Competing Species
Coexistence and Chaos in Complex Ecologies

J.C. Sprott, J.A. Vano, J.C. Wildenberg, M.C. Anderson, J.K. Noel

University of Arizona, March 25, 2010
Group Members

- David DeCesari
- Jennifer Kanemaru
- Daniel Weiss
- Carolyn Wise

Mentor: Sarah Mann

University of Arizona, March 25, 2010
Modeling Species

- Competition in the Real World

- Why Use Models?
 - Predict instability
 - Parameters are chosen in a variety of ways

University of Arizona, March 25, 2010
Can model relations with equations:

For Example: Owl, Snake, Frog, Caterpillar
Population Graph

University of Arizona, March 25, 2010
What You Can’t See...

- Adaptation
 - Occurs every 20 time steps
- Clamping
 - Occurs at 10^{-6} to prevent extinction

University of Arizona, March 25, 2010
Lotka-Volterra model

Lotka-Volterra equations:

\[
\frac{dx}{dt} = ax - \beta xy
\]

\[
\frac{dy}{dt} = -\gamma y + \delta xy
\]

x = prey, y = predator, t = time

University of Arizona, March 25, 2010
Variation of Lotka-Volterra equations

\[
\frac{dx_i}{dt} = r_i x_i \left(1 - \sum_{j=1}^{N} a_{ij} x_j \right)
\]

- \(x_i\) = Population size of species i
- \(dx_i/dt\) = Rate of change in size of population i
- \(r_i\) = Growth rate
- \(a_{ij}\) = Competition matrix

University of Arizona, March 25, 2010
The Numerical Method

- Discretize
- Develop difference equation (Forward Euler Method)
- Implement in Matlab
Difference Equations

\[f(y(k)) = y(k)^2 \]

\[y_n = f(y_{n-1}) \]

- \(y \) would represent an animal population
- \(y_0 \) would represent the initial conditions

University of Arizona, March 25, 2010
Forward Euler

- Approximation of time derivative of $x(t)$:
 $\frac{dx}{dt} \approx \frac{x_n - x_{n-1}}{\Delta t}$

- Exact time derivative of $x(t)$ from DE:

 $f = \frac{dx_i}{dt} = r_i x_i \left(1 - \sum_{j=1}^{N} a_{ij} x_j \right)$

- The iterative method:
 $x_n \approx x_{n-1} + f \Delta t$

University of Arizona, March 25, 2010
Matlab Implementation

- Initialization of population vector and competition matrix
- Clamping at 10^{-6}
- Adaptation
- Step size
- Why Forward Euler?
Biomass and Biodiversity

• Biomass – The total mass of living organisms in a certain ecosystem

\[M = \frac{1}{N} \sum_{i=1}^{N} x_i \]

• Biodiversity - The diversity of plant and animal life in a specific habitat

\[D = 1 - \frac{1}{2(N-1)} \sum_{i=1}^{N} \left| \frac{x_i}{M} - 1 \right| \]
Biomass (with adaption)

Our Graph

Their Graph

University of Arizona, March 25, 2010
Biodiversity (with adaption)

Our Graph

Their Graph

University of Arizona, March 25, 2010
Biodiversity vs Biomass

Theirs (without adaptation) Ours (with adaptation)

University of Arizona, March 25, 2010
Biomass

With Adaptation:

Without Adaptation:

University of Arizona, March 25, 2010
Biodiversity

With adaptation: 2×10^6

Without adaptation: 2×10^4

University of Arizona, March 25, 2010
Results

- What effects do the following have on Biomass/Biodiversity?
 - Clamping
 - Adaptation

- What does this all mean?
- Why are our results relevant?

University of Arizona, March 25, 2010
Modifications

- Different changes in adaptation
- Changes in mutation (different number of time steps to implement mutation)
- Changes in clamp size
Conclusion

• Current Research

• Applications of models:
 • Competition for resources
 • Objects prone to crashes
Acknowledgments

University of Arizona, March 25, 2010
QUESTIONS?