the initial “guess” for the
next value of d0̄. Figure 1 represents bisoliton energy
as function of d0̄. Remarkably, this is a multiple-
valued function with two branches. Calculation of so-
lutions on this second branch required solution of the
Arnoldi–Lanczos approximation problem for the lin-
earization of iteration operator. Its limit point is lo-
cated in the vicinity of d0̄bf�0.426. With all other pa-
rameters fixed, smaller values of d0̄ correspond to
smaller values of residual dispersion. Therefore the

Fig. 1. Bisoliton energy as two valued functions of dimen-
sionless residual dispersion d0̄. Solid and dashed curves on
inset correspond to the upper- and lower-branch bisolitons
with d0̄=0.256. Horizontal and vertical axes on inset corre-

spond to dimensionless time and amplitude.
limit point corresponds to the largest value of d0 for
which bisolitons are supported. According to our cal-
culations, for values of d0̄
d0̄bf bisolitons will fail to
exist, and we will observe only a pair of interacting
dispersion-managed solitons that are not bound, not
a bisoliton. The inset to the figure shows that the
higher-energy bisoliton is wider, with greater separa-
tion and broader shape.

Direct numerical simulations demonstrate stabil-
ity of both the lower and the upper-branch bisoliton
solutions over realistic distances (1000 periods). For
very long propagation distances, the upper branch
showed signs of instability. Additionally, the pair of
pulses composing the solution tends to stay bound
whenever the pulses are pulled apart. The separation
between the pulses spread apart in this manner os-
cillates about the separation for the bisoliton solu-
tion.

In the remainder of this Letter, we will discuss the
structure of the lower-branch solutions. Details about
the upper-branch solutions are the subject of ongoing
work. The logarithmic density profile of lower-branch
solutions’ amplitude for a range of values of d0̄ is
shown in Fig. 2. There lighter shades of gray corre-
spond to a higher value of the amplitude. The solid
curves correspond to zero values. The dashed curves
indicate where the solutions have their maxima. A
horizontal slice of this plot gives an amplitude profile
for a fixed value of d0̄. For example, for a value of
d0̄=0.167 the logarithm of amplitude is represented
on Fig. 3. The dashed curve on the same graph rep-
resents the result of direct numerical simulations of
Eq. (1) after 1000 dispersion map periods. A solution
of Eq. (5) provided one boundary condition for this
simulation (the launched pulse).

As we see in Fig. 2 bisoliton tails change sign for
values of d0̄�d0̄cr �d0̄cr�0.269�. As the value of the
dimensionless residual dispersion becomes greater
than the critical value d0̄
d0̄cr, the phase of the tails
remains unchanged, and the amplitude approaches
an exponentially decaying function. Our equation
[Eq. (5)] reduces the many physical parameters from
Eq. (1) to a single parameter. We have computed the

Fig. 2. The contour plot of log��u � � as a function of time
variable t and a parameter d0̄. The dotted curves represent
the peak amplitudes of solutions.
bisolitons for a range of parameter values, and those
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computed solutions can be used to write solutions of
the original physical system

u�t,zdm/4 + mzdm� =�	

�
F̂−1���d0

¯ =
d0

	s
�
�
�

�=t/�s
, �7�

where it was convenient to specify the solution at
z /4+mz because it is chirp free at this point.

Fig. 4. Waveforms of a logarithm of the amplitude for
bisoliton propagation through dispersion-managed system
with s=1.5, d0=0.0125, �=1, (a) 	=0.05, and (b) 	=0.02.
The soliton magnitude �u� is symmetric. Bisolitons are
propagated over half of the period, from zdm/4 to 3zdm/4.

Fig. 3. Intensity profiles of a bisoliton with d0̄=0.167. So-
lution of Eq. (5) (solid curves) and a result of propagating
this solution over 1000 periods through the line with s
=1.5, d0=0.0125, and 	=0.05 (dashed curves).
dm dm
We use u�t ,zdm/4� of Eq. (7) as the initial condition
in direct numerical simulation of Eq. (1) to study the
dynamics of lower-branch bisoliton solutions for dif-
ferent values of d0̄. In particular, we compare
temporal–spatial behavior of solutions corresponding
to values of d0̄cr�d0̄�d0̄bf and 0�d0̄�d0̄cr over a
map period. We consider a system with s=1.5 and
mean dispersion d0=0.0125. Figures 4(a) and 4(b)
represent propagation of the initial pulse with d0̄

=0.417 and d0̄=0.167, respectively. For such choices
of the system parameters, the values of phase periods
	 must be 0.05 and 0.02.

The bisolitons for values of d0̄ above the critical
value have no zeros other than at �=0 in their un-
chirped state, while if d0̄�d0̄cr the solution will have
an increasing number of zeros with smaller d0̄. The
example in Fig. 4(b) shows that for larger values of d0̄
the local minima, which in Fig. 4(a) are at z=zdm/4,
split into pairs of minima, which are shifted toward
zdm/2. In fact, comparing the dynamics of d0̄=0.417
and d0̄=0.167 bisolitons indicates that the larger the
value of d0̄ the more the minima will shift from the
narrowest states (the valleys) of the pulse to its
broadest state (the ridges).

In conclusion, we have used a slowly varying stro-
boscopic equation to calculate antiphase bisoliton so-
lutions with well-resolved tails. This equation can be
rescaled so that it has a single dimensionless param-
eter d̄0. We have found a range of d̄0 such that there
are two bisoliton solutions for each value of d̄0. In ad-
dition, the structure of the tails for the lower-branch
solutions was described in terms of the value of d̄0.
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