Recognition of Spectral Patterns

Project Description

- **Motivation**: Recognition of spectral patterns through the utilization of an optical correlator.
- **Previous Works**: Correlation filters have been utilized with some success in automatic target recognition (ATR) applications. [1]
- **Reason**: To develop a model for improved target recognition that factors in prior knowledge of target IR signature.
- **Goal**: Evaluation of the MACH (Maximum Average Correlation Height) filter for ATR and aim point analysis.

Scientific Challenges

- Strike a balance between **robustness** (with respect to noise) and **simplicity** in order to be realizable in the real world.
- Closing rate of an intercept is (> 4 km/sec).
- Correlation filters are designed (with respect to target class, aspect angle, etc.) to provide the optimal (i.e., the most invariant response) of the filter with respect to the target image.

Potential Applications

- Target recognition; facial feature recognition; mammography (breast tumor detection)

Glossary of Technical Terms

Correlation filter: a set of carefully designed correlation templates with regard to shift invariance as well as distortion-tolerance.

Fast Fourier Transform (FFT): efficient method to transform spatial correlation into a Fourier-domain element-by-element multiplication.

Cross-correlation: the two-dimensional spatial correlation for the large matrices.

Team Member:

Victoria Hahn

Methodology

1. **Calculate correlation surface**: cross-correlate image and each correlation filter [1]:
 \[g_{k,c,\theta} = \hat{I}_k(u,v) \odot h_{k,\theta} \]
 where: \(\hat{I}_k(u,v) \) represents the correlation image, \(I_k(u,v) \) represents the \(k \)th pre-processed image. The symbol \(\odot \) represents the two-dimensional spatial correlation. Moreover, \(h_{k,\theta} \) represents the filter coefficients in the spatial domain.

2. **Specifically**, the “Fast Fourier Transform” correlation (i.e., FFT) is employed to transform a spatial correlation into a Fourier-domain, element-by-element multiplication.
 \[g_{k,c,\theta} = \left(C_{2D}(\hat{I}_k(u,v)) \cdot H^*_{c,\theta} \right) \]
 where: the variables for target class are specified as \(c \). The aspect angle is represented by the variable \(\theta \). The function, \(C_{2D}(\ast) \), computes the two dimensional Fast Fourier Transform of its argument; the function, \(z_{2D}(\ast) \), computes its inverse. The symbol \((\ast) \) denotes an element-by-element multiplication. \(\hat{I}_k(u,v) \) is the \(k \)th pre-processed image, and \(H^* \) is the selected filter.

3. **A post-processing function**, Peak-to-Sidelobe Ratio (PSR), must be applied to the correlation surface to judge the relative strengths of the correlation peaks. The PSR surface is then searched for the maximum value.
 \[PSR = \frac{\text{peak} - \mu}{\sigma} \]
 where: peak is a peak response in the correlation surface; \(\mu \) is the mean response local to the peak; and \(\sigma \) is the standard deviation local to the peak.

Results

1. Simulation was performed and the the results of how the target aim point error is affected was graphed.
2. It was found that the target aim point error was similarly affected. Specifically, consistent with the original model, the aim point error is quite good through a -6 SNR. [2]

References

1. Mahalanobis, A. “Improving the False Alarm Capabilities of Composite Correlation Filters” Proc. of SPIE Vol. 3718

Acknowledgments

This project was mentored by Dr. Gabitov, whose help is acknowledged with great appreciation. Support from a University of Arizona TRIF (Technology Research Initiative Fund) grant to J. Lega is also gratefully acknowledged.